Phytomolecules Having Flavone and Napthofuran Nucleus Exhibited
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antibiotic Additive and Synergistic Action of Rutin, Morin and Quercetin Against Methicillin Resistant Staphylococcus Aureus
Amin et al. BMC Complementary and Alternative Medicine (2015) 15:59 DOI 10.1186/s12906-015-0580-0 RESEARCH ARTICLE Open Access Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus Muhammad Usman Amin1†, Muhammad Khurram2*†, Baharullah Khattak1† and Jafar Khan1† Abstract Background: To determine the effect of flavonoids in conjunction with antibiotics in methicillin resistant Staphylococcus aureus (MRSA) a study was designed. The flavonoids included Rutin, Morin, Qurecetin while antibiotics included ampicillin, amoxicillin, cefixime, ceftriaxone, vancomycin, methicillin, cephradine, erythromycin, imipenem, sulphamethoxazole/trimethoprim, ciprofloxacin and levolfloxacin. Test antibiotics were mostly found resistant with only Imipenem and Erythromycin found to be sensitive against 100 MRSA clinical isolates and S. aureus (ATCC 43300). The flavonoids were tested alone and also in different combinations with selected antibiotics. Methods: Antibiotics and flavonoids sensitivity assays were carried using disk diffusion method. The combinations found to be effective were sifted through MIC assays by broth macro dilution method. Exact MICs were determined using an incremental increase approach. Fractional inhibitory concentration indices (FICI) were determined to evaluate relationship between antibiotics and flavonoids is synergistic or additive. Potassium release was measured to determine the effect of antibiotic-flavonoids combinations on the cytoplasmic membrane of test bacteria. Results: Antibiotic and flavonoids screening assays indicated activity of flavanoids against test bacteria. The inhibitory zones increased when test flavonoids were combined with antibiotics facing resistance. MICs of test antibiotics and flavonoids reduced when they were combined. Quercetin was the most effective flavonoid (MIC 260 μg/ml) while morin + rutin + quercetin combination proved most efficient with MIC of 280 + 280 + 140 μg/ml. -
(Hordeum Vulgare L.) Seedlings Via Their
Ra et al. Appl Biol Chem (2020) 63:38 https://doi.org/10.1186/s13765-020-00519-9 NOTE Open Access Evaluation of antihypertensive polyphenols of barley (Hordeum vulgare L.) seedlings via their efects on angiotensin-converting enzyme (ACE) inhibition Ji‑Eun Ra1, So‑Yeun Woo2, Hui Jin3, Mi Ja Lee2, Hyun Young Kim2, Hyeonmi Ham2, Ill‑Min Chung1 and Woo Duck Seo2* Abstract Angiotensin‑converting enzyme (ACE) is an important therapeutic target in the regulation of high blood pressure. This study was conducted to investigate the alterations in blood pressure associated with ACE inhibition activity of the polyphenols (1–10), including 3‑O‑feruloylquinic acid (1), lutonarin (2), saponarin (3), isoorientin (4), orientin (5), isovitexin (6), isoorientin‑7‑O‑[6‑sinapoyl]‑glucoside (7), isoorientin‑7‑O‑[6‑feruloyl]‑glucoside (8), isovitexin‑7‑O‑ [6‑sinapoyl]‑glucoside (9), and isovitexin‑7‑O‑[6‑feruloyl]‑glucoside (10), isolated from barley seedlings (BS). All the isolated polyphenols exhibited comparable IC50 values of ACE inhibition activity (7.3–43.8 µM) with quercetin (25.2 0.2 µM) as a positive control, and their inhibition kinetic models were identifed as noncompetitive inhibition. ± Especially, compound 4 was revealed to be an outstanding ACE inhibitor (IC50 7.3 0.1 µM, Ki 6.6 0.1 µM). Based on the compound structure–activity relationships, the free hydroxyl groups of =favone± ‑moieties =and glucose± connec‑ tions at the A ring of the favone moieties were important factors for inhibition of ACE. The alcohol extract of BS also 1 demonstrated potent ACE inhibition activity (66.5% 2.2% at 5000 µg mL− ). -
Investigation of Photoprotective, Anti-Inflammatory, Antioxidant
foods Article Investigation of Photoprotective, Anti-Inflammatory, Antioxidant Capacities and LC–ESI–MS Phenolic Profile of Astragalus gombiformis Pomel Sabrina Lekmine 1 , Samira Boussekine 1, Salah Akkal 2 , Antonio Ignacio Martín-García 3 , Ali Boumegoura 4, Kenza Kadi 5, Hanene Djeghim 4, Nawal Mekersi 5, Samira Bendjedid 6 , Chawki Bensouici 4 and Gema Nieto 7,* 1 Laboratory of Bioactive Molecules and Applications, Larbi Tébessi University, Tébessa 12000, Algeria; [email protected] (S.L.); [email protected] (S.B.) 2 Valorization of Natural Resources, Bioactive Molecules and Biological Analysis Unit, Department of Chemistry, University of Mentouri Constantine 1, Constantine 25000, Algeria; [email protected] 3 Estación Experimental del Zaidín (CSIC), ProfesorAlbareda 1, 18008 Granada, Spain; [email protected] 4 Biotechnology Research Center (C.R.Bt), Ali Mendjeli, Nouvelle Ville, UV 03 BP E73, Constantine 25000, Algeria; [email protected] (A.B.); [email protected] (H.D.); [email protected] (C.B.) 5 Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria; [email protected] (K.K.); [email protected] (N.M.) 6 Research Laboratory of Functional and Evolutionary Ecology, Department of Biology, Faculty of Natural Sciences and Life, Chadli Bendjedid University, El Tarf 36000, Algeria; [email protected] 7 Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30071 Murcia, Spain Citation: Lekmine, S.; Boussekine, S.; * Correspondence: [email protected]; Tel.: +34-(86)-8889694 Akkal, S.; Martín-García, A.I.; Boumegoura, A.; Kadi, K.; Djeghim, Abstract: Plant-derived compounds have recently been gaining popularity as skincare factors due to H.; Mekersi, N.; Bendjedid, S.; their ability to absorb ultraviolet radiations and their anti-inflammatory, and antioxidant properties. -
Characterization of C-Glycosidic Flavonoids from Brazilian Passiflora Species Using Lc/Ms Exact Mass Measurement
CHARACTERIZATION OF C-GLYCOSIDIC FLAVONOIDS FROM BRAZILIAN PASSIFLORA SPECIES USING LC/MS EXACT MASS MEASUREMENT 1 2 2 NOTE M. McCullagh , C.A.M. Pereira , J.H. Yariwake 1Waters Corporation, Floats Road, Wythenshawe, Manchester, M23 9LZ, UK 2Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil OVERVIEW This application note describes the analysis of extracts Recently issues have arisen with Kava Kava, a natural from Passiflora species using real time centroid exact health product, which is used for its anti-depressant and mass measurement. The system used comprised of an anti-anxiety properties. Investigations into the safety of LCT™ orthogonal acceleration (oa-TOF) time of flight Kava have taken place within several European mass spectrometer with LockSpray™ source, Waters® countries, including Germany, U.K., Switzerland, 2996 PDA and Waters Alliance® HT 2795 France, Spain and parts of Scandinavia. In Switzerland Separations Module. and Germany cases of liver damage were reported. In Application the US the FDA has investigated Kava's safety, where INTRODUCTION as in Canada the public were advised not to take the EU Directive 2001/83/EC will regulate and produce a supplement until product safety could be assured. The set of harmonized assessment criteria for the efficacy Kava market in Germany alone is $25m. Proving the and safety "Herbal Medicinal Products for traditional efficacy of such a product is economically viable. use". The current and future E.U. member states will Such issues illustrate how regulation currently affects produce and abide by this directive, making 28 states the natural health product market and also why new in total. -
Shilin Yang Doctor of Philosophy
PHYTOCHEMICAL STUDIES OF ARTEMISIA ANNUA L. THESIS Presented by SHILIN YANG For the Degree of DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON DEPARTMENT OF PHARMACOGNOSY THE SCHOOL OF PHARMACY THE UNIVERSITY OF LONDON BRUNSWICK SQUARE, LONDON WC1N 1AX ProQuest Number: U063742 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U063742 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENT I wish to express my sincere gratitude to Professor J.D. Phillipson and Dr. M.J.O’Neill for their supervision throughout the course of studies. I would especially like to thank Dr. M.F.Roberts for her great help. I like to thank Dr. K.C.S.C.Liu and B.C.Homeyer for their great help. My sincere thanks to Mrs.J.B.Hallsworth for her help. I am very grateful to the staff of the MS Spectroscopy Unit and NMR Unit of the School of Pharmacy, and the staff of the NMR Unit, King’s College, University of London, for running the MS and NMR spectra. -
Important Flavonoids and Their Role As a Therapeutic Agent
molecules Review Important Flavonoids and Their Role as a Therapeutic Agent Asad Ullah 1 , Sidra Munir 1 , Syed Lal Badshah 1,* , Noreen Khan 1, Lubna Ghani 2, Benjamin Gabriel Poulson 3 , Abdul-Hamid Emwas 4 and Mariusz Jaremko 3,* 1 Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; [email protected] (A.U.); [email protected] (S.M.); [email protected] (N.K.) 2 Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan; [email protected] 3 Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 4 Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] * Correspondence: [email protected] (S.L.B.); [email protected] (M.J.) Received: 20 September 2020; Accepted: 1 November 2020; Published: 11 November 2020 Abstract: Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. -
Multitargeted Effects of Vitexin and Isovitexin on Diabetes Mellitus and Its Complications
Hindawi e Scientific World Journal Volume 2021, Article ID 6641128, 20 pages https://doi.org/10.1155/2021/6641128 Review Article Multitargeted Effects of Vitexin and Isovitexin on Diabetes Mellitus and Its Complications Ibrahim Luru Abdulai,1 Samuel Kojo Kwofie ,1,2 Winfred Seth Gbewonyo ,3 Daniel Boison ,4 Joshua Buer Puplampu ,4 and Michael Buenor Adinortey 4 1West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 54, Legon, Accra, Ghana 2Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG77, Legon, Accra, Ghana 3Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, University of Ghana, Legon, Accra, Ghana 4Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana Correspondence should be addressed to Michael Buenor Adinortey; [email protected] Received 14 October 2020; Accepted 19 March 2021; Published 12 April 2021 Academic Editor: Ahmad Mansour Copyright © 2021 Ibrahim Luru Abdulai et al. 'is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Till date, there is no known antidote to cure diabetes mellitus despite the discovery and development of diverse pharmacotherapeutic agents many years ago. Technological advancement in natural product chemistry has led to the isolation of analogs of vitexin and isovitexin found in diverse bioresources. 'ese compounds have been extensively studied to explore their pharmacological relevance in diabetes mellitus. -
Chemodiversity of Exudate Flavonoids in Some Members of the Lamiaceae
Biochemical Systematics and Ecology 31 (2003) 1279–1289 www.elsevier.com/locate/biochemsyseco Chemodiversity of exudate flavonoids in some members of the Lamiaceae Karin M. Valant-Vetschera a,∗, James N. Roitman b, Eckhard Wollenweber c a Institut fu¨r Botanik der Universita¨t Wien, Rennweg 14, A-1030 Vienna, Austria b Plant Mycotoxin Research, USDA–ARS–Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA c Institut fu¨r Botanik der TU Darmstadt, Schnittspahnstraße 3, D-64287 Darmstadt, Germany Received 30 August 2002; accepted 3 January 2003 Abstract Several newly studied species and further accessions of the Lamiaceae have been analyzed for their exudate flavonoid profiles. The principal compounds accumulated were flavones and their 6-methoxy derivatives, whereas flavonols were rarely encountered. The chemodiversity observed was relatively low, with only some 15 derivatives being found. The new data are discussed in relation to published data, and chemosystematic aspects are briefly addressed. Of the studied species, Salvia arizonica yielded only a rare diterpene quinone, demethylfruticulin A. Glandular hair diversification and different qualities of their secretions are briefly discussed. 2003 Elsevier Science Ltd. All rights reserved. Keywords: Teucrium; Salvia; Phlomis; Dorystoechas; Lamiaceae; Exudate flavonoids; Diterpene quinone; Chemodiversity; Chemosystematics 1. Introduction The family of Lamiaceae consists of approximately 200 genera of cosmopolitan distribution, many of them of economic importance due to essential oil production. Most genera of the Lamiaceae are thus rich sources of terpenoids, but in addition a variety of iridoid glycosides and flavonoids is accumulated in considerable amount ∗ Corresponding author. Tel.: +43-1-4277-54102; fax: +43-1-4277-9541. -
RSC Advances
RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 26 RSC Advances RSC Advances RSC Publishing REVIEW The chemistry and biological activities of natural products from Northern African plant families: From Cite this: DOI: 10.1039/x0xx00000x Aloaceae to Cupressaceae Fidele Ntie-Kang, a,b †* and Joseph N. Yongb†* Received 00th January 2014, Accepted 00th January 2014 Traditional medicinal practices play a key role in health care systems in countries with DOI: 10.1039/x0xx00000x developing economies. The aim of this survey was to validate the use of traditional medicine within Northern African communities. In this review, we summarize the ethnobotanical uses of www.rsc.org/advances selected plant species from the Northern African flora and attempt to correlate the activities of the isolated bioactive principles with known local uses of the plant species in traditional medicine. -
Vanilla-Derived Ingredients As Used in Cosmetics
Safety Assessment of Vanilla-Derived Ingredients as Used in Cosmetics Status: Final Report Release Date: July 9, 2020 Panel Date: June 8-9, 2020 The Expert Panel for Cosmetic Ingredient Safety members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The Cosmetic Ingredient Review (CIR) Executive Director is Bart Heldreth, Ph.D. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst, CIR. © Cosmetic Ingredient Review 1620 L STREET, NW, SUITE 1200 ◊ WASHINGTON, DC 20036-4702 ◊ PH 202.331.0651 ◊ FAX 202.331.0088 ◊ [email protected] ABSTRACT: The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 9 vanilla-derived ingredients as used in cosmetics. These ingredients are reported to function mostly as skin conditioning agents in cosmetic products. Because final product formulations may contain multiple botanicals, each containing the same constituents of concern, formulators are advised to be aware of these constituents, and to avoid reaching levels that may be hazardous to consumers. Industry should continue to use good manufacturing practices to limit impurities. The Panel reviewed data relating to the safety of these ingredients and concluded that 7 ingredients are safe in cosmetics in the present practices of use and concentration when formulated to be non-sensitizing. The Panel further concluded that the available data are insufficient to make a determination of safety under the intended conditions of use in cosmetic formulations for Vanilla Planifolia Flower Extract and Vanilla Planifolia Leaf Cell Extract. -
Respiratory Syncytial Virus (RSV) and Coronavirus (Cov)
The Journal of Phytopharmacology 2020; 9(4): 281-290 Online at: www.phytopharmajournal.com Review Article Antiviral efficacy of medicinal plants against respiratory ISSN 2320-480X viruses: Respiratory Syncytial Virus (RSV) and JPHYTO 2020; 9(4): 281-290 July- August Coronavirus (CoV) / COVID 19 Received: 07-05-2020 Accepted: 22-06-2020 Lakshmi Narayanan Venu, Anoop Austin* ©2020, All rights reserved doi: 10.31254/phyto.2020.9412 ABSTRACT Lakshmi Narayanan Venu Cholayil Private Limited, Research & Respiratory syncytial virus (RSV) and Coronavirus disease (CoV) / Covid 19 are droplet infections caused Development Centre, 31-A/24, 4th Cross by a group of RNA viruses infecting respiratory system and communicates through sneezing or physical Main Road, SIDCO Industrial Estate contact. Due to the pandemic effect of Covid 19, it is essential to identify active components, which could (North), Ambattur, Chennai – 600098, be an active compound, which would be beneficial to the community such as respiratory syncytical virus Tamil Nadu, India (RSV) and coronavirus. 40 medicinal plants were screened basis the antiviral property pertaining to RNA Anoop Austin virus and were dealt in detail to identify the plant which could be a source for developing a novel treatment Cholayil Private Limited, Research & for Respiratory Syncytical Virus and Covid 19. This review attempts to address the importance of herbs Development Centre, 31-A/24, 4th Cross Main Road, SIDCO Industrial Estate for the treatment of respiratory virus because rapid spread of the infection and preventing the use of (North), Ambattur, Chennai – 600098, allotropic medicine. Tamil Nadu, India Keywords: Antiviral Medicinal plants, Covid 19, Corona virus, Respiratory syncytial virus, Viral inhibiting plants. -
Characterization of Phenolic Compounds in Highly-Consumed Vegetable Matrices by Using Advanced Analytical Techniques
UNIVERSITY OF GRANADA FACULTY OF SCIENCES Department of Analytical Chemistry Research Group FQM-297 “Environmental, Biochemical and Foodstuff Analytical Control” Functional Food Research and Development Center (CIDAF) DOCTORAL THESIS CHARACTERIZATION OF PHENOLIC COMPOUNDS IN HIGHLY-CONSUMED VEGETABLE MATRICES BY USING ADVANCED ANALYTICAL TECHNIQUES CARACTERIZACIÓN DE COMPUESTOS FENÓLICOS EN MATRICES VEGETALES MEDIANTE TÉCNICAS ANALTICALAS AVANZADAS Presented by IBRAHIM M. ABU REIDAH Submitted for a Doctoral degree in Chemistry GRANADA, 2013 Editor: Editorial de la Universidad de Granada Autor: Ibrahim M. Abu Reidah D.L.: GR 1899-2013 ISBN: 978-84-9028-591-6 This doctoral thesis has been conducted through financing from the Ministry of Foregin Affairs of Spain & The Spanish Agency Of International Cooperation for Development (MAEC-AECID) scholarship and funds from the Research Group FQM-297 “Environmental, Biochemical and Foodstuff Analytical Control” (Department of Analytical Chemistry, University of Granada) and Functional Food Research and Development Center (CIDAF) from different projects, contracts and grants from the central and autonomic administrations and research plan of the University of Granada. CHARACTERIZATION OF PHENOLIC COMPOUNDS IN HIGHLY-CONSUMED VEGETABLE MATRICES BY USING ADVANCED ANALYTICAL TECHNIQUES By IBRAHIM M. ABU REIDAH Granada, 2013 Signed by Dr. Alberto Fernández-Gutiérrez Full Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Signed by Dr. Antonio Segura Carretero Full Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Signed by Dr. David Arráez-Román Assistant Professor of the Department of Analytical Chemistry Faculty of Sciences, University of Granada Submitted for a Doctoral Degree in Chemistry Signed by Ibrahim M.