Executive Summary: Mission to Uranus Classification: Unclassified Issue: 1 Date: 15/09/2014

Total Page:16

File Type:pdf, Size:1020Kb

Executive Summary: Mission to Uranus Classification: Unclassified Issue: 1 Date: 15/09/2014 Title: Executive Summary: Mission To Uranus Classification: Unclassified Issue: 1 Date: 15/09/2014 Contact: University of Leicester Department of Physics & Astronomy Space Research Centre University Road Leicester LE1 7RH UK Chris Greenaway, Jack Boughton, Prepared by: Date: 15/09/2014 Nils Dittel Reviewed by: N/A Date: N/A Approved by: N/A Date: N/A Executive Summary: Mission to Uranus Page i DOCUMENT CHANGE DETAILS Issue Date Page Description Of Change Comment 1 15/09/2014 N/A – First issue Executive Summary: Mission to Uranus Issue: 1 15/09/2014 Page ii TABLE OF CONTENTS 1.1 Reference Documents ............................................................................................................................ 1 1.2 Work Breakdown ................................................................................................................................... 5 2 The Icy Giant.................................................................................................................................................. 6 2.1 Science Objectives and Justification ........................................................................................................ 6 2.1.1 The atmosphere ............................................................................................................................... 6 2.1.2 The interior of Uranus ...................................................................................................................... 7 2.1.3 The Rings of Uranus ........................................................................................................................ 7 2.1.4 The unusual magnetic field: .............................................................................................................. 8 2.2 Icy Giant Matrix .................................................................................................................................. 11 3 The Uranian System ...................................................................................................................................... 13 3.1 Science Objectives and Justification ...................................................................................................... 13 3.1.1 The Natural Satellites ..................................................................................................................... 13 3.1.2 Natural Satellite Observation Priority Classification ......................................................................... 17 3.2 The Uranian System Matrix .................................................................................................................. 18 4 Model payload .............................................................................................................................................. 19 4.1 IR mapping Spectrometer ..................................................................................................................... 20 4.2 Radio science experiment ..................................................................................................................... 20 4.3 Microwave Radiometer ........................................................................................................................ 21 4.4 UV Spectrometer ................................................................................................................................. 22 4.5 Narrow Angle Camera .......................................................................................................................... 23 4.6 Wide Angle Camera ............................................................................................................................. 24 4.7 Magnetometer ..................................................................................................................................... 24 4.8 Plasma Particle Detector ....................................................................................................................... 25 5 Mission Design ............................................................................................................................................. 27 5.1 Reference Mission ............................................................................................................................... 27 Executive Summary: Mission to Uranus Issue: 1 15/09/2014 Page iii 5.2 Analysis .............................................................................................................................................. 28 6 Launch Vehicle ............................................................................................................................................. 32 6.1 Overview & Preliminary Selection ........................................................................................................ 32 6.2 Characteristic Energy Analysis.............................................................................................................. 33 6.3 Characteristic Energy Analysis Results .................................................................................................. 36 6.4 Summary ............................................................................................................................................ 37 7 Propulsion .................................................................................................................................................... 38 7.1 Requirements ...................................................................................................................................... 38 7.2 General Architecture Options ................................................................................................................ 38 7.3 Analysis .............................................................................................................................................. 40 8 Attitude Control System ................................................................................................................................ 44 8.1 Requirements and Attitude Determination .............................................................................................. 44 8.2 Reaction Wheel(s)................................................................................................................................ 44 8.3 Thrusters ............................................................................................................................................. 46 8.4 Overview ............................................................................................................................................ 48 9 Command and Data Handling ........................................................................................................................ 49 9.1 Telecommand message standards .......................................................................................................... 49 9.2 Instrument Processing Requirements ..................................................................................................... 50 9.3 compression ........................................................................................................................................ 51 9.4 ICER image Compression..................................................................................................................... 52 9.5 Digital Modulation and forward Error Correction ................................................................................... 53 9.6 Processor and data storage .................................................................................................................... 54 10 Communications ........................................................................................................................................... 56 10.1 Mission Communications overview ....................................................................................................... 56 10.2 Communication Subsystem Requirements and Constraints ...................................................................... 57 10.2.1 Telemetry Requirements ................................................................................................................ 57 Executive Summary: Mission to Uranus Issue: 1 15/09/2014 Page iv 10.2.2 Tracking Requirements .................................................................................................................. 57 10.2.3 Command Requirements ................................................................................................................ 57 10.2.4 Fault Protection and Reliability Requirements .................................................................................. 58 10.3 RF Vs Optical Trade-Off ...................................................................................................................... 58 10.4 Ground stations and Downlink Window ................................................................................................. 59 10.41 Ground station network choice .............................................................................................................. 59 10.42 Deep Space Network Coverage ............................................................................................................. 60 10.43 Spacecraft orbit...................................................................................................................................
Recommended publications
  • 7 Planetary Rings Matthew S
    7 Planetary Rings Matthew S. Tiscareno Center for Radiophysics and Space Research, Cornell University, Ithaca, NY, USA 1Introduction..................................................... 311 1.1 Orbital Elements ..................................................... 312 1.2 Roche Limits, Roche Lobes, and Roche Critical Densities .................... 313 1.3 Optical Depth ....................................................... 316 2 Rings by Planetary System .......................................... 317 2.1 The Rings of Jupiter ................................................... 317 2.2 The Rings of Saturn ................................................... 319 2.3 The Rings of Uranus .................................................. 320 2.4 The Rings of Neptune ................................................. 323 2.5 Unconfirmed Ring Systems ............................................. 324 2.5.1 Mars ............................................................... 324 2.5.2 Pluto ............................................................... 325 2.5.3 Rhea and Other Moons ................................................ 325 2.5.4 Exoplanets ........................................................... 327 3RingsbyType.................................................... 328 3.1 Dense Broad Disks ................................................... 328 3.1.1 Spiral Waves ......................................................... 329 3.1.2 Gap Edges and Moonlet Wakes .......................................... 333 3.1.3 Radial Structure .....................................................
    [Show full text]
  • Passive Microwave Radiometer Channel Selection Based on Cloud and Precipitation Information Content Estimation
    475 Passive Microwave Radiometer Channel Selection Based on Cloud and Precipitation Information Content Estimation Sabatino Di Michele and Peter Bauer Research Department Submitted to Q. J. Royal Meteor. Soc. July 2005 Series: ECMWF Technical Memoranda A full list of ECMWF Publications can be found on our web site under: http://www.ecmwf.int/publications/ Contact: [email protected] c Copyright 2005 European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, England Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to be reprinted or translated in whole or in part without the written permission of the Director. Appropriate non-commercial use will normally be granted under the condition that reference is made to ECMWF. The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use. Microwave Channel Selection from Precipitation Information Content Abstract The information content of microwave frequencies between 5 and 200 GHz for rain, snow and cloud wa- ter retrievals over ocean and land surfaces was evaluated using optimal estimation theory. The study was based on large datasets representative of summer and winter meteorological conditions over North Amer- ica, Europe, Central Africa, South America and the Atlantic obtained from short-range forecasts with the operational ECMWF model. The information content was traded off against noise that is mainly produced by geophysical variables such as surface emissivity, land surface skin temperature, atmospheric temperature and moisture. The estimation of the required error statistics was based on ECMWF model forecast error statistics.
    [Show full text]
  • The Rings and Inner Moons of Uranus and Neptune: Recent Advances and Open Questions
    Workshop on the Study of the Ice Giant Planets (2014) 2031.pdf THE RINGS AND INNER MOONS OF URANUS AND NEPTUNE: RECENT ADVANCES AND OPEN QUESTIONS. Mark R. Showalter1, 1SETI Institute (189 Bernardo Avenue, Mountain View, CA 94043, mshowal- [email protected]! ). The legacy of the Voyager mission still dominates patterns or “modes” seem to require ongoing perturba- our knowledge of the Uranus and Neptune ring-moon tions. It has long been hypothesized that numerous systems. That legacy includes the first clear images of small, unseen ring-moons are responsible, just as the nine narrow, dense Uranian rings and of the ring- Ophelia and Cordelia “shepherd” ring ε. However, arcs of Neptune. Voyager’s cameras also first revealed none of the missing moons were seen by Voyager, sug- eleven small, inner moons at Uranus and six at Nep- gesting that they must be quite small. Furthermore, the tune. The interplay between these rings and moons absence of moons in most of the gaps of Saturn’s rings, continues to raise fundamental dynamical questions; after a decade-long search by Cassini’s cameras, sug- each moon and each ring contributes a piece of the gests that confinement mechanisms other than shep- story of how these systems formed and evolved. herding might be viable. However, the details of these Nevertheless, Earth-based observations have pro- processes are unknown. vided and continue to provide invaluable new insights The outermost µ ring of Uranus shares its orbit into the behavior of these systems. Our most detailed with the tiny moon Mab. Keck and Hubble images knowledge of the rings’ geometry has come from spanning the visual and near-infrared reveal that this Earth-based stellar occultations; one fortuitous stellar ring is distinctly blue, unlike any other ring in the solar alignment revealed the moon Larissa well before Voy- system except one—Saturn’s E ring.
    [Show full text]
  • Planetary Rings
    CLBE001-ESS2E November 10, 2006 21:56 100-C 25-C 50-C 75-C C+M 50-C+M C+Y 50-C+Y M+Y 50-M+Y 100-M 25-M 50-M 75-M 100-Y 25-Y 50-Y 75-Y 100-K 25-K 25-19-19 50-K 50-40-40 75-K 75-64-64 Planetary Rings Carolyn C. Porco Space Science Institute Boulder, Colorado Douglas P. Hamilton University of Maryland College Park, Maryland CHAPTER 27 1. Introduction 5. Ring Origins 2. Sources of Information 6. Prospects for the Future 3. Overview of Ring Structure Bibliography 4. Ring Processes 1. Introduction houses, from coalescing under their own gravity into larger bodies. Rings are arranged around planets in strikingly dif- Planetary rings are those strikingly flat and circular ap- ferent ways despite the similar underlying physical pro- pendages embracing all the giant planets in the outer Solar cesses that govern them. Gravitational tugs from satellites System: Jupiter, Saturn, Uranus, and Neptune. Like their account for some of the structure of densely-packed mas- cousins, the spiral galaxies, they are formed of many bod- sive rings [see Solar System Dynamics: Regular and ies, independently orbiting in a central gravitational field. Chaotic Motion], while nongravitational effects, includ- Rings also share many characteristics with, and offer in- ing solar radiation pressure and electromagnetic forces, valuable insights into, flattened systems of gas and collid- dominate the dynamics of the fainter and more diffuse dusty ing debris that ultimately form solar systems. Ring systems rings. Spacecraft flybys of all of the giant planets and, more are accessible laboratories capable of providing clues about recently, orbiters at Jupiter and Saturn, have revolutionized processes important in these circumstellar disks, structures our understanding of planetary rings.
    [Show full text]
  • Abstracts of the 50Th DDA Meeting (Boulder, CO)
    Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011).
    [Show full text]
  • Instruments for Earth Science Measurements
    NASA SBIR 2004 Phase I Solicitation E1 Instruments for Earth Science Measurements NASA's Earth Science Enterprise (ESE) is studying how our global environment is changing. Using the unique perspective available from space and airborne platforms, NASA is observing, documenting, and assessing large- scale environmental processes with emphasis on atmospheric composition, climate, carbon cycle and ecosystems, the Earth’s surface and interior, the water and energy cycles, and weather. A major objective of the ESE instrument development programs is to implement science measurement capabilities with small or more affordable spacecraft so development programs can meet multiple mission needs and therefore, make the best use of limited resources. The rapid development of small, low cost remote sensing and in situ instruments is essential to achieving this objective. Consequently, the objective of the Instruments for Earth Science Measurements SBIR topic is to develop and demonstrate instrument component and subsystem technologies that reduce the risk, cost, size, and development time of Earth observing instruments, and enable new Earth observation measurements. The following subtopics are concomitant with this objective and are organized by measurement technique. Subtopics E1.01 Passive Optics Lead Center: LaRC Participating Center(s): ARC, GSFC The following technologies are of interest to NASA in the remote sensing subtopic “passive optics.” Passive optical remote sensing generally requires that deployed devices have large apertures and large throughput. NASA is interested primarily in instrument technologies suitable for aircraft or space flight platforms, and these inherently also prefer low mass, low power, fast measurement times, and a high degree of robustness to survive vibrations in flight or at launch.
    [Show full text]
  • N€WS 'RELEASE NATIONAL AERONAUTICS and SPACE Admln ISTRATION 400 MARYLAND AVENUE, SW, WASHINGTON 25, D.C
    https://ntrs.nasa.gov/search.jsp?R=19630002483 2020-03-11T16:50:02+00:00Z b " N€WS 'RELEASE NATIONAL AERONAUTICS AND SPACE ADMlN ISTRATION 400 MARYLAND AVENUE, SW, WASHINGTON 25, D.C. TELEPHONES WORTH 2-4155-WORTH. 3-1110 RELEASE NO. 62-182 MARINER SPACECRAFT Mariner 2, the second of a series of spacecraft designed for planetary exploration,- will be launched within a few days (no earlier than August 17) from the Atlantic Missile Range, Cape Canaveral, Florida, by the National Aeronautics and Space Administration. Mariner 1, launched at 4:21 a.m. (EST) on July 22, 1962 from AMR, was destroyed by the Range Safety Officer after about 290 seconds of flight because of a deviation from the planned flight path. Measures have been taken to correct the difficulties experienced in the Mariner 1 launch. These measures include a more rigorous checkout of the Atlas rate beacon and revision of the data editing equation. The data editing equation Is designed as a guard against acceptance of faulty databy the ground guidance equipment. The Mariner 2 spacecraft and its mission are identical to the first Mariner. Mariner 2 will carry six experiments. Two of these instruments, infrared and microwave radiometers, will make measurements at close range as Mariner 2 flys by Venus and communicate this in€ormation over an interplanetary distance of 36 million miles, Four other experiments on the spacecraft -- a magnetometer, ion chamber and particle flux detector, cosmic dust detector and solar plasma spectrometer -- will gather Information on interplantetary phenomena during the trip to Venus and in the vicinity of the planet.
    [Show full text]
  • Neptune and Uranus: Ice Or Rock Giants? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2187)
    Teanby, N. A., Irwin, P. G. J., Moses, J. I., & Helled, R. (2020). Neptune and Uranus: ice or rock giants? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2187). https://doi.org/10.1098/rsta.2019.0489 Peer reviewed version Link to published version (if available): 10.1098/rsta.2019.0489 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via The Royal Society at https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0489 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Submitted to Phil. Trans. R. Soc. A - Issue Page 2 of 19 1 2 3 4 5 Neptune and Uranus: ice or 6 7 rock giants? 8 rsta.royalsocietypublishing.org 1 2 3 9 N. A. Teanby , P. G. J. Irwin , J. I. Moses 10 4 11 and R. Helled 12 1 13 Research School of Earth Sciences, University of Bristol, Wills 14 Memorial Building, Queens Road, Bristol, BS8 1RJ, UK 15 2Atmospheric, Oceanic & Planetary Physics, University Article submitted to journal 16 of Oxford, Clarendon Laboratory, Parks Road, Oxford, 17 18 OX1 3PU. UK. 3 19 Subject Areas: Space Science Institute, 4750 Walnut Street, Suite 20 Solar System, Planetary Interiors,For Review205, Boulder, Only CO 80301, USA.
    [Show full text]
  • An Assessment of Rain “Contamination” in ARM Two
    An assessment of rain “contamination” in ARM two-channel microwave radiometer measurements Roger Marchand1, Casey Wall1*, Wei Zhao1 and Maria Cadeddu2 1University of Washington, 2Argonne National Laboratory, *Presenting Author Case 1 Case 3 Motivation! ? !! ✔ ? � ✔ 5000 wet-window flag (open/covered) ! Microwave radiometers (MWRs) are the most commonly used and wet-window flag (open/covered) 1500 3000 accurate instruments ARM has to retrieve cloud liquid water path. open MWR open MWR Unfortunately, MWR data are not easily used in precipitating conditions. 1000 500 There are two reasons for this:" 5000 ) ) 2 1500 " 2 1. The measurements are “contaminated” by water on the MWR radome." 3000 covered! covered! MWR MWR 2. Precipitating particles can scatter microwave radiation, yet traditional 1000 500 MWR retrievals neglect scattering." 5000 " 1500 "We designed an experiment that alleviates the “wet radome” problem. 3000 1000 500 5000 The Experiment! 1500 !! 3000 500 ! Two MWRs were operated side by side in a “scanning” or tip-cal mode. Path (g/m Water Liquid 1000 Liquid Water Path (g/m Path Water Liquid One MWR was placed under a cover that kept the radome dry while still 5000 permitting measurements away from zenith (photograph below). The 1500 other MWR was operated normally, with the radome exposed to the sky. 3000 We refer to these as the “covered” and “open” MWRs, respectively. 1000 500 Coincident measurements from the 17.8 18.2 18.6 19 19.4 19.8 covered and open MWRs are 17.5 18 18.5 19 compared to estimate contamination Hours (UTC) Hours (UTC) Case 2 due to a wet radome.
    [Show full text]
  • Uranus Pathfinder: Exploring the Origins and Evolution of Ice Giant Planets
    EPSC Abstracts Vol. 7 EPSC2012-660 2012 European Planetary Science Congress 2012 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2012 Uranus Pathfinder: Exploring the Origins and Evolution of Ice Giant Planets C.S. Arridge (1,2) for the Uranus Pathfinder Consortium (1) Mullard Space Science Laboratory, University College London, UK, (2) The Centre for Planetary Sciences at UCL/Birkbeck, London, UK ([email protected]) Abstract In this paper we discuss this European effort to explore Uranus and outline ongoing developments of The “Ice Giants” Uranus and Neptune are a different the mission concept. class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our References understanding of the formation and evolution of the planets, and unravelling the fundamental physical [1] Arridge, C.S., et al.: Uranus Pathfinder: Exploring the and chemical processes in the Solar System. The origins and evolution of ice giant planets, Exp. Astron., doi: 10.1007/s10686-011-9251-4, 2012. importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission [1] thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA’s Cosmic Vision 2015–2025. UP was proposed to the European Space Agency’s M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target.
    [Show full text]
  • Evidence of Diurnal Variations of Titan's Near-Surface Temperature
    EPSC Abstracts Vol. 14, EPSC2020-618, 2020 https://doi.org/10.5194/epsc2020-618 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Evidence of diurnal variations of Titan’s near-surface temperature and of a cooling effect of the northern seas from the Cassini radar/radiometer Alice Le Gall1,2, Léa Bonnefoy1,3, Robin Sultana4, Michael Janssen5, Ralph Lorenz6, and Tetsuya Tokano7 1LATMOS/IPSL, UVSQ, Université Paris-Saclay, CNRS, Sorbonne Université 2Institut Universitaire de France (IUF), Paris, France 3LESIA, Observatoire de Paris/Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Meudon, France 4IPAG, Université Grenoble Alpes, CNRS, Grenoble, France 5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 6Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, USA 7Institut für Geophysik und Meteorologie, Universität zu Köln, Cologne, Germany At first order, the physical temperature of Titan’s surface can be regarded as nearly constant and predictable. Due to the low incident solar flux reaching its surface (1/1000 of what Earth receives) and the high thermal inertia of its atmosphere, diurnal, seasonal (including latitudinal) and altitudinal variations of temperature are limited as well as the effect of surface albedo (Lorenz et al., 1999). Voyager 1 radio-occultation measurements indeed show no diurnal effect and point to lapse rates in the lower atmosphere smaller than 1.5 K/km (McKay et al 1997). Voyager infrared observations indicate a pole-to-equator temperature contrast of 2-3 K (Flasar et al., 1981; 1998). The Cassini mission (2004-2017) somewhat confirmed these predictions and first measurements.
    [Show full text]
  • Impact of Assimilating Ground-Based Microwave Radiometer Data on the Precipitation Bifurcation Forecast: a Case Study in Beijing
    atmosphere Article Impact of Assimilating Ground-Based Microwave Radiometer Data on the Precipitation Bifurcation Forecast: A Case Study in Beijing Yajie Qi 1,2, Shuiyong Fan 1,*, Jiajia Mao 3, Bai Li 3, Chunwei Guo 1 and Shuting Zhang 1 1 Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China; [email protected] (Y.Q.); [email protected] (C.G.); [email protected] (S.Z.) 2 Key Laboratory for Cloud Physics of China Meteorological Administration, Beijing 100081, China 3 Meteorological Observation Center of China Meteorological Administration, Beijing 100081, China; [email protected] (J.M.); [email protected] (B.L.) * Correspondence: [email protected] Abstract: In this study, the temperature and relative humidity profiles retrieved from five ground- based microwave radiometers in Beijing were assimilated into the rapid-refresh multi-scale analysis and prediction system-short term (RMAPS-ST). The precipitation bifurcation prediction that occurred in Beijing on 4 May 2019 was selected as a case to evaluate the impact of their assimilation. For this purpose, two experiments were set. The Control experiment only assimilated conventional observations and radar data, while the microwave radiometers profilers (MWRPS) experiment assimilated conventional observations, the ground-based microwave radiometer profiles and radar data into the RMAPS-ST model. The results show that in comparison with the Control test, the Citation: Qi, Y.; Fan, S.; Mao, J.; Li, B.; MWRPS test made reasonable adjustments for the thermal conditions in time, better reproducing Guo, C.; Zhang, S. Impact of the weak heat island phenomenon in the observation prior to the rainfall. Thus, assimilating Assimilating Ground-Based MWRPS improved the skills of the precipitation forecast in both the distribution and the intensity of Microwave Radiometer Data on the rainfall precipitation, capable of predicting the process of belt-shaped radar echo splitting and the Precipitation Bifurcation Forecast: A precipitation bifurcation in the urban area of Beijing.
    [Show full text]