Hindawi Oxidative Medicine and Cellular Longevity Volume 2019, Article ID 9613090, 19 pages https://doi.org/10.1155/2019/9613090 Review Article Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases Ankita Nandi,1 Liang-Jun Yan ,2 Chandan Kumar Jana,3 and Nilanjana Das 1 1Department of Biotechnology, Visva-Bharati University, Santiniketan, West Bengal 731235, India 2Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA 3Department of Chemistry, Purash-Kanpur Haridas Nandi Mahavidyalaya, P.O. Kanpur, Howrah, West Bengal 711410, India Correspondence should be addressed to Nilanjana Das;
[email protected] Received 25 March 2019; Revised 18 June 2019; Accepted 14 August 2019; Published 11 November 2019 Academic Editor: Cinzia Signorini Copyright © 2019 Ankita Nandi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Reactive species produced in the cell during normal cellular metabolism can chemically react with cellular biomolecules such as nucleic acids, proteins, and lipids, thereby causing their oxidative modifications leading to alterations in their compositions and potential damage to their cellular activities. Fortunately, cells have evolved several antioxidant defense mechanisms (as metabolites, vitamins, and enzymes) to neutralize or mitigate the harmful effect of reactive species and/or their byproducts. Any perturbation in the balance in the level of antioxidants and the reactive species results in a physiological condition called “oxidative stress.” A catalase is one of the crucial antioxidant enzymes that mitigates oxidative stress to a considerable extent by destroying cellular hydrogen peroxide to produce water and oxygen.