Cable

A cable is two or more wires running side by side and bonded, twisted or braided together to form a single assembly. In mechanics cables, otherwise known as wire ropes, are used for lifting, hauling and towing or conveying force through tension. In electrical engineering cables are used to carry electric currents. An optical cable contains one or more optical fibers in a protective jacket that supports the fibers.

Electric cables discussed here are mainly meant for installation in buildings and industrial sites. For power transmission at distances greater than a few kilometres see high voltage cable, power cables and HVDC.

History

Ropes made of multiple strands of natural fibers such as hemp, sisal, manila, and cotton have been used for millennia for hoisting and hauling. By the 19th century, deepening of mines and construction of large ships increased demand for stronger cables. Invention of improved steelmaking techniques made high quality steel available at lower cost, and so wire ropes became common in mining and other industrial applications. By the middle of the 19th century, manufacture of large submarine telegraph cables was done using machines similar to that used for manufacture of mechanical cables.

In the 19th century and early 20th century, was often insulated using cloth, rubber and paper. Plastic materials are generally used today, except for high reliability power cables

Electrical cables

Electrical cables may be made more flexible by stranding the wires. In this process, smaller individual wires are twisted or braided together to produce larger wires that are more flexible than solid wires of similar size. Bunching small wires before concentric stranding adds the most flexibility. Copper wires in a cable may be bare, or they may be plated with a thin layer of another metal, most often tin but sometimes gold, silver or some other material. Tin, gold, and silver are much less prone to oxidation than copper, which may lengthen wire life, and makes soldering easier. Tinning is also used to provide lubrication between strands. Tinning was used to help removal of rubber insulation. Tight lays during stranding makes the cable extensible (CBA - as in telephone handset cords).

Cables can be securely fastened and organized, such as by using trunking, cable trays, cable ties or cable lacing. Continuous-flex or flexible cables used in moving applications within cable carriers can be secured using strain relief devices or cable ties.

At high frequencies, current tends to run along the surface of the conductor. This is known as the skin effect. Cables and electromagnetic fields

Coaxial cable.

Twisted pair.

Any current-carrying conductor, including a cable, radiates an electromagnetic field. Likewise, any conductor or cable will pick up energy from any existing electromagnetic field around it. These effects are often undesirable, in the first case amounting to unwanted transmission of energy which may adversely affect nearby equipment or other parts of the same piece of equipment; and in the second case, unwanted pickup of noise which may mask the desired signal being carried by the cable, or, if the cable is carrying power supply or control voltages, pollute them to such an extent as to cause equipment malfunction.

The first solution to these problems is to keep cable lengths in buildings short, since pick up and transmission are essentially proportional to the length of the cable. The second solution is to route cables away from trouble. Beyond this, there are particular cable designs that minimize electromagnetic pickup and transmission. Three of the principal design techniques are shielding, coaxial geometry, and twisted-pair geometry.

Shielding makes use of the electrical principle of the Faraday cage. The cable is encased for its entire length in foil or wire mesh. All wires running inside this shielding layer will be to a large extent decoupled from external electric fields, particularly if the shield is connected to a point of constant voltage, such as earth. Simple shielding of this type is not greatly effective against low-frequency magnetic fields, however - such as magnetic "hum" from a nearby power transformer. A grounded shield on cables operating at 2 kV or more gathers leakage current and capacitive current, protecting people from electric shock and equalizing stress on the cable insulation.

Coaxial design helps to further reduce low-frequency magnetic transmission and pickup. In this design the foil or mesh shield is perfectly tubular - i.e. with a circular cross section - and the inner conductor (there can only be one) is situated exactly at its center. This causes the voltages induced by a magnetic field between the shield and the core conductor to consist of two nearly equal magnitudes which cancel each other.

The is a simple expedient where two wires of a cable, rather than running parallel to each other, are twisted around each other, forming a pair of intertwined helices. This can be achieved by putting one end of the pair in a hand drill and turning while maintaining moderate tension on the line. Field cancellation between successive twists of the pair considerably reduces electromagnetic pickup and transmission. Power-supply cables feeding sensitive electronic devices are sometimes fitted with a series-wired inductor called a choke which blocks high frequencies that may have been picked up by the cable, preventing them from passing into the device.

Fire protection

In building construction, electrical cable jacket material is a potential source of fuel for fires. To limit the spread of fire along cable jacketing, one may use cable coating materials or one may use cables with jacketing that is inherently fire retardant. The plastic covering on some metal clad cables may be stripped off at installation to reduce the fuel source for accidental fires. In Europe in particular, it is often customary to place inorganic wraps and boxes around cables in order to safeguard the adjacent areas from the potential fire threat associated with unprotected cable jacketing. However, this fire protection also traps heat generated from conductor losses, so the protection must be thin.

There are two methods of providing fire protection to a cable:

1. Insulation material is deliberately added up with fire retardant materials 2. The copper conductor itself is covered with mineral insulation (MICC cables)

Electrical cable types

Basic cable types are as follows:

Shape

• Ribbon cable

A ribbon cable (also known as multi-wire planar cable) is a cable with many conducting wires running parallel to each other on the same flat plane. As a result the cable is wide and flat. Its name comes from the resemblance of the cable to a piece of ribbon.

Ribbon cables are usually seen for internal peripherals in computers, such as hard drives, CD drives and floppy drives. On some older computer systems (such as the BBC Micro and Apple II series) they were used for external connections as well. Unfortunately the ribbon-like shape interferes with computer cooling by disrupting airflow within the case and also makes the cables awkward to handle, especially when there are a lot of them; round cables have almost entirely replaced ribbon cables for external connections and are increasingly being used internally as well.

Construction

Based on construction and cable properties it can be sorted into the following:

• Mineral-insulated copper-clad cable • Twinax cable • Flexible cables • Non-metallic sheathed cable (or nonmetallic building wire, NM, NM-B)[1] • Metallic sheathed cable (or armored cable, AC, or BX)[1] • Multicore cable (consist of more than one wire and is covered by cable jacket) • Shielded cable • Single cable (from time to time this name is used for wire) • Twisted pair • Twisting cable

Coaxial cable, or coax, is an electrical cable with an inner conductor surrounded by a flexible, tubular insulating layer, surrounded by a tubular conducting shield. The term coaxial comes from the inner conductor and the outer shield sharing the same geometric axis. Coaxial cable was invented by English engineer and mathematician Oliver Heaviside, who first patented the design in 1880.[1]

Coaxial cable is used as a transmission line for radio frequency signals, in applications such as connecting radio transmitters and receivers with their antennas, (Internet) connections, and distributing cable television signals. One advantage of coax over other types of radio transmission line is that in an ideal coaxial cable the electromagnetic field carrying the signal exists only in the space between the inner and outer conductors. This allows coaxial cable runs to be installed next to metal objects such as gutters without the power losses that occur in other types of transmission lines, and provides protection of the signal from external electromagnetic interference.

Coaxial cable differs from other shielded cable used for carrying lower frequency signals such as audio signals, in that the dimensions of the cable are controlled to give a precise, constant conductor spacing, which is needed for it to function efficiently as a radio frequency transmission line.

Mineral-insulated copper-clad cable Mineral-insulated copper-clad cable is a variety of electrical cable made from copper conductors inside a copper sheath, insulated by inorganic magnesium oxide powder. The name is often abbreviated to MICC or MI cable, and colloquially known as pyro (because the original manufacturer and vendor for this product in the UK is a company called Pyrotenax). A similar product sheathed with metals other than copper is called mineral insulated metal sheathed (MIMS) cable.

MI cable is made by placing copper rods inside a circular copper tube and filling the intervening spaces with dry magnesium oxide powder. The overall assembly is then pressed between rollers to reduce its diameter (and increase its length). Up to seven conductors are often found in an MI cable, with up to 19 available from some manufacturers.

Since MI cables use no organic material as insulation (except at the ends), they are more resistant to fires than plastic-insulated cables. MI cables are used in critical fire protection applications such as alarm circuits, fire pumps, and smoke control systems. In process industries handling flammable fluids MI cable is used where small fires would otherwise cause damage to control or power cables. MI cable is also highly resistant to ionising radiation and so finds applications in instrumentation for nuclear reactors and nuclear physics apparatus.

The metal tube surrounding the conductors effectively shields circuits in MI cable from electromagnetic interference. The metal sheath provides protection against accidental contact with energised circuit conductors.

MI cables may be covered with a plastic sheath, coloured for identification purposes. The plastic sheath also provides additional corrosion protection for the copper sheath.

Twinaxial cabling

Twinaxial cabling, or "Twinax", is a type of cable similar to coax, but with two inner conductors instead of one. Due to cost efficiency it is becoming common in modern very-short-range high-speed differential signaling applications Multicore cable

A multicore cable is a generic term for an electrical cable that has multiple cores. The term is normally only used in relation to a cable that has more cores than commonly encountered. For example, a four core mains cable is never referred to as multicore, but a cable comprising four coaxial cables in a single sheath would be considered a multicore.

The term multicore cable is frequently used in the professional audio industry to refer to an audio multicore cable. Shielded cable

Four-conductor shielded cable with metal foil shield and drain wire.

A shielded or screened cable is an electrical cable of one or more insulated conductors enclosed by a common conductive layer. The shield may be composed of braided strands of copper (or other metal), a non-braided spiral winding of copper tape, or a layer of conducting polymer. Usually, this shield is covered with a jacket. The shield acts as a Faraday cage to reduce electrical noise from affecting the signals, and to reduce electromagnetic radiation that may interfere with other devices. The shield minimizes capacitively coupled noise from other electrical sources. The shield must be applied across cable splices.

In shielded signal cables the shield may act as the return path for the signal, or may act as screening only.

High voltage power cables with solid insulation are shielded to protect the cable insulation and also people and equipment.

Twisted pair

Twisted pair cabling is a type of wiring in which two conductors (the forward and return conductors of a single circuit) are twisted together for the purposes of canceling out electromagnetic interference (EMI) from external sources; for instance, electromagnetic radiation from unshielded twisted pair (UTP) cables, and crosstalk between neighboring pairs. It was invented by Alexander Graham Bell.

Special

• Arresting cable • Bowden cable • Heliax cable • Direct-buried cable • Heavy-lift cable • Elevator cable A Bowden cable

A Bowden cable (pronounced /ˈ boʊdən/ BOH-dən[1]) is a type of flexible cable used to transmit mechanical force or energy by the movement of an inner cable (most commonly of steel or stainless steel) relative to a hollow outer cable housing. The housing is generally of composite construction, consisting of a helical steel wire, often lined with plastic, and with a plastic outer sheath.

The linear movement of the inner cable is generally used to transmit a pulling force, although for very light applications over shorter distances (such as the remote shutter release cables on mechanical film cameras) a push may also be used. Usually provision is made for adjusting the cable tension using an inline hollow bolt (often called a "barrel adjuster"), which lengthens or shortens the cable housing relative to a fixed anchor point. Lengthening the housing (turning the barrel adjuster out) tightens the cable; shortening the housing (turning the barrel adjuster in) loosens the cable. Direct-buried cable

Direct-buried cable (DBC) is a kind of communications or transmissions cable which is especially designed to be buried under the ground without any kind of extra covering, sheathing, or piping to protect it

Elevator An elevator (or lift in British English) is a vertical transport equipment that efficiently moves people or goods between floors (levels, decks) of a building, vessel or other structure. Elevators are generally powered by electric motors that either drive traction cables or counterweight systems like a hoist, or pump hydraulic fluid to raise a cylindrical piston like a jack.

Languages other than English may have loanwords based on either elevator (e.g., Korean & Japanese) or lift (e.g., Russian & Cantonese).

Because of wheelchair access laws, elevators are often a legal requirement in new multi-storey buildings, especially where wheelchair ramps would be impractical.

A set of lifts in the lower level of a London Underground station in the United Kingdom. The arrows indicate each lift's position and direction of travel.

Application

A 250V, 16A electrical cable on a reel. • Audiovisual cable • Bicycle cable • Communications cable • Computer cable • Mechanical cable • Sensing cable[2] • Submersible cable • Wire rope (wire cable) Wire rope

Wire rope is a type of rope which consists of several strands of metal wire laid (or 'twisted') into a helix. Initially wrought iron wires were used, but today steel is the main material used for wire ropes.

Historically wire rope evolved from steel chains which had a record of mechanical failure. While flaws in chain links or solid steel bars can lead to catastrophic failure, flaws in the wires making up a steel cable are less critical as the other wires easily take up the load. Friction between the individual wires and strands, as a consequence of their twist, further compensates for any flaws. This method of minimising the effect of flaws may also be seen in Damascus steel, employing multiple folding or laminations

Cable management

Cable management refers to an important step during the installation of building services (i.e. electrical services) and the subsequent installation of equipment providing means to tidily secure electrical, data, and other cables. The term is often used interchangeably to refer to products used for the purpose of managing