PRODUCT CATALOG Our Journey

Total Page:16

File Type:pdf, Size:1020Kb

PRODUCT CATALOG Our Journey 2020 PRODUCT CATALOG Our Journey NOVA OPENS 2,500 LAUNCH OF RETAIL CHICAGO DISTRIBUTION SQUARE FT WAREHOUSE BATHROOM SAFETY CENTER OPENS IN EL SEGUNDO, CA PRODUCT LINE 1993 1995 2001 2004 1994 1999 2003 SUE STARTS NOVA THE NOVA BRAKES NOVA EXPANDS WITH AND RON JOINS A NOVA COMES OUT REVAMP AND BECOME LOS ANGELES FEW MONTHS LATER WITH A RED ROLLATOR THE BEST IN CLASS DISTRIBUTION CENTER NOVA THROUGH THE YEARS NOVA Circa 1993 live! LAUNCH OF THE FIRST KICK OFF RETAIL NOVALIVE! LAUNCHED TO ATLANTA DISTRIBUTION SPINNING CANE RACK - REVOLUTION AND LOSE THE TRAIN EVERYONE FROM CENTER OPENS THE CANE CAROUSEL TENNIS BALLS CAMPAIGNS ANYWHERE 2009 2013 2018 2005 2011 2015 2020 NOVA’S LOGO GETS A BIG NOVA’S RETAIL STORE RETAIL MAKEOVERS MAKEOVER IN 5 COLORS PACKAGING GOES GREEN PASS 500 LOCATIONS Contents amazing EDUCATION & MARKETING .................................. 6 wow PLANOGRAMS & DISPLAYS .................................. 10 style CANES ......................................................... 12 independence WALKERS ...................................................... 34 individuality MOBILITY ACCESSORIES .................................... 50 TABLE OF CONTENTS togetherness TRANSPORT CHAIRS & WHEELCHAIRS ................... 57 safety BATHROOM SAFETY .......................................... 68 comfort CUSHIONS ..................................................... 84 sleep PILLOWS & WEDGES ........................................ 99 well-being LIFE AIDS ..................................................... 105 CHOOSEamazing Our Education and Marketing programs are the best in the business. NOVAlive!, our innovative online education platform, our YouTube channel and our vibrant and thoughtful marketing materials make all the difference. Explore, execute ... and see the amazing results. EDUCATION & MARKETING 6 EDUCATION live! Tune in Here! live! novajoy.live NOVAlive! hosts all our great video exclusives - new products, new programs & more! NOVAlive! is our Education and Experience platform that you can access from the comfort of your desktop, laptop or any mobile device. This is your personal NOVA channel for Retail Education, Product Training and more! EDUCATION “As CEO, Chief Education Officer, my job and passion is to educate you and your team on how to education.novajoy.live deliver the best experience, outcomes and solutions for your customers, and that’s going to happen on This One Hour Product Education NOVAlive.” Session is effective, educational, and, of course, fun! After watching the videos, but sure to take the Learning Quiz - we will be sending a personalized certificate to all who pass with 70% or higher! Sue Chen Chief Education Officer Call Toll-Free at 1-800-557-6682 7 EDUCATION NOVA’s YouTube channel is jam packed with great information, inspiration and that NOVAjoy. We have over 140 videos and counting to educate, inform and inspire our customers. Please do Subscribe to our Channel and feel free to give us a (thumbs up) or feedback. And, thank you for watching and sharing the joy! Watch as Sue demonstrates our products’ easy assembly, goes over features and style options, and so much more! NOVA Medical Products You can find us on the NOVA Medical Products page on YouTube! SUBSCRIBE Be sure to click subscribe! 8 novajoy.com MARKETING MATERIALS Dealer & Consumer Brochures Floor Sticker (Bundle of 10) (24” x 6.75”) Transport Chairs Rolling Walkers & Wheelchairs Bathroom Safety The Knee Walker Fall Prevention Mobility Floor Sticker MOBILITY Item # M077 QTY _______ Item # M008 Item # M009 Item # M010 Item # M035-B Item # M075 QTY ____ QTY ____ QTY ____ QTY ____ QTY ____ (Bundles) (Bundles) (Bundles) (Bundles) (Bundles) Posters Floor Mat (24” x 12”) GIVE YOUR BODY A HUG PREVENT FALLS GIVE YOUR BODY A HUG CUSHIONS CUSHIONS Hot Spot #1 GET SOME LEVERAGE SITTING Choose NOVA Joy Floor Mat DID YOU KNOW? of falls occur at home, with 60% the majority occurring in the bathroom. Hot Spot #2 GETTING IN AND OUT OF THE TUB Be proactive & equip your bathroom with ... LOUNGING Hot Spot #3 BATHING INDEPENDENTLY Hot Spot Item # M087 QTY _______ SOLUTIONS by LOUNGE COMFORTABLY & SLEEP SOUNDLY SLEEPING Item # M060 Item # M061 Item # M063 24” x 36” 24” x 36” 24” x 36” QTY _______ QTY _______ QTY _______ Banners (36” x 10”) Bathroom Banner Bathroom Infographic Banner Item # M049 HAPPY & SAFE EVERY DAY Item # M052 BATHROOM QTY QTY ____ ____ GET SOME LEVERAGE GET IN & OUT OF THE TUB BATHE INDEPENDENTLY Cushions Banner Item # M047 Cushions Infographic Banner CUSHIONS GIVE YOUR BODY A HUG... QTY ____ Item # M051 QTY ____ Mobility Banner SITTING LOUNGING SLEEPING Item # M048 MOBILITY QTY ____ Mobility Infographic Banner Item # M059 Life Aids Banner QTY ____ Item # M050 STYLE SELECTION SAFETY LIFE AIDS QTY ____ Call Toll-Free at 1-800-557-6682 9 CHOOSE Your store layout and presentationwow makes all the difference. WOW your customers and increase your sales with our Planograms and Displays. PLANOGRAMS & DISPLAYS 10 PLANOGRAMS & DISPLAYS GIVE YOUR BODY A HUG PREVENT FALLS GIVE YOUR BODY A HUG GIVE YOUR BODY A HUG CUSHIONS CUSHIONS CUSHIONS Hot Spot #1 GET SOME LEVERAGE SITTING SITTING DID YOU KNOW? of falls occur at home, with 60% the majority occurring in the bathroom. Hot Spot #2 GETTING IN AND OUT OF THE TUB Be proactive & equip your bathroom with ... LOUNGING LOUNGING Hot Spot #3 BATHING INDEPENDENTLY Hot Spot SOLUTIONS by LOUNGE COMFORTABLY & SLEEP SOUNDLY SLEEPING SLEEPING Call Toll-Free at 1-800-557-6682 11 CHOOSEstyle Make canes a style statement for your store and your customers. CANES 12 CANES Designer Aluminum Offset Canes FEATURES & SPECIFICATIONS Lightweight aluminum Adjustable from 28” - 39.25” Soft foam handles Carrying strap Fade & chip resistant 7/8” diameter Weighs 3/4 lb Approx. user height: 4’11” - 6’4” 300 lb weight capacity 1070BF 1070BP 1070CF Tip size: 10018 Blue & Pink Green Plaid Camouflage Flowers on Black 1070GP 1070HT 1070LP 1070MF 1070MG Paisley on Houndstooth Leopard Maui Mahogany Swirl Green Print Flowers 1070PB 1070PC 1070PG 1070PL 1070RB Purple Purple Pink Blue Red Bliss Bliss Checkers Garden Waves Call Toll-Free at 1-800-557-6682 13 CANES Designer Aluminum Offset Canes 1070CH 1070RS 1070US 1070WN 1070BS Blue Porcelain Roses Stars & Stripes Walnut Grain Butterfly Symphony 1070PP 1070PK* 1070FP* 1070LV 2093* Pink Petal Proud Peacock Flower Power Viva Las Vegas Canterbury Power 2091* 2094 3003* 3004* Celestial Butterflies Bingo Nights Casino Days * Adjustable from 30” - 39” 14 novajoy.com CANES Designer Aluminum T-Grip Canes FEATURES & SPECIFICATIONS Lightweight aluminum Adjustable from 28” - 39” Ergonomic plastic handles Fade & chip resistant 7/8” diameter Weighs 1 lb 2011 2014 2017 Approx. user height: 4’11” - 6’4” Purple & Lilacs & Maui 300 lb weight capacity Pink Flowers Green Leaves Flowers Tip size: 10018 2018 2019 2022 2024 2025 Green Blue White with Snake Blue & Pink Plaid Paisley Blue Flowers Skin Flowers on Black 2028 2029 2030 2033 2034 Leopard Black Purple Mahogany Walnut Print & Blue Checkers Swirl Grain 20362036 2037 C2050BK-C205 PinkPink Purple BlackBlack GardenGarden Bliss Call Toll-Free at 1-800-557-6682 15 CANES Designer Aluminum Folding Canes FEATURES & SPECIFICATIONS Lightweight aluminum Wood Derby handles Fade & chip resistant 7/8” diameter Comes in a plastic bag Weighs 1 lb Adjustable from 29” - 33.25” Approx. user height: 4’11” - 5’10” 300 lb weight capacity Tip size: 10018 3010BR 3010BK3010 3015 302230 Bronze BlackBlack Leopard ButterfliesButt 3023302 3024 3026302 303330 BlueBlue Maui CamouflageCamo MahoganyMah WavesWave Flowers SwirlSwir 3034303 3036303 WalnutWalnu PinkPink GrainGrain GardenGarden 16 novajoy.com CANES QT Canes Folding Canes with Mini Quad Cane Tips QT Canes feature a Mini FEATURES & SPECIFICATIONS Quad Cane Tip, which Lightweight aluminum improves stability and Adjustable from 29.5” - 36.5” traction on uneven terrain, Ergonomic plastic handles reduces impact on the user’s Fade & chip resistant hand and wrist and allows 7/8” diameter the cane to stand on its Weighs 1 lb own on smooth and level Approx. user height: 4’11” - 6’4” surfaces. Its compact size 300 lb weight capacity makes it ideal for travel. Tip size: 10041BK Mini Quad Tip QT3010BKQT QT3010BRQT QT3015 QT3022 BlackBlac BronzeBron Leopard Butterflies QT3023QT QT3024 QT3026 QT3027 BlueBlue Waves Maui Flowers Camouflage Blue Porcelain QT3028QT QT3033QT QT3034QT3 QT3036QT3 ButterflyButte MahoganyMaho Swirl WalnutWaln Grain Pink GardenG SySymphonymp Call Toll-Free at 1-800-557-6682 17 CANES NEW! FEATURES & SPECIFICATIONS Collapsible Cane Lightweight aluminum Adjustable from 29.25” - 35.75” ClickCanes collapse and Derby style handles expand with the push of a Fade & chip resistant button. They easily adjust to Weighs .75 lb four different heights, and can collapse down compactly, Approx. user height: 4’11” - 6’1” making them ideal for travel. 250 lb weight capacity 3070BK 3070BS 3070MF 3070PK 3070PL Black Butterfly Maui Flowers Proud Peacock Blue Waves Symphony Designer Aluminum Offset Canes NEW! Heavy Duty FEATURES & SPECIFICATIONS Lightweight aluminum Adjustable from 30” - 39” Soft foam handles Carrying strap Fade & chip resistant 1” diameter Weighs 1.25 lb Approx. user height: 4’11” - 6’4” 500 lb weight capacity 1075BF 1075MF 1075PG 1075PL Butterflies Maui Flowers Pink Garden Blue Waves 18 novajoy.com CANES Cane Sugar Sweet Style. We love the SugarCane because it stands with style and is frankly, the Best Cane Ever. SugarCanes • Quad Tip Base allows cane to stand on its own • Lightweight aluminum • Adjustable from
Recommended publications
  • When the Sun Dies, It Will Make
    When the Sun dies, it will make: 1. A red giant 2. A planetary nebula 3. A white dwarf 4. A supernova 5. 1, 2, and 3 When the Sun dies, it will make: 1. A red giant 2. A planetary nebula 3. A white dwarf 4. A supernova 5. 1, 2, and 3 A white dwarf star: 1. Is the core of the star from which it formed, and contains most of the mass 2. Is about the size of the earth 3. Is supported by electron degeneracy 4. Is so dense that one teaspoonful would weigh about as much as an elephant 5. All of the above A white dwarf star: 1. Is the core of the star from which it formed, and contains most of the mass 2. Is about the size of the earth 3. Is supported by electron degeneracy 4. Is so dense that one teaspoonful would weigh about as much as an elephant 5. All of the above What keeps a white dwarf from collapsing further? 1. It is solid 2. Electrical forces 3. Chemical forces 4. Nuclear forces 5. Degeneracy pressure What keeps a white dwarf from collapsing further? 1. It is solid 2. Electrical forces 3. Chemical forces 4. Nuclear forces 5. Degeneracy pressure If a white dwarf in a binary has a companion close enough that some material begins to spill onto it, the white dwarf can: 1. Be smothered and cool off 2. Disappear behind the material 3. Have new nuclear reactions and become a nova 4. Become much larger 5.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • When Neutron Stars Melt, What’S Left Behind Is Spectacular Explosion
    Space oddity implodes. The outer layers are cast off in a When neutron stars melt, what’s left behind is spectacular explosion. What’s left behind is truly strange. Anil Ananthaswamy reports a rapidly spinning neutron star, which as the name implies is made mainly of neutrons, with a crust of iron. Whirling up to 1000 times per second, a neutron star is constantly shedding magnetic fields. Over time, this loss of energy causes the star to spin slower and slower. As it spins down, the centrifugal forces that kept gravity at bay start weakening, allowing gravity to squish the star still further. In what is a blink of an eye in cosmic time, the neutrons can be converted to strange N 22 September last year, the website of fundamental building blocks of matter in quark matter, which is a soup of up, down and The Astronomer’s Telegram alerted ways that even machines like the Large strange quarks. In theory, this unusual change Oresearchers to a supernova explosion in Hadron Collider cannot. happens when the density inside the neutron a spiral galaxy about 84 million light years Astrophysicists can thank string theorist star starts increasing. New particles called away. There was just one problem. The same Edward Witten for quark stars. In 1984, he hyperons begin forming that contain at least object, SN 2009ip, had blown up in a similarly hypothesised that protons and neutrons one strange quark bound to others. spectacular fashion just weeks earlier. Such may not be the most stable forms of matter. However, the appearance of hyperons stars shouldn’t go supernova twice, let alone Both are made of two types of smaller marks the beginning of the end of the neutron in quick succession.
    [Show full text]
  • Predictions of Variable Mass Loss for Luminous Blue Variables
    A&A 393, 543–553 (2002) Astronomy DOI: 10.1051/0004-6361:20021009 & c ESO 2002 Astrophysics Predictions of variable mass loss for Luminous Blue Variables Jorick S. Vink1;2 and A. de Koter3 1 Imperial College, Blackett Laboratory, Prince Consort Road, London, SW7 2BZ, UK 2 Astronomical Institute, Utrecht University, PO Box 80000, 3508 TA Utrecht, The Netherlands 3 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands Received 16 April 2002 / Accepted 8 July 2002 Abstract. We present radiation-driven wind models for Luminous Blue Variables (LBVs) and predict their mass-loss rates. We study the effects of lower masses and modified abundances in comparison to the normal OB supergiants, and we find that the main difference in mass loss is due to the lower masses of LBVs. In addition, we find that the increase in helium abundance changes the mass-loss properties by small amounts (up to about 0.2 dex in log M˙ ), while CNO processing is relatively unimportant for the mass-loss rate. A comparison between our mass loss predictions and the observations is performed for four relatively well-studied LBVs. The comparison shows that (i) the winds of LBVs are driven by radiation pressure on spectral lines, (ii) the variable mass loss behaviour of LBVs during their S Doradus-type variation cycles is explained by changes in the line driving efficiency, notably due to the recombination/ionisation of Fe iv/iii and Fe iii/ii, and finally, (iii) the winds of LBVs can be used to derive their masses, as exemplified by the case of AG Car, for which we derive a present-day mass of 35 M .
    [Show full text]
  • Blasts from the Past Historic Supernovas
    BLASTS from the PAST: Historic Supernovas 185 386 393 1006 1054 1181 1572 1604 1680 RCW 86 G11.2-0.3 G347.3-0.5 SN 1006 Crab Nebula 3C58 Tycho’s SNR Kepler’s SNR Cassiopeia A Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese, Historical Observers: Chinese, Japanese Historical Observers: European, Chinese, Korean Historical Observers: European, Chinese, Korean Historical Observers: European? Arabic, European Arabic, Native American? Likelihood of Identification: Possible Likelihood of Identification: Probable Likelihood of Identification: Possible Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Likelihood of Identification: Possible Likelihood of Identification: Definite Likelihood of Identification: Definite Distance Estimate: 8,200 light years Distance Estimate: 16,000 light years Distance Estimate: 3,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,500 light years Distance Estimate: 13,000 light years Distance Estimate: 10,000 light years Distance Estimate: 7,000 light years Distance Estimate: 6,000 light years Type: Core collapse of massive star Type: Core collapse of massive star Type: Core collapse of massive star? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Thermonuclear explosion of white dwarf? Type: Core collapse of massive star Type: Thermonuclear explosion of white dwarf Type: Core collapse of massive star NASA’s ChANdrA X-rAy ObServAtOry historic supernovas chandra x-ray observatory Every 50 years or so, a star in our Since supernovas are relatively rare events in the Milky historic supernovas that occurred in our galaxy. Eight of the trine of the incorruptibility of the stars, and set the stage for observed around 1671 AD.
    [Show full text]
  • Quark Nova with the Producing of Color-Flavor Locked Quark Matter
    Quark Nova with the Producing of Color-Flavor Locked Quark Matter Jia-rui Guo NanKai University, Tianjin 300071, China ∗ September 3, 2021 Abstract In this paper, we suggest that the process in quark nova explosion may exist widely in various kinds of supernova, although it only happens in a small part in the core in most cases. And the contribution to the en- ergy releasing of whole supernova explosion can also be provided by QCD interacting term. In this way we derive a general equation of energy quan- tity to be released in quark nova process related to several parameters. After quark nova explosion process, the remnant can be a quark star, or a neutron star with quark matter core if this process only happens in a small part inside the compact star instead of a \full" quark nova. We will also use a more generalized approach to analyse the strangelets released from quark nova and will draw a possible interpretation of why effects caused by strangelets have not been observed yet. Our result suggests that the ordinary matter can only spontaneously transform into strange quark matter by crushing them into high pressure under the extreme con- dition in compact star, although generally the reaction would really be exergonic. I Introduction Quark nova is a secondary collapsing after neutron stars preliminary formed and it can possibly give a considerable effect to the whole supernova event. It releases energy because the quark matter state is believed to be the ground state of matter [1]. In an environment of high density and high pressure, the quark matter is believed to be in Color-Flavor Locked (CFL) phase in the compact stars [2].
    [Show full text]
  • The Swirling Hydrogen Gas on the Surface of the Star Rho Gassiopeia Is Turbu at Best; a Seething, Frothing Mass, Normally Radiating at a Temperature of Z,OOO Kelvin
    ASTRONOMY N('YY The swirling hydrogen gas on the surface of the star Rho Gassiopeia is turbu at best; a seething, frothing mass, normally radiating at a temperature of Z,OOO Kelvin. Keith Cooper explains what happens when, periodically, Rho Gassiopeia's turbulence gets the better of it. he onset of an eruption is sig- naled when gas begins to swirl and fall in towards the centre of the star.The pressure rises, compressingand heating the gas,causing the starto brightenbriefly.Essentially, the star is coiling up like a spring on a trampo- line and.within months.it bouncesback. In the summer of the year 2000hydro- gen gas measuringten thousandEarth masseswas blastedout from the surface ofRho Cas,the largestsurface eruption ever observed on a star. A shock wave of material now encircles the star that could form aplanetarynebulaearound Rho Cas similar to the Homunculus Nebula around the star Eta Carinae.During the eruption Rho Cas'surface temperature dropped three thousand degreesto a relatively cool4,000It andalreadythe star's surface is recoiling again,perhaps preparing for The constellation of Cassiopeia, home of the hypergiant Rho Cas. lmage: Nik Szymanek. an evenbigger eruption. Welcometo the explosivelife of ahypergiant. ity of these stars,the individual stepson of a solar mass,and in the spaceof ten Rho Casbelongs to a rare breed of stars the path to this void haveyet to be seen. thousandyears it will undergo two hun- known as'hypergiants', of which only Very little is known about the stellar dred eruptions. In total, if each eruption twelve are known to exist in the Galaxy, mechanics involved, or even whether is similar in size,this will accumulateto 'yellow and only sevenare hypergiants' hypergiants can actually reach the Void the equivalent of twenty solar masses like Rho Cas.These stars are extremely before they blow themselvesapart in a ejected from the star.
    [Show full text]
  • Astronomy General Information
    ASTRONOMY GENERAL INFORMATION HERTZSPRUNG-RUSSELL (H-R) DIAGRAMS -A scatter graph of stars showing the relationship between the stars’ absolute magnitude or luminosities versus their spectral types or classifications and effective temperatures. -Can be used to measure distance to a star cluster by comparing apparent magnitude of stars with abs. magnitudes of stars with known distances (AKA model stars). Observed group plotted and then overlapped via shift in vertical direction. Difference in magnitude bridge equals distance modulus. Known as Spectroscopic Parallax. SPECTRA HARVARD SPECTRAL CLASSIFICATION (1-D) -Groups stars by surface atmospheric temp. Used in H-R diag. vs. Luminosity/Abs. Mag. Class* Color Descr. Actual Color Mass (M☉) Radius(R☉) Lumin.(L☉) O Blue Blue B Blue-white Deep B-W 2.1-16 1.8-6.6 25-30,000 A White Blue-white 1.4-2.1 1.4-1.8 5-25 F Yellow-white White 1.04-1.4 1.15-1.4 1.5-5 G Yellow Yellowish-W 0.8-1.04 0.96-1.15 0.6-1.5 K Orange Pale Y-O 0.45-0.8 0.7-0.96 0.08-0.6 M Red Lt. Orange-Red 0.08-0.45 *Very weak stars of classes L, T, and Y are not included. -Classes are further divided by Arabic numerals (0-9), and then even further by half subtypes. The lower the number, the hotter (e.g. A0 is hotter than an A7 star) YERKES/MK SPECTRAL CLASSIFICATION (2-D!) -Groups stars based on both temperature and luminosity based on spectral lines.
    [Show full text]
  • X-Ray Counterpart of Gws Due to Binary Neutron Star Mergers
    X-ray counterpart of GWs due to binary neutron star mergers -- light curves, luminosity function and event rate density Hui Sun (Peking University, NAOC) Collaborators: Bing Zhang (University of Nevada, Las Vegas), He Gao (Beijing Normal University) The X-ray Universe 2017 Italy_Rome June 6-9 Gravitational Wave detections Abbott et al. 2016c, LRR, 19,1 The X-ray Universe June/6-9/2017 Gravitational Wave detections Abbott et al. 2016c, LRR, 19,1 The X-ray Universe June/6-9/2017 NS-NS merger BH NS HMNS Ms> Mmax(Pi) merger NS SMNS Ms: gravitational mass of the merger remnant MTOV: maximum mass for non-rotating NS Stable NS Mmax(Pi) : maximum mass for rotating NS with initial period Pi The X-ray Universe June/6-9/2017 EM counterparts following NS-NS mergers BH as post-merger product Magnetar as post-merger product BH (Metzger & Berger 2012) Magnetar (Gao et al. 2013 ) Gamma-ray sGRB sGRB Optical Kilo-nova (Li & Paczyński 1998, Tanvir+2013) Merger-nova (Yu et al. 2013) Radio Radio Afterglow (Nakar & Piran 2011) Radio Afterglow (Gao et al. 2013 ) X-ray ------------ The X-ray Universe June/6-9/2017 EM counterparts following NS-NS mergers BH as post-merger product Magnetar as post-merger product X-ray emission BH (Metzger & Berger 2012) Magnetar (Gao et al. 2013 ) Gamma-ray sGRB sGRB Optical Kilo-nova (Li & Paczyński 1998, Tanvir+2013) Merger-nova (Yu et al. 2013) Radio Radio Afterglow (Nakar & Piran 2011) Radio Afterglow (Gao et al. 2013 ) X-ray ------------ X-ray emission (Zhang 2013) The X-ray Universe June/6-9/2017 Magnetar ‘Smoking gun’ GRB 090515 Rowlinson et al.
    [Show full text]
  • Supernova Blastwaves and Pre-Supernova Winds: Their
    SUPERNOVA BLASTWAVES AND PRESUPERNOVA WINDS THEIR COSMIC RAY CONTRIBUTION Peter L Biermann Max Planck Institut f urRadioastronomie Bonn Germany Sho cks in stellar winds can accelerate particles energetic particles are ob served through nonthermal radio emission in novae OB stars and Wolf Rayet stars Sup ernova explosions into predecessor stellar winds can lead to parti cle acceleration which we suggest can explain most of the observed cosmic rays of the nuclei of Helium and heavier elements from GeV in particle en 9 ergies up to near GeV as well as electrons ab ove ab out GeV We go through the following steps to make the case Using a p ostulate for an underlying principle that leads to transp ort co ecients in a turbulent plasma we derive the prop erties of energetic particles accelerated in spher ical sho cks in a stellar wind We suggest that a dynamo working in the inner convection zone of an upp er main sequence star can lead to high mag netic eld strengths which may b ecome directly observable in massive white dwarfs massive red giant stars and Wolf Rayet stars Such magnetic elds may put additional momentum into stellar winds from the pressure gradient of the toroidal eld with reduced angular momentum loss We use the statistics of Wolf Rayet stars and radiosup ernovae to derive a lower limit for the magnetic eld strengths This limit gives supp ort to the wind driv ing argument as well as the derivation of the maximum particle energy that can b e reached From a comparison of the radioluminosities of various stars radio sup
    [Show full text]
  • The U.K. Nova/Supernova Search Programme
    The U.K. Nova/Supernova Search Programme Guy M. Hurst Coordinator 16, Westminster Close, Kempshott Rise, Basingstoke, Hants, RG22 4PP, U.K. A summary of the results of the UK Nova/Supernova Patrol is presented together with a brief outline of projects undertaken by our members. The UK/Nova/Supernova Patrol was formed in 1976 June and the project is run on behalf of the British Astronomical Association, The Astronomer magazine and various overseas groups with the aim of searching for novae, supernovae and to monitor various 'recurrent' objects. The early successes in 1975/1976 were principally the finding of various pre-discovery images of novae and other eruptive objects on routine patrol films, e.g. : V400 Persei, V373 Scuti, HM Sge. This provided valuable information on the light-curves of such objects and helped to determine the date and magnitude of maximum. The first major success for the patrol came in 1977 January when John Hosty discovered HS Sagittae (= Nova Sge 1977). The equipment was modest 10 x 50 monocular and from a light-polluted area. This emphasized that expensive equipment was not needed to be successful, just dedication from the observer. D. Rossiter was unlucky in 1978 when he discovered V1668 Cygni, but after an earlier discovery in USA. M. Swan found pre-discovery images of PU Vul on patrol films in 1979, and John Hosty rediscovery CSV 101897 on films in 1980 October. The most mysterious patrol discovery occurred in 1981 January when D. Branchett found a nova-like object in Scutum. Although not subsequently confirmed, research showed that the star had been noted in earlier records as an 'atlas omission'.
    [Show full text]