Kungliga Tekniska Högskolan

Examensarbete

SD240X

Utvärdering av ny utrustning för modalprovning

Författare: Handledare: Johan Berglund Per Wennhage

21 oktober 2015

Sammanfattning

Denna rapport går igenom utvärderingen av ny utrustning för modalprovning samt design av ett EXE-program skapat i Labview. Den bentliga utrustningen var en Dytran 3032A accelerometer, en Dytran 5800A2 impulshammare, två Dytran 4105C förstärkare, en Microstar Laboratories MSXB 042 snabbanslutningskort, och en Microstar Laboratories iDSC 1816 datainsamlingskort, sammankopplat till en dator med operativsystemet Windows 2000, där programmet Matlab 6.1 användes för datainsamling och Fouriertransformering. En förstudie genomfördes med en 9201 cDAQ datainsamlingsmodul isatt ett National Instruments 9174 cDAQ chassi, tillsammans med den bentliga impulshammaren och accelerometern, där ett simpelt program i Labview 2014 togs fram. Med tanke på priset och kompatibiliteten med impulshammaren, accelerometer och övriga sy- stem inom laboratoriet, valdes en National Instuments 9234 cDAQ datainsamlingsmodul isatt ett National Instruments 9171 cDAQ chassi, tillsammans med en dator som andvänder opera- tivsystemet Windows 7, där ett EXE-program skapat i Labview 2014 och 2011 användes för datainsamling och Fouriertransformering. Den äldre utrustningen lämnades i största möjliga mån orörd som reserv. Abstract

This report evaluates new equipment for model testing, and also the design of an EXE program created using Labview. The existing equipment was a Dytran 3032A accelerometer, a Dytran 5800A2 impulse hammer, two Dytran 4105C ampliers, a Microstar Laboratories MSXB 042 quick-connect card, and one Microstar Laboratories iDSC 1816 data acquisition card, connected to a computer using the operating system Windows 2000 where the program Matlab 6.1 was used for data collection and Fourier transformation. A feasibility study was carried out with a National Instruments 9201 cDAQ data acquisition module mounted into a National Instruments 9174 cDAQ chassis using the existing impulse hammer and accelerometer, where a simple prgram in Labview 2014 was made. Given the price and compatibility with the existing impulse hammer, accelerometer and other systems within the laboratory, a National Instruments 9234 cDAQ data acquisition module installed in a National Instruments 9171 cDAQ chassis was selected, combined with a PC using the operating system Windows 7 and running an EXE application created in Labview 2014 and 2011 for data collection and Fourier transforming. The older equipment was left intact as far as possible as a reserve. Förord

Detta examensarbete genomfördes under sommaren 2015 inom Kungliga Tekniska Högskolan i Stockholm som del av mastern inom yg- och rymdteknik - lättkonstruktioner.

Jag vill tacka min handledare Per Wennhage på KTH, som föreslog detta examensarbete, Ulf Carlsson på KTH som hjälpte mig med accelerometrarna, samt Payman Tehrani från National Instruments för hjälp och råd med Labview. Innehållsförteckning

Sida

1 Inledning 1 1.1 Bakgrund ...... 1 1.2 Syfte ...... 2 1.3 Mål ...... 3 1.4 Genomförande ...... 3 1.5 Termer ...... 4 1.5.1 Samplingshastighet ...... 4 1.5.2 Bandbredd ...... 5 1.5.3 Upplösning ...... 5 1.5.4 Spänningsintervall ...... 5 1.5.5 Antialiaslter ...... 6 1.5.6 IEPE/ICP ...... 9 1.6 Krav...... 9

2 Hårdvara 11 2.1 Förstudie ...... 11 2.2 Metod ...... 14 2.3 Resultat ...... 16 2.4 Diskussion ...... 17

3 Mjukvara 18 3.1 Om Labview ...... 18 3.2 Förstudie ...... 21 3.3 Metod ...... 23 3.4 Resultat ...... 24 3.4.1 Användarhandbok ...... 27 3.4.2 Framtida arbete ...... 27 3.5 Diskussion ...... 29

4 Allmänt 30 4.1 Diskussion ...... 30 4.1.1 Planering av arbetet ...... 30 4.2 Slutsats ...... 31

5 Bilagor 33 A Allmänt A.1 Tidsschema ...... B Labview B.1 Användarmanual ...... B.2 Råd och beskrivning för framtida ändringar ...... B.3 Färdig Programvara ...... C Hårdvara C.1 Dytran 3032A Accelerometer ...... C.2 Dytran 5800A2 Impulshammare ...... C.3 Dytran 4105C Förstärkare ...... C.4 Microstar Laboratories MSXB042 Snabbanslutningskort ...... C.5 Microstar Laboratories iDSC 1816 Datainsamlingskort ...... C.6 National Instruments 9201 Datainsamlingsmodul ...... C.7 National Instruments cDAQ-9174 & 9171 Chassis ...... C.8 National Instruments 9234 Datainsamlingsmodul ...... Kapitel 1

Inledning

I denna del förklaras bakgrunden till examensarbetet och dess krav.

1.1 Bakgrund

Sveriges största tekniska universitet; Kungliga Tekniska Högskolan, har en mängd avdelningar med kurser och forskning. Inom avdelningen Farkost och Flyg, nns kursen Strukturoptimering och sandwichdesign, med kurskoden SD2416. Kursen handlar om dimensionering och optimering av kompositstrukturer, med tonvikt på sandwichkonstruktioner, där ett obligatoriskt moment är en experimentell laboration, där frekvenssvarsfunktioner mäts på en sandwichbalk. Data från mätningarna används sedan tillsammans med optimeringsmetoder inom en programmerings- och dimensioneringsuppgift för att bestämma balkens materialegenskaper.[1, Task 2]

Den ursprungliga utrustningen för laborationen kan ses i tabell 1 nedan och i gur 1.1. Sy- stemet har använts kontinuerligt sedan 2001, inom laborationen och forskning, men datorns operativsystem, Windows 2000 Service Pack 4, säljs inte och uppdateras inte längre av tillver- karen Microsoft, samt så är risken stor att Matlab-programmet som genomför beräkningarna, Matlab Version 6.1, inte är kompatibelt med den nuvarande versionen som nns tillgänglig, Matlab R2014b.

Tillverkare Modell Funktion Bilaga Microsoft Windows 2000 SP 4 Operativsystem MathWorks Matlab 6.1 Mätprogram Dytran 3032A Accelerometer C.1 Dytran 5800A2 Impulshammare C.2 Dytran 4105C Förstärkare C.3 Microstar Laboratories MSXB 042 Snabbanslutningskort C.4 Microstar Laboratories iDSC 1816 Datainsamlingskort C.5

Tabell 1: Lista över komponenterna i den ursprungliga uppställningen från 2001.

Mer detaljerat är laborationen utformad så att en grupp av studenter får välja ut en sandwich- balk, som får sin vikt och dimensioner uppmätta. Balken hängs sedan upp horisontellt i lätta snören för att simulera fria randvillkor. Med en impulshammare som registrerar kraft slår ele- ven i ena änden av balkens framsida. En accelerometer fastsatt med bivax på balkens baksida,

1 Figur 1.1: Gamla mätutrustningen, en datainsamlare som sitter i datorns PCI-slot och samlar in data via ett snabbanslutningskort kopplat till två förstärkare, som i sig är kopplade till en accelerometer och impulshammare. Impulshammaren, accelerometern och de två förstärkarna kan ses till höger. på motsatt ände där slagen träar, registrerar accelerationen som uppkommer, se gur 1.2. De analoga signalerna från dessa två källor konverteras via en omvandlare till digitala signaler, så att de kan hanteras av en dator. Genom frekvensanalys fås balkens frekvenssvarsfunktion, som sparas i en l för att senare användas av studenterna för att approximera balkens materiella egenskaper. Denna metod skadar inte materialet när dess egenskaper utvärderas, och kallas då oförstörande provning, eller på engelska för non-destructive testing. Inom forskning och industrin har accelerometrar och signalanalys länge använts för bland annat modalprovning, eller för att lösa hållfasthetsproblem och komfortlösningar.[2][Sida 201]

1.2 Syfte

Om datorn med Windows 2000 skulle fallera, nns ingen tillgänglig ersättning, med samma versioner av programvarorna. Med detta i åtanke togs beslutet att ny mätutrustning tillsam- mans med en modernare dator skulle förskaas, med det äldre systemet som reserv. Samt att programmet som hanterat mätningarna och genomfört de nödvändiga beräkningarna för att få fram frekvenssvarsfunktioner, Matlab 6.1, ersätts av ett mätprogram skapat i Labview version 2014 och 2011.

2 Figur 1.2: Balkens upphängning under laborationen, för simulering av fria randvillkor. Balken placeras så att kärnan är synlig ovan- och underifrån sett, med ytmaterialet synligt fram- och bakifrån. Accelerometern fästs med bivax på den bakomvarande ytan, på motsatt ända om där impulshammarens slag träar.

1.3 Mål

Arbetets mål var följande:

ˆ Ta fram kravspecikationer för möjliga mätsystem

ˆ Införskaa ett mätsystem

ˆ Ta fram ett mätprogram i Labview för mätsystemet som EXE-l

ˆ Genomför slutgiltig provning av nya systemet

1.4 Genomförande

För att nå målen genomfördes följande punkter:

ˆ Planera examensarbetet

ˆ Genomför en förstudie för att få en större förståelse för systemet och Labview

ˆ Sök efter möjliga mätsystem

ˆ Skaa översyn av de funna mätsystemen

ˆ Genomför tillgängliga grundkurser om Labview

3 1.5 Termer

För att kunna hitta relevanta produkter denerades kritiska specikationer som samlades i ett faktablad för god översikt och simpel jämförelse mellan de olika alternativen. De kritiska speci- kationerna kan ses nedan:

ˆ Samplingshastighet/ Sampling rate

ˆ Bandbredd/ Bandwidth

ˆ Upplösning/ Resolution

ˆ Spänningsintervall/ Input Voltage range

ˆ Antialiaslter/ Anti-aliasing lter

1.5.1 Samplingshastighet Samplingshastigheten är med vilket intervall som instrumentet mäter den analoga signalen, och konverterar den till ett digitalt värde. Samplingshastigheten måste vara tillräckligt hög för att den uppmätta kurvan utseendemässigt ska kunna representera den analoga signalen.

Figur 1.3: Exempel av samplingshastighet: En kontinuerlig signal S(t) som mäts till Si för varje tidsintervall sekunder, som ger en samplingsfrekvens 1 Hz. i · T fsamp = T

4 1.5.2 Bandbredd Bandbredd är det frekvensintervall som enheten kan hantera utan förluster eller förstärkning- ar större än 3 dB. Frekvenser utanför bandbredden riskerar att ge felaktiga amplituder, därför behöver alla frekvenser av intresse nnas inom bandbredden. Används också för det frekvensin- tervall som ett eventuellt lågpass- bandpass- eller högpasslter kan hantera.

1.5.3 Upplösning Upplösning beskrivs i bit eller bitar, där bit kommer från engelska binary digit, men blan- das ofta felaktigen ihop med Byte. Med antal bitar, n, beräknas hur många steg i värde som kan mätas mellan två randvärden, 2n, se exempel 1 & 2 nedan samt gur 1.4.

Exempel 1: 3-bitars upplösning på intervallet 0-10 V kommer ha 23 = 8 värdesteg fördelat från 0 till +10 V, med ett värdesteg på 1.43 V.

Exempel 2: 16-bitars upplösning på intervallet ±10 V kommer ha 216 = 65536 värdesteg fördelat mellan -10 till +10 V, med ett värdesteg på 305 µV. [5]

Figur 1.4: Konvertering från analog till digital signal, med två olika upplösningar, 3-bitar och 16-bitar. Bild från National Instruments. [5]

1.5.4 Spänningsintervall Spänningsintervall är det minimum/maximalt tillåtna värdet på analog till digital-omvandlaren inom datainsamlaren, vilket annars leder till att kurvan kapas om inspänningen överstiger den tillåtna, se gur 1.5. Därför var det nödvändigt att kontrollera maximala utspänningen för både accelerometern och impulshammaren, utan förstärkning, för att jämföra med de rekommende- rade spänningsintervall som fanns angivna av tillverkarnas.

5 Figur 1.5: Konverterad signal från ett kraftigt hammarslag, där det analoga värdet översteg det maximala som datainsamlarens analog-till digital omvandlare kunde hantera, så att toppen "kapades", och blev synligt platt.

1.5.5 Antialiaslter Aliasing sker när frekvenser högre än halva samplingsfrekvensen mäts, vilket då misstas för låg- frekventa signaler, se gur 1.6. Dessa bidrag skapar felaktiga frekvenssvarsfunktioner, förkortat FRF från engelska Frequency Response Function, se gur 1.7. Antialiaslter tar bort för höga frekvenser innan signalerna digitaliseras från analoga till digitala, och man undviker då de falska bidragen till amplituden för de frekvenserna, se gur 1.8.

6 Figur 1.6: Aliasing, när en högfrekvent signal misstas för en lågfrekvent signal, på grund av den för låga samplingfrekvensen. Frekvensen för (b) är högre än (a), men uppmäts som samma frekvens. Bild från D.J. Ewins. [3, Sida 118]

Figur 1.7: Aliasingens eekt på FRF, där (a) är den verkliga FRF, (b) den uppfattade FRF över den verkliga FRF. Den streckade linjen i (b) visar det felaktiga tillägget från högre frekvenser. Bild från D.J. Ewins. [3, Sida 118]

7 Figur 1.8: Eekten av ett lågpasslter, överst är den verkliga FRF, mitten är lågpassltrets FRF, nederst den ltrerade signalens FRF. Den singelstreckade linjen visar FRF utan lter, den punktstreckade linjen visar den verkliga FRF och den streckade linjen visar det felaktiga bidrag som kvarstår av de högre frekvenserna efter ltrering. Bild från D.J. Ewins. [3, sida 119]

8 1.5.6 IEPE/ICP Sensorerna i accelerometern och hammaren är av typen IEPE, en förkortning av Integrated Electronic Piezoelectric, och fungerar så att ett piezoelektriskt material utsätts för mekanis- ka påfrestningar, vilket skapar svaga elektriska laddningar som förstärks av en förstärkare i en elektronisk krets, för att minimera störningar av de svaga signalerna. Ett liknande alternativ är ICP sensorer, förkortat från Integrated Circuit Piezoelectric. Dessa sensorer behöver förses med en svag ström från hårdvaran, vilket I det gamla systemet var en del av förstärkarnas upp- gift. Det nya systemet behövde antingen ha stöd för IEPE/ICP eller återanvända förstärkarna inom det nya systemet.

1.6 Krav

Grundläggande krav för en möjlig datainsamlare var följande:

fplot 0 − 2000 Hz fsamp, lowpass 5120 Hz fsamp 20 kHz Frekvensintervallet för frekvenssvarsfunktionen som studenterna efter laborationen får som text-

l, fplot, går från 0 till 2 kHz enligt laborationsprotokollet som studenterna har tillgång till.[1, Task 2]

För ett bra resultat om lågpasslter nns, användes tumregeln

fsamp, lowpass = 2, 56 · fplot, max (1.1) så att inte frekvenser av intresse dämpas, då lågpasslter har en sluttande kurva till maximal dämpning, se gur 1.9. Detta ger den lägsta frekvensen 5120 Hz för ett eventuellt lågpassltret, kallat lowpass lter i engelska.

För god signal efter konvertering om lågpasslter saknas, är en tumregel att samplingsfrekvensen skall vara minst 10 gånger högre än den maximala frekvensen av intresse,

fsamp = 10 · fplot, max (1.2) vilket ger en lägsta accepterad samplingsfrekvens på 20 kHz.

9 Figur 1.9: Exempel på lågpasslter, engelska lowpass lter. På grund av sluttningen i dämp- ningen så behöver gränsfrekvensen vara högre än det område som skall analyseras. I detta fall är gränsfrekvensen 5120 Hz.

10 Kapitel 2

Hårdvara

Denna del handlar om hårdvaran, det vill säga datainsamlaren och övriga mätinstrument.

2.1 Förstudie

För att få en bättre förståelse för mätsystemet och programmet Labview så genomfördes en för- studie med tillgänglig hårdvara avsedd för voltmätning, en National Instruments 9201, se bilaga C.6, förkortat NI 9201, som är en del av compactDAQ systemet, förkortat cDAQ, där moduler monteras i en basenhet som sköter all kommunikation med datorn. Flera moduler kan användas samtidigt i en basenhet, oberoende av funktioner, och bytas ut mot andra moduler utan verktyg. I detta fall användes en NI cDAQ-9174, se bilaga C.7. som med en USB-sladd kommunicerar med en dator, se gur 2.1. Tillsammans med detta skapades ett temporärt program i Labview 2014 genom olika exempelkoder, se kapitel 3.2.

Eftersom NI 9201 har klämskruv-kontakter, behövde BNC-kontakterna konverteras till skalade kablar, se gur 2.2.

Tidiga försök med NI 9201 ck mycket brus i FRF-resultatet, se gur 2.3, troligen för att NI 9201 har 12-bitars upplösning, att jämföra med 16- eller 24-bitars upplösning som används av industrin för denna typ av mätningar.

11 Figur 2.1: En NI 9201 modul monterad i en NI cDAQ 9174 som användes till förstudien.

Figur 2.2: Två skalade tunna kablar med BNC-kontakter i ena änden, A0 & A1, med en tredje kabel skalad i båda ändar som jordkabel, COM.

12 Figur 2.3: Exempel på resulterande FRF efter mätning med NI 9201, där det kraftiga bruset troligen beror på den för låga upplösningen på 12-bitar.

13 2.2 Metod

Här beskrivs genomförandet av arbetet med hårdvaran som följde förstudien.

Datainsamlare som fanns till salu söktes upp med hjälp av hemsidorna google.se, och ama- zon.com, där olika söktermer användes för att hitta möjliga leverantörer. Tre leverantörer med tillräckligt bra datainsamlare noterades:

ˆ Kistler - http://www.kistler.com/

ˆ National Instruments - http://sweden.ni.com/

ˆ HBM - http://www.hbm.com/se/

För att få en lättöverskådlig jämförelse mellan de möjliga alternativen som fanns tillgängliga skapades en tabell med diverse datainsamlare, se tabell 2.

14 Tabell 2: Möjliga datainsamlare, med deras specikationer och pris. För objekt från NI gavs 10 % rabatt före moms till alla akademiska institutioner, och 50 % på myRIO för studenter, som är inräknat i priserna i tabellen. 15 Med tanke på priset och kompatibiliteten med de tillgängliga mätinstrumenten, det vill sä- ga impulshammaren, accelerometern och övriga system inom laboratoriet, valdes en National Instuments 9234 cDAQ datainsamlingsmodul. En National Instruments 9171 cDAQ chassi in- förskaades för kommunikation med datorn, så mätningar kan genomföras ifall laboratoriets NI 9174 inte är tillgänglig. Det fanns redan andra moduler från NI inom laboratoriet, som användes vid förundersökningen. Möjligheten nns att använda olika moduler samtidigt i ett chassi, så denna kompatibilitet var önskvärd.

Att uppdatera det bentliga DAP-kortet och montera det i en modernare dator uteslöts då det var önskvärt att ha kvar det gamla systemet oförändrat, som reserv till det nya systemet.

Kistler Labamp var den starkaste kandidaten efter NI 9234, som hade bra specikationer, an- tialiasinglter, BNC-kontakter, och stöd för Labview och IEPE, men till ett lite högre pris och utan samma kompatibilitet till resten av laboratoriets utrustning.

En förfrågan skickades också till Företaget HBM, men det uppskattade priset på ett passande system troligen skulle kosta runt 200 000 SEK.[6]

2.3 Resultat

En National Instuments 9234 cDAQ datainsamlingsmodul införskaades, tillsammans med en National Instruments 9171 cDAQ chassi för kommunikation med datorn, se gur 2.4. Dessa kopp- lades samman med en modernare dator med operativsystemet Windows 7 Enterprise Edition, som har ett mätprogram skapat i Labview, se kapitel 3, samt gur 3.8.

Figur 2.4: Till vänster en NI 9234 datainsamlingsmodul, till höger ett NI 9171 cDAQ chassi.

16 2.4 Diskussion

Hårdvaran som användes under förstudien, NI 9201, hade klämskruv-kontakter, se gur 2.5, vilket kunde försvåra mätningarna, då kablarna lossnade vid era tillfällen.

Figur 2.5: NI 9201 med klämskruv-kontakter, monterad i en NI 9174.

Både grova och tunna kablar användes, men problemet kvarstod. Att fästa kablar som lossnar under pågående laboration skulle stjäla mycket av laborationstiden. Därför ansågs det viktigt att datainsamlaren hade BNC-kontakter, alternativt ordentliga kontakter konverterade från BNC.

Under arbetets gång slutade accelerometern att ge signaler, vilket medförde att en ny acce- lerometer av samma tillverkare och modell ck köpas in. Under tiden det tog att få den nya accelerometern, lånades en accelerometer med snarlika specikationer av en annan sektion inom KTH, som användes för utveckling och provning av mätprogrammet.

17 Kapitel 3

Mjukvara

Denna del handlar om mjukvaran, det vill säga mätprogrammet som skapades i Labview 2014 och 2011.

3.1 Om Labview

För att mäta och analysera signalerna och för att spara resultaten, användes Labview 2014 och 2011, Laboratory Virtual Instrument Engineering Workbench, ett graskt programmerings- språk utvecklat av National Instruments, som beskrivs nedan.

LabVIEW är en grask utvecklingsmiljö med många färdiga moduler som stöd- jer programmering av vanliga PC-applikationer men även realtids- och FPGA- programmering. Denna graska utvecklingsmiljö gör att utvecklarna kan fokusera på uppgiften som programmet ska göra vilket medför att programvaruutvecklingen sker både snabbare och kostnadseektivare än med traditionell programmering.

Beskrivning av Labview från Prevas, en Select Alliance Partner till National Instruments.[4]

Labview har två fönster som används vid programmering; Front Panel och Block Diagram, se gur 3.1, att jämföra med det text-baserade programmeringsspråket Matlab's Command Window och Editor, se gur 3.2. Frontpanelen är där man har all indata och utdata som kan ändras av användaren när program- met körs, samt visa grafer eller annat graskt. Blockdiagrammet är där kodningen sker med hjälp av olika block och trådar. Dessa block kallas VI eller subVI, förkortat från Virtual Instrument, som kan jämföras med en funktion-l i Matlab. Via blockens in- och ut-noder skickas data och parametrar in och vidare ut till andra VI's, se gur 3.3.

18 Figur 3.1: Labview 2014's Front Panel till vänster och Block Diagram till höger.

Figur 3.2: Matlab R2014b's Editor överst i bild och Command Window underst i bild.

19 Figur 3.3: Ett simpelt exempel-subVI, som här används för ge en lätt översikt. Indata kommer in via de i exemplet döpta Input # till vänster, som sedan utför någon handling eller behandlas, för att sedan skickas ut tillbaka till huvudprogrammet via de i exemplet döpta Output #.

20 3.2 Förstudie

För att få en bättre förståelse för Labview och mätsystemet så genomfördes en förstudie med hårdvara som fanns tillgänglig, vilket var avsedd för voltmätning, samt ett program skapat i Labview 2014 från olika exempelkoder, som installeras tillsammans med Labview. Koden som skapades till förstudien utförde följande:

ˆ Identiera de två analoga kanalerna som insignalerna ska mätas ifrån

ˆ Skicka information om insignalerna inför konverteringen från analog till digital signal

ˆ Välj insamlingsfrekvens

ˆ Starta insamling av data från insignalerna

ˆ Filtrera insamlad data med digitalt lågpasslter

ˆ Beräkning av frekvenssvarsfunktionen, FRF

ˆ Visa och spara resultaten

ˆ Avsluta mätningen och stoppa programmet

Först identieras de två analoga in-kanalerna, som sedan konverteras för att kunna användas av Labview. Signalerna konverteras till 12-bitars signaler mellan ±10 Volt, som skickas vidare till insamlingsfrekvensinställningar. Signalerna mäts i en while-loop, som därefter ltreras med digitalt lågpasslter innan de Fouriertransformeras.

Den färdiga koden till förstudien kan ses uppdelad i gur 3.4, 3.5, 3.6 och i fullständig form i gur 3.7.

Figur 3.4: Labview VI som användes till förstudien, där kanaler aktiveras, och en uppgift skapas med de angivna inställningarna. Del 1 av 3.

21 Figur 3.5: Labview VI som användes till förstudien, där mätningen initieras och mätdata skapas, ltreras och skickas till frekvensomvandlaren. Del 2 av 3.

Figur 3.6: LabView VI som användes till förstudien, där frekvenssvarsfunktionen tas fram och sparas. Därefter avslutas alla mätningar och uppgiften raderas. Del 3 av 3.

Figur 3.7: Full längd på LabVIew VIn som användes till förstudien.

22 3.3 Metod

Efter förstudien genomfördes samtliga NI's Online Training övningar, lektioner i from av vide- or och övningar som kräver cirka 2-3 arbetsveckor i tid. Mätprogrammet som skapades därefter genomför samma steg som beskrivs i förstudien, dock utan det digitala lågpassltret, men med utökade funktioner, mer lättöverskådlig programmering, och användarvänligt gränssnitt. Mät- programmet kunde också sparas som ett EXE-program, så att Labview inte behöver köras. Detta betyder att mätprogrammet kan installeras i andra datorer, utan Labview, om så önskas, men då nns ingen möjlighet att modiera programmet. Till skillnad från programmet i förstudien, användes i detta fall Labview 2011 istället för 2014, då endast version 2011 fanns tillgänglig att installera på den nya datorn. De utökade funktionerna var följande:

ˆ Möjlighet till provning av de valda kanalerna innan mätningen påbörjas

ˆ Möjlighet till att spara rå-data från hammaren och accelerometern

ˆ Automatisk beskärning av FRF-resultaten vid 2000 Hz, för att spara minne

ˆ Resultaten sparas i ASCII-format, .LVM, istället för i Labviews .TDMS, för lättare åtkomst och delning av data

ˆ Förutom FRF-resultaten, sparas även en bildl, som ger snabb översikt av resultaten i efterhand

ˆ Visning av antalet genomförda mätningar

ˆ Påminnelse att välja en mapp att spara ler i, om ingen har valts

ˆ Påminnelse att välja kanaler, om en eller två inte har valts

ˆ Hjälpsam text när muspekaren är placerad över något objekt

23 3.4 Resultat

Ett mätprogram skapades i Labview för användning i en modernare dator med operativsystemet Windows 7, se gur 3.8 och 3.9. Det gamla systemet lämnades så pass oförändrat att det kunde användas vid behov, se gur 3.10.

Figur 3.8: Bild på den nya mätstationen med alla komponenter inkopplade.

24 Figur 3.9: Närbild på den nya mätstationen, med mätprogrammet igång och den nya datain- samlaren inkopplad. Vid behov kan de gamla förstärkarna användas istället, synliga till vänster om skärmen, vilka är kopplade till den gamla datorn.

Figur 3.10: Den nya datorn placerad till höger inom vagnen, med den gamla som reserv till vänster.

25 Programmets slutgiltiga kontrollpanel/huvudmeny samt dess kontrollpanel för kanalprovning kan ses i gur 3.11 och gur 3.12, med det fullständiga programmet i bilaga B.3.

Figur 3.11: Den slutgiltiga kontrollpanelen/huvudmenyn för mätprogrammet.

26 Figur 3.12: Den slutgiltiga kontrollpanelen för provning av valda kanaler.

För att jämföra frekvenssvarsanalysen från nya och gamla systemet, genomfördes era mätning- ar av ett antal sandwichbalkar, där samma accelerometer och impulshammare användes för de båda systemen. Resultaten kan ses nedan, med justerade amplituder för lättare jämförelse, se gur 3.13, 3.14 och 3.15.

3.4.1 Användarhandbok För att underlätta användningen av programmet för nya användare skapades en kort användar- handbok på två sidor, som förklarar de viktigaste funktionerna, se bilaga B.1. Då kursen ges på engelska, skrevs användarhandboken i samma språk. Användarhandboken skall nnas tillgänglig i pappersform nära datorn. För att testa användarhandbokens, och vidare mätprogrammets, användarvänlighet, genomförde två studenter en mätsession med den nya uppställningen utan assistans.

3.4.2 Framtida arbete För att underlätta vid framtida ändringar inom programvaran för förbättringar eller för an- vändning inom forskning, skapades ett dokument med råd och information om Labview och programmet i synnerhet, se bilaga B.2. Dokumentet och kommentarerna inom programmet är skrivna på engelska, för att möjliggöra en större användargrupp.

27 Figur 3.13: Två frekvenssvarsfunktioner från en sandwichbalk där ytmaterialet är glasberkopo- sit.

Figur 3.14: Två frekvenssvarsfunktioner från en sandwichbalk där ytmaterialet är kolberkom- posit.

Figur 3.15: Två frekvenssvarsfunktioner från en sandwichbalk där ytmaterialet är kolberkom- posit.

28 3.5 Diskussion

Ersättaren till datorn med Windows 2000 hade till en början Windows XP installerat, samt gamla ler och program, då den har använts av laboratoriet tidigare. Eftersom Windows XP inte längre säkerhetsuppdateras, så ck ersättaren det modernare operativsystem Windows 7 Enterprise edition installerat.

Mätresultaten sparas som textlstypen LVM, som valdes då den kan öppnas av vanliga text- redigerare, samt att det nns att ladda ner färdiga funktioner till Matlab för att importera LVM-ler. Alternativt kunde lerna ha sparats som TDMS, en egen ltyp skapad av National Instruments, vilket tar mindre plats och går snabbare under stora mätningar. Men TDMS kan bara användas av särskilda program från National Instruments.

29 Kapitel 4

Allmänt

I rapportens avslutande del behandlas arbetet som inte tillhör mjukvaran eller hårdvaran.

4.1 Diskussion

4.1.1 Planering av arbetet Arbetet planerades utifrån ca 40 timmars arbete i veckan fördelade över 20 veckor, där varje arbetsuppgift inkluderats, se bilaga A.1. Det egna arbetet öt på bra, och blev klart med god marginal, men det blev också fördröjningar på grund av datorproblem, semestrar och sjukfrån- varo av nyckelpersoner inom KTH.

Labview-koden i förstudien skrevs som en enda lång slinga, utan någon subVI. Efter samtal med National Instruments, blev slutsatsen att koden skulle bli mer lättöverskådlig, samt kräva mindre av datorns resurser, om subVI's hade använts.[7] Utifrån detta användes subVI's under skapandet av mätprogrammet.

Det lågpasslter i Labview-koden som användes till förstudien gjorde inte någon skillnad för resultatets noggrannhet, då den var ett digitalt lter, det vill säga signalen ltrerades efter sig- nalen konverterats, då aliasing redan skett, se avsnitt 1.5.

Författaren vill också nämna att hans arbetsdator tvingades återställas, så att operativsyste- met Windows 8.1, samt alla tillhörande program behövde installeras om och uppdateras, med drygt en arbetsveckas tidsförlust som följd. Men eftersom alla viktiga ler rörande arbetet fanns sparade i molnet kunde arbetet snart återupptas.

30 4.2 Slutsats

Denna rapport har handlat om utvärderingen av ny utrustning för modelprovning samt de- sign av ett EXE-program skapat i Labview, som används under en obligatorisk laboration inom kursen Strukturoptimering och sandwichdesign på Kungliga Tekniska Högskolan, samt inom forskning på skolan. För att nna en lämplig ersättare skrevs en lista med kravspecikationer som användes till att sålla ut möjliga alternativ. Som ersättare valdes en National Instruments 9234 datainsamlingsmodul tillsammans med en National Instruments 9171 chassi, som imple- menterades tillsammans med en förhållandevis modern dator med operativsystemet Windows 7 Enterprise Edition. Ett mätprogram skapades också i Labview 2011 för laborationen, men kan modieras för andra mätningar till forskningen inom skolan, och kan ses i bilaga B.3.

31 Litteraturförteckning

[1] Wennhage, P., Rosén, A., 2014. Design project in SD2416 Structural Optimisation and Sandwich Design Autumn 2014 (3hp)

[2] Wallin, H. P., Carlsson, U., Åbom, M., Bodén, H., och Glav, R., 2012. Ljud och Vibrationer Reviderad version av den tredje upplagan. KTH farkost och yg/ Marcus Wallenberg La- boratoriet för Ljud- och Vibrationsforskning, Stockholm: Universitetsservice US-AB.

[3] Ewins, D.J. 1991. Modal Testing: Theory and Practice. Taunton, Somerset, England: Research Sudies Press LTD.

[4] Prevas. inget datum tillgängligt. LabVIEW, grask programmering som ger stora besparing- ar http://www.prevas.se/labview.html (Hämtad 2015-07-15)

[5] National Instruments. 2014. Understanding Resolution in High-Speed Digiti- zers/Oscilloscopes. http://www.ni.com/white-paper/4806/en/ (Hämtad 2015-04-27)

[6] Sandberg, Mats. Sales Engineer vid HBM Sveige.

[7] Tehrani, Payman. Academic Field Engineer vid National Instruments Sveige.

32 Kapitel 5

Bilagor

33 A Allmänt

A.1 Tidsschema Thesis Work Time schedule

Month Day Work/events Deadline! April 1 2 3 4 5 6 7 Meeting with Per/ Begin planning 8 Intervjues with teachers 9 Write specifications, requirements 10 and requests 11 12 13 Pilot Study Write report! 14 15 16 17 18 19 20 Search for hardware Write LabView 21 program. 22 23 24 25 26 27 Search for hardware Write LabView 28 program . 29 30 May 1 2 3 4 Order hardware Write report! 5 Write LabView program 6 7 8 9 10 11 Write LabView program 12 13 14 15 16 17 18 Write LabView program 19 20 21 22 23 24 25 Write LabView program Write report! 26 27 28 29 30 31 June 1 Write LabView program 2 3 4 5 6 7 8 Testing Write report! 9 10 11 12 13 14 15 Testing 16 17 18 19 20 21 22 23 Testing Write report! 24 25 26 27 28 29 Write Handbook/ Tips & Advice 30 July 1 2 3 4 5 6 Write Handbook/ Tips & Advice Write report! 7 8 9 10 11 12 13 Write Handbook/ Tips & Advice 14 15 16 17 18 19 20 Send in first draft for Send in first draft 21 Handbook/ Tips & Advice Edit report 22 23 24 25 26 27 Edit Handbook/ Tips & Advice 28 29 30 31 August 1 2 3 Edit Handbook/ Tips & Advice Edit report 4 5 6 7 8 9 10 Prepare for presentation 11 12 13 14 15 16 17 Presentation? Edit report! 18 19 20 21 Report Final edition 22 23 24 Presentation? 25 26 Everything done 27 28 29 30 31 B Labview B.1 Användarmanual Johan Berglund 2015-07-14 User manual for measurement of the frequency response function, FRF, of a sandwich beam.

1 2 14 15 3 4

5 6 7

8

9 10 16

11 12 13

1. Write the number assigned to the group. This number will be attached to the filenames. 2. Write the number written on the beam. This number will attached to the filenames. 3. Check this box to save the raw-data from the sensors. The data will be saved in a separate file, at the same location as all other files. 4. Select the folder where the files will be saved by clicking the folder-icon, navigate into the desired folder, and click the Current Folder button. 5. Write a measurement-time. By increasing the measurement-time, the frequency-increment Δf will decrease in the FRF. For a good FRF, the time need to be long enough for both signals to settle down reasonably close to its initial values. 6. Select a sampling rate: The higher the sampling-rate, the higher the maximum frequency of the FRF will be. But this program automatically cuts off the results at 2000 Hz before plotting and saving. 7. Select the input channel that the impulse hammer is connected to. 8. Select the input channel that the accelerometer is connected to. 9. The Recording indicator will be on during data recording. 10. The # of Measurements indicator displays the number of measurements that has been completed this session. Quitting the program will reset this to zero. This number will be attached to the filename. 11. Click RECORD to begin recording. No changes can be made while recording. 12. Click TEST to test if the chosen channels are correct, this will open a new window, see page 2. 13. Click QUIT to close the program. Clicking QUIT will not stop a measurement in progress. 14. Click on the tab to select which graph to display: The Signals Graph plots the measured signals from the two selected channels. The FRF Graph plots the frequency response function. 15. Show, hide or change the plotted lines. 16. Plot tools for zooming.

1/2

Johan Berglund 2015-07-14

1 5 2

3 4

1. Displays the Sampling rate during testing, set to maximum of the NI 9234. 2. Use the slider to select the number of samples to be displayed per update on the two graphs below, point 3 & 4. The smaller the number of samples, the faster the response is displayed, though it will also be shown for a shorter time. This value is not used in the main measurements. 3. Displays the input signals from the first channel, labeled Hammer Channel (Stimulus) in the main window. This graph is not recorded or saved. 4. Displays the input signals from the second channel, labeled Accelerometer Channel (Response) in the main window. This graph is not recorded or saved. 5. Click this button to close down the TestingModeOfInstruments.vi window and return to the main window, see page 1.

The measurement data are saved as LVM-files, which is a text-based format, meaning it can be open by text- editors such as Notepad or Word. But LabView saves all the data using a comma as decimal mark, while Matlab uses a point as a decimal mark. The m-file “lvm_import.m” on the desktop will import the measurement data, and change all decimal points from commas to points. Follow the instructions described in the m-files program- code. In case you forgot to make a copy of the m-file when at the lab, it can be downloaded from mathworks: http://www.mathworks.com/matlabcentral/fileexchange/19913-lvm-file-import/content/lvm_import.m

2/2

B.2 Råd och beskrivning för framtida ändringar Tip, Tricks and Advice for Future Changes 6/24/2015 By Johan Berglund

All Labview-files can be found on the folder located on the desktop, Measurement_program_files. Always open the LabView-project MeasureFRF1.5.lvproj if any changes are to be done on the program. Then, using the Project Explorer window, open the file to be altered. To update the Executable, Installer, and Source Distribution, right-click Build Specifications in the project explorer, and select Build All, see figure 1.

The “programming-flow” that I used in the block diagram have all inputs furthest to the left, and all outputs the furthest to the right, where possible. This is mirrored in the terminals connected to each controller/indicator, see figure 2.

For the front-panel, a lot of setting can be changed by right-clicking any of the controllers/indicators. For example, the maximum measurement time is set to 60 seconds, this can be changed by right-clicking the controller, and selecting Properties. From there, go to the Data Entry tab, where minimum, maximum and 1 increment can be changed.

It is possible to make controllers/indicators invisible on the front-panel, for example in subVI’s with appearing front-panels, where input-data should not be controllable from that panel.

If any of the VI’s or subVI’s have the word clone added to the front panel/block diagram titles, you cannot make any changes to it in that window, as this VI is used in more than one location. To make changes to the VI/subVI (without clone in the title), open the VI/subVI via the Project Explorer.

The default path for the Select Save Files Folder controller, i.e. the first view that appears when the controller is used, can be changed by right-clicking the controller and selecting Browse Options, and then Start Path. For now it directs the user to the desktop.

The Frequency Response Function, FRF, is cut off at 2000 Hz in the Decrease FRF data to only 2000 Hz 1.5.vi. To change the cut- off frequency, simply change the constant within the subVI’s Block Diagram. 2 To change certain properties of the Executable, Installer, or Source Distribution, simply expand the Build Specifications icon in the Project Explorer and right-click the part you need to alter,

1/3

Tip, Tricks and Advice for Future Changes 6/24/2015 By Johan Berglund and select Properties to find the available options. After changes have been made, right click and select Build.

Certain objects are Type Definitions, called Type Def or Strict Type Def, meaning if you create a copy of that object, it will share the same properties, even if changes are made on any of the copies or the original. Changes on a Type Def can only be made by right- clicking on the object and choosing Open Type Def. Once the Type Def-object has been saved, all new and old copies will be updated, see figure 3.

The subVI Create Task From DAQ Assist 1.5.vi was created from the DAQ Assistant Express VI, by right-clicking on the finished DAQ Assistant VI, and selecting Generate NI-DAQmx Code. 3 The resulting code was placed in the Process subVI for FRF.vi with minor changes for input- and output-terminals.

To avoid using up all of Labviews allocated memory, some subVI’s was split. This was due to Labview keeping everything in memory while using it, so if possible, split “memory heavy” tasks into multiple subVI’s. Upon exiting a subVI, Labview discards the allocated memory taken by that subVI, freeing up more memory for other tasks.

The FRF VI has a selectable FRF mode, with three options available; H1, H2 and H3, as described by National Instruments below:

2/3

Tip, Tricks and Advice for Future Changes 6/24/2015 By Johan Berglund

 H1: The frequency response function is computed as the ratio of the cross spectrum to the input autospectrum: 퐺 푥푦⁄ 퐺푥푥 Essentially, the cross spectrum is the power between the input and the output signals. The autospectrum is the averaged magnitude of multiple instantaneous spectra (input in this case).

The H1 technique gives the best performance in the presence of noise for measuring anti- resonances, where the signal to noise ratio tends to be poor.

 H2: The frequency response function is computed as the ratio of the output autospectrum to the "backwards" cross spectrum: 퐺 푦푦⁄ 퐺푦푥 As mentioned above, the autospectrum is the averaged magnitude of multiple instantaneous spectra (output in this case). The "backwards" cross spectrum is the power between the output and input signals.

The H2 technique gives the best performance in the presence of noise for measuring resonances, where the signal to noise ratio tends to be best. In a noise free environment, both H1 and H2 techniques give the same result.

 H3: The frequency response function is computed as the average of H1 and H2.

http://digital.ni.com/public.nsf/allkb/3657963E2C0405D1862572C1004C0A3B

Currently H2 is selected as the FRF mode.

Note that the analog anti-aliasing-filter in the NI 9234 begins at 0,45 ∙ 푓푠, where 푓푠 is the sampling rate.

How to choose a valid sampling rate, from NI.com:

Valid sample rates 푓푠 for the NI 9234 obey the following formula:

푓푚⁄ 푓 = 256 푠 푁

where N is an integer 1, 2, 3, . . . 31, and 푓푚 is the internal time base. By default 푓푚 is 13.1072 MHz

http://digital.ni.com/public.nsf/allkb/593CC07F76B1405A862570DE005F6836

The internal time base is unchanged, so the list at the webpage was used to create inputs for the Labview code.

The max/min voltage of the NI 9234 is ± 5 V, compared to the old system that has a max/min voltage of ± 10 V, something to have in mind if using the amplifiers.

3/3

B.3 Färdig Programvara Johan Berglund 2015-07-21

FRF measurement Main1.5.vi Main VI for measurement of two input-channels, one impulsehammer, and one accelerometer. The Frequency Response Function is calculated and stored as .lvm files once per measurement

1/19

Johan Berglund 2015-07-21

2/19

Johan Berglund 2015-07-21

3/19

Johan Berglund 2015-07-21

Check if Boolean Buttons pressed1.5.vi This subVI checks if any button on the front panel is currently pressed and will send out the next case to occur.

4/19

Johan Berglund 2015-07-21

Check if Input Channels exists1.5.vi This subVI checks if any of the two channel-selector-controllers are empty, and if so, a one-button-dialog appears prompting the user to select two input channels.

5/19

Johan Berglund 2015-07-21

6/19

Johan Berglund 2015-07-21

Check if Save Path exists1.5.vi This subVI checks if the "Select Save Files folder" file-path-string is empty, and if so, a one-button-dialog appears prompting the user to select a filepath.

7/19

Johan Berglund 2015-07-21

Control for Sampling Rate.ctl

8/19

Johan Berglund 2015-07-21

Create FilePath 2 1.5.vi This subVI takes the file-path, the group #, the beam #, and the measurement # in a cluster, to create the filename for the current measurement.

9/19

Johan Berglund 2015-07-21

Create Task From DAQ Assist 1.5.vi

10/19

Johan Berglund 2015-07-21

11/19

Johan Berglund 2015-07-21

Decrease FRF data to only 2000 Hz 1.5.vi This subVI finds the # of elements needed to reach 2000 Hz, and then removes all elements above 2000 Hz, to save memory.

12/19

Johan Berglund 2015-07-21

Save to ASCII/LVM

Save to ASCII/LVM Saves a signal to a text-based measurement file (.lvm) or a generic ASCII file (.txt or .csv).

The .lvm file format saves header information for each segment written to the file, where each iteration of Save to ASCII/LVM is one segment. Use the .lvm file format for finite data sets.

The .txt file format does not include header information and appends data to the file for each iteration of Save to ASCII/LVM. Use the .txt file format for continuous data sets.

13/19

Johan Berglund 2015-07-21

Init and Setting1.5.vi

14/19

Johan Berglund 2015-07-21

Process subVI for FRF.vi This subVI initiates the measurement of both channels, and then sends the measured data to the Frequency Response VI, for the desired FRF.

15/19

Johan Berglund 2015-07-21

16/19

Johan Berglund 2015-07-21

Save RAW if checkbox.vi Saves the raw data as a .LVM file if the box is checked in the main window. The filename has a "RAW_DATA_" added to the front of the file-name. May cause problems for long/large measurements, due to memory-usage.

17/19

Johan Berglund 2015-07-21

States for Measurement Program1.5.ctl A Typde Def state-variabel, used in the Main program to change the state contained in the While-loop.

18/19

Johan Berglund 2015-07-21

TestingModeOfInstruments.vi SubVI for testing if the channels are connected and chosen properly. A separate window appears, that will close on exit.

19/19

C Hårdvara

C.1 Dytran 3032A Accelerometer DYTRAN PROPRIETARY AND CONFIDENTIAL DESCRIPTION BY/DATE CHK APPR DYTRAN INSTRUMENTS, INC. AND ANY REPRODUCTION IN PART OR AS A WHOLE OR ANY OTHER DISSEMINATION OFTHIS INFORMATION WITHOUT THE RLA WRITTEN PERMISSION OF DYTRAN INSTRUMENTS, INC. IS PROHIBITED. UPDATED MARKING, DV ANS CABLE VIEW 08/03/11 C 19989 1UPDATED VIEW OF AB 06/03/13 CONNECTOR "

I~ 18.00 IN [457] ± _1.0 IN [25.4] ]1Iloo I DO NOT MOUNT ON I THIS SURFACE ~------1r~l [ K -=rr J IJV'lIUN USA 3032A .28[7.1]II : mil'l + I XXX L. I ~ CABLE, COAX, PTFE

MOUNTING SURFACE 10-32 CONNECTOR ~ 0.25[6.4] ~ MOUNTING RECOMMENDATIONS: PREPARE A SURFACE AT LEAST 0.300 [7.62J. SURFACE FLATNESS MUST BE EQUAL OR BETTER THAN .0001 TIR, USE ONE DROP OF CYANOACRYLATE TO MOUNT THE ACCELEROMETER. 3. HOUSING MATERIAL: TITANIUM 2. WEIGHT (LESS CABLE): 1.5 GRAMS 1. TO REMOVE, (UN-INSTALL) TORQUE GENTLY ON HEX UNTIL ADHESIVE JOINT FAILS IN SHEAR. DO NOT STRIKE TO REMOVE, NOTES: UNLESS OTHERWISE SPECIFIED Il),~ UNLESS OTHERWISE SPECIFIED: CONTRACT NO INTERPRET DIM & TOL PER ASME Y14.5M-1994.REMOVE BURRS COUNTERSINKS INTERNAL THDS 90' TO MAJOR DIA CHAM EXTTHDS 45' UNLESS OTHERWISE SPECIFIED TO MAJOR DIA.THD LENGTHS AND DIMENSIONS ARE IN INCHES. DIMENSION DEPTHS ARE FOR THDS PER MIL-S- IN BRACKETS [I ARE IN MILLIMETERS. 7742. TOLERANCES ARE: USEDON NEXT ASSY DIMENSIONS APPLY AFTER INCHES METRIC FINISHING. C APPLICATION .XX ±.03 .X ± O.S ± l' USEDON .XXX ±.01 0 .XX ± 0.25 THIRD ANGLE PROJECTION USA ALL MACHINED SURFACES er­ ITLE DWG NO. TOTAL RUNOUT WITHIN .005 BREAK FINISH SHARP EDGES .005 TO .010 MACHINE FILLET RADI .005 TO .015. WELDING OUTLlNEIINSTALLATION DRAWING, 127-3032A SYMBOLS PER AWS A2.4 MODEL 3032A B ABBREVIATIONS PER MIL-STD-12 DO NOT SCALE DRAWING SHEET 1 - OF 1

SPECIFICATIONS

MODEL 3032A MINIATURE QUARTZ SHEAR LIVM ACCELEROMETER

SPECIFICATION VALUE UNITS

PHYSICAL

WEIGHT, LESS CABLE 1.5 GRAMS WEIGHT, INCLUDING CABLE 5.6 GRAMS SIZE (HEX x HEIGHT) .25 x .28 INCHES MOUNTING PROVISION ADHESIVE MOUNT CONNECTOR, COAXIAL, MOUNTED AT END OF 18 IN CABLE 10-32, UNF-2A JACK CASE /CAP MATERIAL TITANIUM ELEMENT TYPE QUARTZ SHEAR PERFORMANCE

SENSITIVITY, +/-10% [1] 10 mV/G RANGE F.S. FOR +/- 5 VOLTS OUT +/- 500 G's FREQUENCY RESPONSE, +/- 10% 1 to 10,000 Hz FREQUENCY RESPONSE, +/- 3db .45 TO 12,000 Hz MOUNTED RESONANT FREQUENCY > 80 kHz EQUIVALENT ELECTRICAL NOISE (RESOLUTION) .007 G, RMS AMPLITUDE NON-LINEARITY (ZERO BASED BEST FIT ST.LINE METHOD) 2.0 % F.S., MAX. TRANSVERSE SENSITIVITY, MAX. 5 PERCENT STRAIN SENSITIVITY .001 G's PER MICROSTRAIN @ 250/

ENVIRONMENTAL

MAXIMUM VIBRATION 1000 G's, RMS MAXIMUM SHOCK 1500 G's, PEAK TEMPERATURE RANGE -60 TO +250 oF THERMAL COEFFICIENT OF SENSITIVITY 0.06 %/oF SEAL EPOXY/WELDED

ELECTRICAL

EXCITATION (COMPLIANCE) VOLTAGE RANGE +20 to +30 VDC EXCITATION CURRENT RANGE 2 to 20 mA OUTPUT IMPEDANCE, NOM. 100 OHMS OUTPUT BIAS VOLTAGE 7.0 to 9.0 VDC DISCHARGE TIME CONSTANT 0.3 to 0.8 SEC. OUTPUT SIGNAL POLARITY FOR ACCELERATION TOWARD TOP POSITIVE GOING

[1] MEASURED AT 1 G RMS AT 100 HZ PER ISA RP 37.2 [2] A CALIBRATION CERTIFICATE TRACEABLE TO NIST IS SUPPLIED WITH EACH INSTRUMENT.

2 REV F ECN 9989 06/03/13

C.2 Dytran 5800A2 Impulshammare Ø .63 10-32 COAXIAL #10-32 UNF-2B CONNECTOR THREADED HOLE

RUBBERIZED GRIP FIBERGLASS HANDLE

ACCELERATION COMPENSATED 2.53 DYNAPULSE

FORCE SENSOR PERMANENTLY ATTACHED DO NOT ATTEMPT REMOVAL

Ø .75 SUPPLIED IMPACT TIPS .25 MODELS 6250A, P & PS

8.43

MODEL NO. SENSITIVITY 5800A1 500 mV/LbF 5800A2 100 mV/LbF 5800A3 50 mV/LbF 5800A4 10 mV/LbF 5800A5 5 mV/LbF INSTRUMENTS, INC. EXCEPT AS OTHERWISE NOTED CHATSWORTH, CA. SCALE REV DATE ECN ALL DIMENSI0NS IN INCHES 1X TOLERANCE: .XXX = ± .XX= ± DATE PART NO. SURFACE FINISH 11/1/95 EXCEPTAS NOTED DRAWN CHECKED MAT'L BREAK EDGES TO DEBURR D.Z. N.C RADIUSOR CHAMFER APPROVED NEXTASSEMBLY USEDON

TITLE DWG NO. THESE DIAS TO T.I.R. 1. WEIGHT - 220 GRAMS OUTLINE/INSTALLATION DRAWING, 127-5800A FILLETS - MAX RAD. IMPULSE HAMMER SERIES 5800A SHEET 1 OF 1 SPECIFICATIONS, MODEL SERIES 5800B & 5801B , DYNAPULSEtm IMPULSE HAMMERS

MODEL RANGE FOR +5V OUT SENSITIVITY MAX. FORCE DISCHARG E TC (Lbs Force) (mV/Lb Force) (Lbs Force) (Sec)

5800B1 10 500 200 5

5800B2 50 100 1000 20

5800B3 100 50 1000 50

5800B4 500 10 1000 170

5800B5 1000 5 2000 300

5801B4 500 10 6000 170

5801B5 1000 5 8000 300

5801B6 5000 1 8000 1700

COMMON SPECIFICATIONS, ALL MODELS

SPECIFICATION VALUE UNITS

FULL SCALE OUTPUT VOLTAGE 5 VOLTS

STIFFNESS, SENSOR 11.4 Lb F/ In

RESONANT FREQUENCY 75 kHz

LINEARITY ±1 %FS

OUTPUT IMPEDANCE, MAX 100 Ohms

VOLTAGE BIAS, NOM +10 VDC

SUPPLY (COMPLIANCE) VOLTAGE RANGE +18 TO +30 VDC

SUPPLY CURRENT RANGE 2 TO 20 mA

MATERIAL, HEAD/HANDLE STAINLESS STEEL/FIBERGLAS

WEIGHT, HEAD 5800A/5801A 100/150 Grams

CONNECTOR 10-32 MICRO JACK COAXIAL

ACCESSORIES SUPPLIED WITH BASIC HAMMER

(1) Impact tips, Model 6250A (aluminum), (1) Model 6250P (plastic) and (1) 6250PS, (soft plastic)

Accessories supplied with hammer kits HB5800B, HL5800B, HB5801B and HL5801B: above tips plus (2) head extenders, 6270S1 and 6270S2 for Model series 5800B and (1) head extender, 6271 for Model series 5801B

2 C.3 Dytran 4105C Förstärkare

SPECIFICATIONS MODEL 4105C BATTERY POWERED CURRENT SOURCE POWER UNIT WITH GAIN X1, X10 & X100 AND OPTIONAL 2-POLE FILTER

SPECIFICATIONS VALUE UNITS

SENSOR SUPPLY CURRENT, FIXED 1.4 to 2.6 mA

SENSOR COMPLIANCE VOLTAGE +18 VDC

VOLTAGE GAINS, ± 1% (switch selectable) x1, x10, x100

OUTPUT VOLTAGE SWING, F.S. ± 5 VOLTS

OUTPUT COUPLING CAPACITOR 10 uF

OUTPUT IMPEDANCE 50 OHMS

INPUT COUPLING TIME CONSTANT 5 SECONDS

FREQUENCY RESPONSE (±3dB) MEASURED @ F.S. OUTPUT, NO FILTER INSTALLED: [1]

GAIN X1 .1 to 100K Hz GAIN X10 .1 to 50K Hz GAIN X 100 .1 to 50K Hz

BACKGROUND NOISE, BROADBAND, NO FILTER

GAIN X 1 0.32 mV RMS GAIN X 10 0.44 mV RMS GAIN X 100 2.4 mV RMS

SENSOR CONNECTOR BNC JACK

OUTPUT CONNECTOR, BNC JACK

BATTERIES (2 SUPPLIED) 9-VOLT TRANSISTOR RADIO DRY CELLS

BATTERY LIFE, NOMINAL 40 HOURS

SIZE (H x W x D) 2.2 x 4 x 2.9 INCHES

WEIGHT 11/312 OZ/GRAM

[1] FILTER OPTION: FILTER FREQUENCY MUST BE SPECIFIED AT TIME OF PURCHASE. FILTER MAY BE BYPASSED BY JUMPER PLUG ON CIRCUIT BOARD.

2 C.4 Microstar Laboratories MSXB042 Snabbanslutningskort MSXB 042 Accessory Board Manual

Input Termination Board

Version 1.10

Microstar Laboratories, Inc. This manual contains proprietary information which is protected by copyright. All rights are reserved. No part of this manual may be photocopied, reproduced, or translated to another language without prior written consent of Microstar Laboratories, Inc.

Copyright © 1997 - 2002

Microstar Laboratories, Inc. 2265 116th Avenue N.E. Bellevue, WA 98004 Tel: (425) 453-2345 Fax: (425) 453-3199 www.mstarlabs.com

Microstar Laboratories, DAPcell, Data Acquisition Processor, DAPL, DAPL 2000, DAP, DAP 800, DAP 820, DAP 840, DAP 1200a, DAP 2400a, DAP 1216a, DAP 2416a, DAP 3000a, DAP 3200a, DAP 3400a, DAP 4000a, DAP 4200a, DAP 4400a, DAP 5200a, DAP 5216a, DAP 5400a, DAPtools, Analog Accelerator, DAPview, and Channel List Clocking are trademarks of Microstar Laboratories, Inc.

Microstar Laboratories requires express written approval from its President if any Microstar Laboratories products are to be used in or with systems, devices, or applications in which failure can be expected to endanger human life.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation. Windows is a trademark of Microsoft Corporation. IBM is a registered trademark of International Business Machines Corporation. Intel is a registered trademark of Intel Corporation. Novell and NetWare are registered trademarks of Novell, Inc. Other brand and product names are trademarks or registered trademarks of their respective holders.

Part Number MSXB042M110 Contents

MSXB 042: Input Termination Board...... 1 Analog Inputs...... 1 Current Input...... 1 Voltage Divider...... 2 Control Lines ...... 4 Power Supplies ...... 5 Hardware Configuration ...... 5 Isolation ...... 5

Figures: Figure 1...... 2 Figure 2...... 3 Figure 3...... 4

Tables: Table 1...... 4

Contents iii

MSXB 042: Input Termination Board

The Microstar Laboratories Input Termination Board, part number MSXB 042, is a 32-point quick-connect termination board for the input connector on the iDSC board. The Input Termination Board provides a ground connection for each input signal and each output signal, allowing easy connection to discrete devices.

All input connections are labeled with both the signal name and the pin number of the 50-pin connector on the iDSC board.

Note: The Input Termination Board should not be connected or disconnected while the iDSC board is powered.

Analog Inputs

The analog inputs of the Input Termination Board come from the factory configured for voltage input. The inputs can be configured for current input or for input voltages that exceed iDSC board specifications.

Current Input

To configure a current input, place a resistor in the location on the termination board corresponding to the input pin being reconfigured. Figure 3 and Table 1 show resistor placement. The appropriate size for this resistor can be calculated using Ohms law, given the maximum input current and the input voltage range of the iDSC board.

Ohm's Law: Resistance = Voltage / Current

The iDSC board is shipped from the factory with an input range of +/- 5 volts. The accuracy of the measurements made in this configuration depends on the precision of the resistors used and this should be taken into consideration when selecting the resistors. Microstar Laboratories recommends using resistors with a 1% or better tolerance.

MSXB 042: Input Termination Board 1 Excess power dissipated in the resistor causes heating; this changes the resistance value, decreasing the accuracy of the measurements. The recommended maximum power dissipation is 0.1 watt.

Power Calculation: Power = current2 * resistance

For current input, a current source is connected to the Ax+ terminal and the ground return is connected to the Ax- terminal. To convert voltage input A0 into a current input that generates 1 to 5 volts with an input current of 4 to 20 milliamps, a 250 ohm resistor is inserted in the R2 location. In this case, the maximum power dissipated in the resistor is 0.1 watt at +5 volts; this is the maximum recommended power dissipation. Figure 1 illustrates the connections for this example.

A0+

A0-

Figure 1.

Voltage Divider

The termination board can be configured for applications requiring input voltages greater than that allowed by the iDSC board. This is accomplished by soldering a resistive voltage divider in the location provided on the termination board. Before this can be done, a trace on the termination board must be cut. Above each odd numbered resistor there is a row of five small holes. Between two of the holes there is a white "X". The trace at the X must be cut.

Once this trace is cut, the resistors for the voltage divider are soldered into place. The resistor on the ground side of the divider is placed in an even numbered resistor location and the resistor on the input signal side of the divider is placed in an odd numbered resistor location. Figure 3 and Table 1 illustrate resistor placement for each input.

After both resistors are soldered into place, signals may be connected between the Ax+ and Ax- terminals. Test the voltage divider circuit before connecting the circuit to the iDSC board.

2 MSXB 042: Input Termination Board Note: Be careful to avoid applying an input voltage that exceeds iDSC board specifications.

Warning: If the trace on the termination board is not cut, the high voltage input is connected directly to the iDSC board input; this may damage or even destroy the iDSC board.

For example, to configure input A0 so that an input range of 0 to 20 volts is scaled down to a range of 0 to 5 volts, a resistor ratio of 3:1 is needed.

Voltage Divider Equation: Vout= Vin* R1/(R1+R2)

Resistance values of 1500 and 500 ohms may be used. The trace beneath the X above R1 is cut. Then the 500 ohm resistor is placed in the R2 position and the 1500 ohm resistor is placed in the R1 position. Since 500 ohm resistors are not commonly available, a 510 ohm resistor would typically be used instead, resulting in a small error in the division ratio. This error is linear and can be corrected by multiplying by a constant in DAPL. Figure 2 illustrates the circuit for this example.

Cut trace a X A0+ Input Signal DAP Input R1 R2 1.5K 510 Ohms A0- Ohms Input Ground DAP Ground

Figure 2.

Note: To avoid exceeding iDSC board input voltage specifications, make sure both resistors are securely soldered in the correct locations and the trace beneath the X is completely cut before using the circuit.

MSXB 042: Input Termination Board 3 Table 1. Terminal Current Input Voltage Divider Resistor * Resistors ** A0+,A0- R2 R2,R1 A1+,A1- R4 R4,R3 A2+,A2- R6 R6,R5 A3+,A3- R8 R8,R7 A4+,A4- R10 R10,R9 A5+,A5- R12 R12,R11 A6+,A6- R14 R14,R13 A7+,A7- R16 R16,R15

* The current input resistor is placed in the RN location shown in Figure 3.

** The first voltage divider resistor is on the ground side of the voltage divider (RN) and the second is on the input signal side (RM). For example, R2 is RN and R1 is RM. Figure 3 shows the resistor placement.

Cut here for resistor divider Signal Input

RM

Signal Out Signal Ground

RN

Figure 3.

Figure 3 and Table 1 can be used to locate the appropriate resistors when using either the current input or voltage division configuration. Figure 3 shows schematically how the inputs and grounds on the termination board are connected.

Control Lines

The Input Termination Board has connections to iDSC board external timing channels. The connection labeled XTA is external timing channel 0 and XTB is external timing channel 1. This corresponds to Tc0 and Tc1 in software.

The inputs are TTL; they sink no more than 10 microamps for a “1” input and source no more than 10 microamps for a “0” input. An input

4 MSXB 042: Input Termination Board voltage greater than 2V is interpreted as a “1” and an input voltage less than 0.8V is interpreted as a “0”.

Note: If a voltage greater than 5V or less than 0V is applied to an input, damage to the iDSC board may occur. Input pins may not have signals applied when the iDSC board is powered off.

Power Supplies

The Input Termination Board has connections for the iDSC board +5V power supply and ground. This is for reference only and should not be used to power external components. Drawing any current from this supply will violate iDSC board’s specifications and may cause damage to the iDSC.

Hardware Configuration

The Input Termination Board is connected to a iDSC board using a 50- line ribbon cable, part number MSCBL 050-01, or a 50-line round shielded cable, part number MSCBL 048-01. MSCBL 050-01 or MSCBL 048-01 connects the Input connector of a iDSC board to connector J1 of the Input Termination Board.

Isolation

In order to maintain the 300 Volt isolation of the iDSC board, the spacing around the MSXB 042 needs to be inspected. Below 10,000 feet mean sea-level (pressure) altitude, the minimum clearance required to maintain this level of isolation is .064 inches of free space. Failure to observe this clearance may result in extensive damage to the circuit boards and the PC.

Note: When the MSXB 042 is installed in a MSXE external enclosure the isolation is reduced to only 100 Volts.

MSXB 042: Input Termination Board 5 C.5 Microstar Laboratories iDSC 1816 Datainsamlingskort 2015­04­10 16­Bit Simultaneous Data Acquisition with Onboard Filters

iDSC 1816 Specifications

General Specifications Dimensions 13.33 inches x 4.80 inches Power requirements +5V, 3.0 Amps Operating temperature 0­50 degrees Celsius Type of A/D converter Sigma­Delta Number of A/D converters 8 Input Number of analog channels 8 Expandable to 112 simultaneous analog inputs (w/ multiple iDSC 1816 boards) Input voltage range +/­5 V, +/­10 V Max. input voltage (fault­protected inputs) ­40 V, +55 V Max. analog sampling rate per channel 153.6k samples/second Max. aggregate analog sampling rate over 8 1229k samples/second channels ADC Resolution (bits) 16 Number of external timing channels 2 Microprocessor CPU type Intel 80486 DX4 CPU clock speed 96 MHz Onboard operating system DAPL (modified version) CPU DRAM 16 Mbytes DSP Type of DSPs Motorola 100 MHz DSP56303 Number of DSPs 2 PC INTERFACE ¹ Bus support PCI Samples transferred per second ² 1229k samples/second Samples logged per second 1229k samples/second

¹ Benchmark rates vary with PC platform. ² Maximum disk logging and data transfer rates vary with PC platform.

* All specifications are applicable from DC through the entire frequency range unless otherwise noted.

data:text/html;charset=utf­8,%3Ch2%20style%3D%22font­size%3A%2015.8400001525879px%3B%20padding%3A%205px%2010px%3B%20clear%3A%2… 1/1 C.6 National Instruments 9201 Datainsamlingsmodul Technical Sales

(866) 531-6285 [email protected]

Ordering Information | Detailed Specifications | Pinouts/Front Panel Connections For user manuals and dimensional drawings, visit the product page resources tab on ni.com.

Last Revised: 2015-01-26 09:11:30.0 NI 9201 ±10 V, Analog Input, 500 kS/s, 8 Ch Module

8 single-ended channels, 500 kS/s sample rate 10-position screw-terminal or 25-pin D-SUB connectors available ±10 V measurement range, 12-bit resolution -40 °C to 70 °C operating, 5 g vibration, 50 g shock 250 Vrms channel-earth, CAT II (screw terminal), or 60 VDC channel-earth, CAT I (D-SUB) isolation

Overview The NI 9201 is a C Series module for 8-channel analog input at a maximum aggregate rate of 500 kS/s. It offers an effective combination of channel count and speed at a low price for an economical multifunction system.

As with most C Series modules, the NI 9201 is protected from harmful voltage spikes of up to 2,300 Vrms. This means that no harmful voltage within the isolation rating can harm other modules in the system, the chassis, or any connected computer equipment. In addition to the absolute protection from the isolation, the module provides up to 100 V of overvoltage protection for errant signal connection or unexpected outputs to the individual channels.

You can choose from two connector options for the NI 9201: a 10-position screw-terminal connector for direct connectivity and a 25-position D-SUB connector. The industry-standard 25-position D-SUB connector provides low-cost cabling to a wide variety of accessories from NI or other vendors. Several vendors also offer custom D-SUB cable fabrication services, and can provide cables with a pinout that matches your exact application needs.

Recommended Accessories -NI 9927 strain relief and operator protection (for screw-terminal variant) -NI 9924 front-mount 25-pin D-SUB to screw-terminal connector (for D-SUB variant)

Optional Accessories -NI 9936 extra screw-terminal block (for screw-terminal variant) -NI 9980 spring-terminal block (for screw-terminal variant) Note: The NI 9980 is not compatible with the NI 9927 and must be used with low- or non-hazardous voltages or installed in a properly rated enclosure.

Box Contents -1 NI 9201 C Series module -1 NI 9201 Operating Instructions and Specifications manual -1 NI 9936 10-position screw-terminal connector (for screw-terminal variant) network conditions (This is 50 channels from NI 9220 modules running at 100 kS/s per channel.)

NI CompactRIO Streaming Performance The NI cRIO-9082 system and MXI-Express reconfigurable I/O (RIO) expansion chassis have the largest throughput available and are the recommended solutions for high-speed streaming to disk applications within the CompactRIO family. All CompactRIO chassis have a built-in FPGA that is programmable with NI LabVIEW and can be used to process or filter data before it is transferred to the host controller. Note that communication with the host controller is not a requirement for high-speed control systems because the control logic can often be fully implemented in the FPGA using LabVIEW. -An NI cRIO-9081/9082 can stream to disk a full chassis of NI 9220 modules running at the maximum 100 kS/s per channel rate. -MXI-Express expansion chassis have a throughput of approximately 200 MB/s, so 1,000 channels of NI 9220 data can stream over a single connection. This connection can be a daisy chain of multiple chassis that is connected to an NI cRIO-9082 or a PXI Express chassis for maximum streaming performance. -The NI cRIO-9022 embedded real-time controller can stream a little more than 6 MB/s to disk. For direct streaming applications, this chassis can store approximately 30 NI 9220 channels running at the maximum sample rate.

Back to Top

Comparison Tables 1/9 www.ni.com Comparison Tables

Product Sample Signal Ranges Channels Simultaneous Resolution Isolation Connectivity Name Rate

250 Vrms Ch-Earth (Screw Terminal), 60 Screw Terminal, NI 9201 ±10 V 8 single-ended 500 kS/s No 12-Bit VDC Ch-Earth (D-SUB) 25-Pin D-SUB

±200 mV, ±1 V, ±5 32 single-ended, 16 250 Vrms Ch-Earth (Spring Terminal), 60 Spring Terminal, NI 9205 250 kS/s No 16-Bit V, ±10 V differential VDC Ch-Earth (D-SUB) 37-Pin D-SUB

±200 mV, ±1 V, ±5 33 single-ended, 16 NI 9206 250 kS/s No 16-Bit 600 VDC Ch-Earth Spring Terminal V, ±10 V differential

100 250 Vrms Ch-Earth (Screw Terminal), 60 Screw Terminal, NI 9215 ±10 V 4 differential Yes 16-Bit kS/s/ch VDC Ch-Earth (BNC) BNC

100 250 Vrms Ch-Earth (Spring Terminal), 60 Spring Terminal, NI 9220 ±10 V 16 differential Yes 16-Bit kS/s/ch VDC Ch-Earth (D-SUB) 37-Pin D-SUB

250 Vrms Ch-Earth (Screw Terminal), 60 Screw-Terminal, NI 9221 ±60 V 8 single-ended 800 kS/s No 12-Bit VDC Ch-Earth (D-SUB) 25-Pin D-SUB

500 NI 9222 ±10 V 4 differential Yes 16-Bit 60 VDC Ch-Ch Screw Terminal kS/s/ch

NI 9223 ±10 V 4 differential 1 MS/s/ch Yes 16-Bit 60 VDC Ch-Ch Screw Terminal

250 Vrms Ch-Ch (Screw Terminal), 60 VDC Screw Terminal, NI 9229 ±60 V 4 differential 50 kS/s/ch Yes 24-Bit Ch-Ch (BNC) BNC

250 Vrms Ch-Ch (Screw Terminal), 60 VDC Screw Terminal, NI 9239 ±10 V 4 differential 50 kS/s/ch Yes 24-Bit Ch-Ch (BNC) BNC

Back to Top

Application and Technology NI C Series Overview

NI C Series modules are engineered to provide high-accuracy measurements to meet the demands of advanced DAQ and control applications. Each module contains measurement-specific signal conditioning to connect to an array of sensors and signals, bank and channel-to-channel isolation options, and support for wide temperature ranges to meet a variety of application and environmental needs all in a single rugged package. You can choose from more than 100 C Series modules for measurement, control, and communication to connect your applications to any sensor on any bus.

Most C Series I/O modules work with the NI CompactDAQ and NI CompactRIO platforms. The modules are identical, and you can move them from one platform to the other with no modification.

NI CompactRIO Platform

2/9 www.ni.com Powered by the NI LabVIEW reconfigurable I/O (RIO) architecture, NI CompactRIO combines an open embedded architecture with small size, extreme ruggedness, and hot-swappable industrial I/O modules. Each system contains an FPGA for custom timing, triggering, and processing with a wide array of modular I/O to meet any embedded application requirement.

Configure Your Complete NI CompactRIO System

NI CompactDAQ Platform

NI CompactDAQ is a portable, rugged data acquisition platform that integrates connectivity and signal conditioning into modular I/O to directly interface with any sensor or signal. Using NI CompactDAQ with LabVIEW, you can easily customize how you acquire, analyze, present, and manage your measurement data. From research to development to validation, NI provides programmable software, high-accuracy measurements, and local technical support to help ensure you meet your exact measurement application requirements.

Configure Your Complete NI CompactDAQ System

Back to Top

Ordering Information

For a complete list of accessories, visit the product page on ni.com.

Products Part Number Recommended Accessories Part Number

NI 9201

NI 9201 with Screw Terminals 779013-01 Connectivity Accessories: screwTerminal - NI 9927 Strain relief, operator protection (qty 1) 782715-01 Requires: 1 Connectivity Accessories ;

Back to Top

Software Recommendations

LabVIEW Professional Fully integrated graphical system design LabVIEW FPGA Module Design FPGA applications for NI Development System for software reconfigurable I/O (RIO) hardware targets Windows Support for a wide range of measurement Program with the same graphical hardware, I/O, and buses environment used for desktop and real-time Custom, event-driven user interfaces for applications measurement and control Execute control algorithms with loop rates up Extensive signal processing, analysis, and to 300 MHz math functionality Implement custom timing and triggering logic, Advanced compiler to ensure digital protocols, and DSP algorithms high-performance execution and code Incorporate existing HDL code and optimization third-party IP including Xilinx CORE Professional software development with code Generator functions quality review, unit testing, and executable Included in the LabVIEW Embedded Control creation and Monitoring Suite

LabVIEW Real-Time Module Design deterministic real-time applications with LabVIEW graphical programming Download to dedicated NI or third-party hardware for reliable execution and a wide selection of I/O Take advantage of built-in PID control, signal processing, and analysis functions Automatically take advantage of multicore CPUs or set processor affinity manually Includes real-time OS, development and debugging support, and board support

3/9 www.ni.com Purchase individually or as part of a LabVIEW suite

Back to Top

Support and Services System Assurance Programs

NI system assurance programs are designed to make it even easier for you to own an NI system. These programs include configuration and deployment services for your NI PXI, CompactRIO, or Compact FieldPoint system. The NI Basic System Assurance Program provides a simple integration test and ensures that your system is delivered completely assembled in one box. When you configure your system with the NI Standard System Assurance Program, you can select from available NI system driver sets and application development environments to create customized, reorderable software configurations. Your system arrives fully assembled and tested in one box with your software preinstalled. When you order your system with the standard program, you also receive system-specific documentation including a bill of materials, an integration test report, a recommended maintenance plan, and frequently asked question documents. Finally, the standard program reduces the total cost of owning an NI system by providing three years of warranty coverage and calibration service. Use the online product advisors at ni.com/advisor to find a system assurance program to meet your needs.

Calibration

NI measurement hardware is calibrated to ensure measurement accuracy and verify that the device meets its published specifications. To ensure the ongoing accuracy of your measurement hardware, NI offers basic or detailed recalibration service that provides ongoing ISO 9001 audit compliance and confidence in your measurements. To learn more about NI calibration services or to locate a qualified service center near you, contact your local sales office or visit ni.com/calibration.

Technical Support

Get answers to your technical questions using the following National Instruments resources. Support - Visit ni.com/support to access the NI KnowledgeBase, example programs, and tutorials or to contact our applications engineers who are located in NI sales offices around the world and speak the local language. Discussion Forums - Visit forums.ni.com for a diverse set of discussion boards on topics you care about. Online Community - Visit community.ni.com to find, contribute, or collaborate on customer-contributed technical content with users like you.

Repair

While you may never need your hardware repaired, NI understands that unexpected events may lead to necessary repairs. NI offers repair services performed by highly trained technicians who quickly return your device with the guarantee that it will perform to factory specifications. For more information, visit ni.com/repair.

Training and Certifications

The NI training and certification program delivers the fastest, most certain route to increased proficiency and productivity using NI software and hardware. Training builds the skills to more efficiently develop robust, maintainable applications, while certification validates your knowledge and ability. Classroom training in cities worldwide - the most comprehensive hands-on training taught by engineers. On-site training at your facility - an excellent option to train multiple employees at the same time. Online instructor-led training - lower-cost, remote training if classroom or on-site courses are not possible. Course kits - lowest-cost, self-paced training that you can use as reference guides. Training memberships and training credits - to buy now and schedule training later. Visit ni.com/training for more information.

Extended Warranty

NI offers options for extending the standard product warranty to meet the life-cycle requirements of your project. In addition, because NI understands that your requirements may change, the extended warranty is flexible in length and easily renewed. For more information, visit ni.com/warranty.

OEM

NI offers design-in consulting and product integration assistance if you need NI products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem.

Alliance

Our Professional Services Team is comprised of NI applications engineers, NI Consulting Services, and a worldwide National Instruments Alliance Partner program of more than 700 independent consultants and integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance.

Back to Top

Detailed Specifications The following specifications are typical for the range –40 to 70 °C unless otherwise noted. All voltages are relative to COM unless otherwise noted. The specifications are the same for the NI 9201 and the NI 9221 unless otherwise noted.

Input Characteristics

Number of channels 8 analog input channels

4/9 www.ni.com ADC resolution 12 bits

Type of ADC Successive approximation register (SAR)

Sample rate (aggregate)

Module Maximum Sample Rate (R Series Expansion Chassis) Maximum Sample Rate (All Other Chassis)

NI 9201, single channel 475 kS/s 800 kS/s

NI 9201, scanning 475 kS/s 500 kS/s

NI 9221 475 kS/s 800 kS/s

Input range

NI 9201 ±10 V

NI 9221 ±60 V

Operating voltage ranges 1

Module Measurement Voltage, Channel-to-COM Maximum Voltage, Channel-to-Earth Ground or COM-to-Earth Ground

Min (V) Typ (V) Max (V) Screw Terminal DSUB

NI 9201 ±10.3 ±10.53 ±10.8 250 Vrms ±60 VDC NI 9221 ±61.4 ±62.50 ±63.8

Overvoltage protection (channel-to-COM) ±100 V

NI 9201 accuracy (excludes noise)

Measurement Conditions Percent of Reading (Gain Error) Percent of Range* (Offset Error)

Calibrated typ (25 °C, ±5 °C) ±0.04% ±0.07%

Calibrated max (–40 to 70 °C) ±0.25% ±0.25%

Uncalibrated typ (25 °C, ±5 °C) ±0.26% ±0.46%

Uncalibrated max (–40 to 70 °C) ±0.67% ±1.25%

* Range equals 10.53 V

NI 9221 accuracy (excludes noise)

Measurement Conditions Percent of Reading (Gain Error) Percent of Range* (Offset Error)

Calibrated typ (25 °C, ±5 °C) ±0.04% ±0.07%

Calibrated max (–40 to 70 °C) ±0.25% ±0.25%

Uncalibrated typ (25 °C, ±5 °C) ±0.26% ±0.43%

Uncalibrated max (–40 to 70 °C) ±0.67% ±1.06%

* Range equals 62.50 V

Stability

Gain drift ±34 ppm/°C

Offset drift

NI 9201 ±100 μV/°C

NI 9221 ±580 μV/°C

Input bandwidth (–3 dB)

NI 9201 690 kHz min

NI 9221 950 kHz min

Input impedance

5/9 www.ni.com Resistance 1 MΩ

Capacitance 5 pF

Input noise (code-centered)

RMS 0.7 LSBrms

Peak-to-peak 5 LSB

No missing codes 12 bits

DNL –0.9 to 1.5 LSB

INL ±1.5 LSB

Crosstalk (at 10 kHz) –75 dB

Settling time (to 1 LSB)

NI 9201 2 μs

NI 9221 1.25 μs 1,092,512 hours at 25 °C; Bellcore Issue 2, Method 1, Case 3, Limited Part MTBF Stress Method Note Contact NI for Bellcore MTBF specifications at other temperatures or for MIL-HDBK-217F specifications.

Power Requirements

Power consumption from chassis

Active mode 1 W max

Sleep mode 1 mW max

Thermal dissipation (at 70 °C)

Active mode 1 W max

Sleep mode 32 mW max

Physical Characteristics

If you need to clean the module, wipe it with a dry towel.

Note For two-dimensional drawings and three-dimensional models of the C Series module and connectors, visit ni.com/dimensions and search by module number. 12 to 24 AWG copper conductor wire with 10 mm (0.39 in.) of insulation Screw-terminal wiring stripped from the end Torque for screw terminals 0.5 to 0.6 N · m (4.4 to 5.3 lb · in.)

Ferrules 0.25 mm2 to 2.5 mm2

Weight

NI 9201/9221 with screw terminal 150 g (5.3 oz)

NI 9201/9221 with DSUB 145 g (5.1 oz)

Safety

Safety Voltages Connect only voltages that are within the following limits. Channel-to-COM ±60 VDC max

NI 9201/9221 with Screw Terminal Isolation Voltages

Channel-to-channel None

Channel-to-earth ground

Continuous 250 Vrms, Measurement Category II

Withstand 2,300 Vrms, verified by a 5 s dielectric withstand test

Measurement Category II is for measurements performed on circuits directly connected to the electrical distribution system. This category refers to local-level electrical distribution, such as that provided by a standard wall outlet, for example, 115 V for U.S. or 230 V for Europe.

Caution Do not connect the NI 9201/9221 with screw terminal to signals or use for measurements within Measurement Categories III or IV.

NI 9201/9221 with DSUB Isolation Voltages

Channel-to-channel None

Channel-to-earth ground

Continuous 60 VDC, Measurement Category I

6/9 www.ni.com Withstand 1,000 Vrms, verified by a 5 s dielectric withstand test

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Caution Do not connect the NI 9201/9221 with DSUB to signals or use for measurements within Measurement Categories II, III, or IV.

Hazardous Locations

U.S. (UL) Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, AEx nC IIC T4

Canada (C-UL) Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, Ex nC IIC T4

Europe (DEMKO) EEx nC IIC T4

Safety Standards This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

IEC 61010-1, EN 61010-1 UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

EN 61326 (IEC 61326): Class A emissions; Industrial immunity EN 55011 (CISPR 11): Group 1, Class A emissions AS/NZS CISPR 11: Group 1, Class A emissions FCC 47 CFR Part 15B: Class A emissions ICES-001: Class A emissions

Note For the standards applied to assess the EMC of this product, refer to the Online Product Certification section.

Note For EMC compliance, operate this device with double-shielded cables.

CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

2006/95/EC; Low-Voltage Directive (safety) 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Note For the standards applied to assess the EMC of this product, refer to the Online Product Certification section.

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by module number or product line, and click the appropriate link in the Certification column.

Shock and Vibration

To meet these specifications, you must panel mount the system. If you are using the NI 9201/9221 with screw terminal, you also must either affix ferrules to the ends of the terminal wires or use the NI 9932 backshell kit to protect the connections. Operating vibration

Random (IEC 60068-2-64) 5 grms, 10 to 500 Hz

Sinusoidal (IEC 60068-2-6) 5 g, 10 to 500 Hz

Operating shock (IEC 60068-2-27) 30 g, 11 ms half sine, 50 g, 3 ms half sine, 18 shocks at 6 orientations

Environmental

National Instruments C Series modules are intended for indoor use only but may be used outdoors if installed in a suitable enclosure. Refer to the manual for the chassis you are using for more information about meeting these specifications. Operating temperature (IEC 60068-2-1, IEC 60068-2-2) –40 to 70 °C

Storage temperature (IEC 60068-2-1, IEC 60068-2-2) –40 to 85 °C

Ingress protection IP 40

Operating humidity (IEC 60068-2-56) 10 to 90% RH, noncondensing

Storage humidity (IEC 60068-2-56) 5 to 95% RH, noncondensing

Maximum altitude 2,000 m

Pollution Degree 2

Environmental Management

7/9 www.ni.com National Instruments is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial not only to the environment but also to NI customers.

For additional environmental information, refer to the NI and the Environment Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of their life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.

Calibration

You can obtain the calibration certificate for this device at ni.com/calibration. Calibration interval 1 year

1 Refer to the Safety Guidelines section in the NI 9201/9221 Operating Instructions and Specifications for more information about safe operating voltages.

Back to Top

8/9 www.ni.com Pinouts/Front Panel Connections

NI 9201/9221 Terminal and Pin Assignments

Back to Top

©2014 National Instruments. All rights reserved. CompactRIO, FieldPoint, LabVIEW, National Instruments, NI, ni.com, and NI CompactDAQ are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their respective companies. A National Instruments Alliance Partner is a business entity independent from National Instruments and has no agency, partnership, or joint-venture relationship with National Instruments.

My Profile | RSS | Privacy | Legal | Contact NI © 2014 National Instruments Corporation. All rights reserved.

9/9 www.ni.com C.7 National Instruments cDAQ-9174 & 9171 Chassis Technical Sales

(866) 531-6285 [email protected]

Ordering Information | Detailed Specifications For user manuals and dimensional drawings, visit the product page resources tab on ni.com.

Last Revised: 2014-11-06 07:14:29.0 NI CompactDAQ USB Data Acquisition Systems

Mix sensor measurements with analog and digital I/O in the same instrument Hi-Speed USB communication with NI Signal Streaming technology Acquire from analog input modules at different rates with multiple timing engines LabVIEW SignalExpress LE data-logging software included Run up to seven I/O tasks simultaneously Four 32-bit general-purpose counters built into chassis (access through digital module Windows 7/XP support or BNC triggers) BNC trigger connections on the cDAQ-9178 for up to 1 MHz clocks and triggers

Overview The NI cDAQ-9178 is an eight-slot NI CompactDAQ chassis designed for small, portable, mixed-measurement test systems. Combine the cDAQ-9178 with up to eight NI C Series I/O modules for a custom analog input, analog output, digital I/O, and counter/timer measurement system.

Modules are available for a variety of sensor measurements including thermocouples, RTDs, strain gages, load and pressure transducers, torque cells, accelerometers, flow meters, and microphones. NI CompactDAQ systems combine sensor measurements with voltage, current, and digital signals to create custom, mixed-measurement systems with a single, simple USB cable back to the PC, laptop, or netbook.

The cDAQ-9178 has four 32-bit general-purpose counter/timers built in. You can access these counters through an installed, hardware-timed digital module such as the NI 9401 or NI 9402 for applications that involve quadrature encoders, PWM, event counting, pulse train generation, and period or frequency measurement.

Use the two built-in BNC connections to share clocks or triggers up to 1 MHz.

The cDAQ-9178 chassis is shipped with the following: - AC/DC converter that plugs directly into the chassis - USB cable with a thumbscrew lock for strain relief

Power cord sold separately.

The NI-DAQmx driver shipped with every chassis includes the following: - LabVIEW SignalExpress LE for simple data-logging applications - API for NI LabVIEW, ANSI C/C++, C#, Visual Basic .NET - DAQ Assistant code generation for NI LabVIEW, LabWindows™/CVI, and - Example programs for all supported languages - NI Measurement & Automation Explorer (MAX) for system configuration and test

Back to Top

Comparison Tables

Model Slots Counters Number of Simultaneous Tasks Number of AI Timing Engines

cDAQ-9178 8 4 7 3

cDAQ-9174 4 4 7 3

1/10 www.ni.com Back to Top

Application and Technology Mix Analog, Digital, and Sensor Measurements in the Same System

Many devices can measure temperature, voltage, or bridge-based sensors, but NI CompactDAQ can integrate all of these measurements and more into a single device that outputs all of the data via the same bus interface, such as USB. An NI CompactDAQ system can mix multiplexed voltage input signals, simultaneously sampled accelerometers, low-speed thermocouples, and TTL digital I/O all in the same 4- or 8-slot chassis using the same driver, NI-DAQmx. NI CompactDAQ makes programming easier because the same driver is used for all measurements. This solution saves space and simplifies service and support. With NI CompactDAQ, there is only one box on your lab bench, and, if there are problems with any of the measurements or equipment, award-winning National Instruments support is your contact for all your instrumentation needs.

Figure 1. NI cDAQ-9174 with Three Analog and One Digital Module Connected to a Laptop

C Series Modules

You have more than 50 C Series modules, most of which work with NI CompactDAQ, to choose from for different measurements including thermocouple, voltage, resistance temperature detector (RTD), current, resistance, strain, digital (TTL and other), accelerometers, and microphones. Channel counts on the individual modules range from three to 32 channels to accommodate a wide range of system requirements. C Series modules combine signal conditioning, connectivity, and data acquisition into a small module for each specific measurement type. You can insert these modules into any of the C Series chassis to create a variety of systems. You can create a mix of channel counts and measurement types within one system by selecting the desired modules and installing them into one of several C Series systems. For this reason, systems built on the C Series platform are highly customizable. See ni.com/crio/cseries for the C Series compatibility table.

Figure 2. Three High-Speed Analog Input Modules

Rugged Design

NI CompactDAQ and all C Series modules are constructed from A380 cast aluminum for a rugged system that can withstand operating temperatures from -20 to 55 °C, and up to 30 g of shock. NI CompactDAQ was built to be used in the lab but not to necessarily stay there. With a rugged, flexible system such as NI CompactDAQ, you can reconfigure and move a single test system from place to place without having to purchase different equipment for every lab or test stand. C Series modules are equally rugged and designed with spring loaded latches to lock into place when installed in the chassis. The shock and vibration specifications are all tested on an NI CompactDAQ system with modules installed, so modules do not fall out or come undocked under the specified conditions. For cable strain relief, a locking USB cable with thumbscrew is included to prevent accidental disconnection during use. The rugged features of NI CompactDAQ help you quickly begin testing because you need less time to prepare the instrumentation for the rigors of field testing. For added system portability, or to help track multiple systems around the lab, purchase the CASE-0750 rugged carrying case that has room for chassis, modules, power supplies, and signal wire.

2/10 www.ni.com Figure 3. The carrying case has removable foam blocks for further customization. Multiple Timing Engines to Acquire from Different Modules at Different Rates

With the cDAQ-9174/78 chassis, you can install a thermocouple module next to an accelerometer measurement module and acquire from both simultaneously at different rates. The cDAQ-9174/78 chassis have multiple analog input timing engines, which means you can group all of your analog input modules in up to three sets of modules. These sets, known as tasks, can all run at different rates because each one has its own timing engine in the chassis backplane. This alleviates the need to decimate or parse lower-speed data from the higher-speed data as you need to do in the original cDAQ-9172 chassis.

Figure 4. Run analog input modules at different rates with multiple AI timing engines. Four 32-Bit General-Purpose Counters Built In

The cDAQ-9174/78 chassis both have four 32-bit counters built in. These counters are accessed through an installed hardware-timed digital I/O module (sold separately) such as the NI 9401 or NI 9402. Once you have installed the digital module, you can create a counter task in software for operations such as quadrature encoder, period and frequency measurement, or finite pulse train and PWM generation. For some operations, you can access the counters in the cDAQ-9178 chassis through the built-in BNC connectors on the chassis. Flexible Power Options

The upgraded chassis features a new physical connection for power supplies. Each chassis is shipped with an AC/DC converter that plugs directly into the chassis. (Note that the power cord to go from the AC/DC converter to the wall is sold separately.) For other power options, such as a power supply with leads for V/C, an automotive electrical system, or an off-the-shelf battery pack, purchase the screw-terminal accessory for the chassis to enable easy connection of a V and C lead to the chassis. NI CompactDAQ requires a 9 to 30 VDC power supply and uses a maximum load 15 W of power.

Figure 5. NI cDAQ-9178 Connections Showing BNC Triggers, Flexible Power Connector, and USB Port with Threaded Hole for Cable Strain Relief

Included Data-Logging Software

NI ships NI CompactDAQ, and every other NI data acquisition (DAQ) device, with a driver kit that includes the following:

Measurement & Automation Explorer (MAX) – This configuration utility is for quick measurement debugging or system diagnostic test via the device self-test.

3/10 www.ni.com Measurement & Automation Explorer (MAX) – This configuration utility is for quick measurement debugging or system diagnostic test via the device self-test. NI-DAQmx – Driver and API for all NI data acquisition devices. This installer includes interfaces to LabVIEW, ANSI C/C++, C#, Visual Basic .NET, and hundreds of example programs for LabVIEW and text-based languages. LabVIEW SignalExpress LE – With configuration-based data logging, you can get up and running out of the box without programming. Using LabVIEW SignalExpress LE, you can acquire data from the hardware, build a custom user interface, and log data to Technical Data Management Streaming (TDMS) files or to Microsoft Excel for graphing and postprocessing. LabVIEW SignalExpress is available for purchase and includes analysis and processing blocks for use within the data-logging environment.

Back to Top

Ordering Information

For a complete list of accessories, visit the product page on ni.com.

Products Part Number Recommended Accessories Part Number

NI CompactDAQ Chassis cDAQ-9178 8 slot chassis 781156-01 No accessories required. cDAQ-9174 4 slot chassis 781157-01 No accessories required.

Accessories

Desktop Mounting Kit (as seen in images) 779473-01 No accessories required.

Replacement/Spare Power Supply 780703-01 No accessories required.

Filler Module for Empty Slots 196917-01 No accessories required.

Rugged Carying Case (CASE-0750) 780315-01 No accessories required.

Screw Terminals for Alternate Power Supply 780702-01 No accessories required.

Power Cords

US 120VAC 763000-01 No accessories required.

North America, 240 VAC 763068-01 No accessories required.

UK, 240 VAC 763064-01 No accessories required.

Australia, 240 VAC 763066-01 No accessories required.

Switzerland, 220 VAC 763065-01 No accessories required.

Japan, 100VAC 763634-01 No accessories required.

Europe, 240 VAC 763067-01 No accessories required.

Back to Top

Support and Services System Assurance Programs

NI system assurance programs are designed to make it even easier for you to own an NI system. These programs include configuration and deployment services for your NI PXI, CompactRIO, or Compact FieldPoint system. The NI Basic System Assurance Program provides a simple integration test and ensures that your system is delivered completely assembled in one box. When you configure your system with the NI Standard System Assurance Program, you can select from available NI system driver sets and application development environments to create customized, reorderable software configurations. Your system arrives fully assembled and tested in one box with your software preinstalled. When you order your system with the standard program, you also receive system-specific documentation including a bill of materials, an integration test report, a recommended maintenance plan, and frequently asked question documents. Finally, the standard program reduces the total cost of owning an NI system by providing three years of warranty coverage and calibration service. Use the online product advisors at ni.com/advisor to find a system assurance program to meet your needs.

Calibration

NI measurement hardware is calibrated to ensure measurement accuracy and verify that the device meets its published specifications. To ensure the ongoing accuracy of your measurement hardware, NI offers basic or detailed recalibration service that provides ongoing ISO 9001 audit compliance and confidence in your measurements. To learn more about NI calibration services or to locate a qualified service center near you, contact your local sales office or visit ni.com/calibration.

Technical Support

Get answers to your technical questions using the following National Instruments resources. Support - Visit ni.com/support to access the NI KnowledgeBase, example programs, and tutorials or to contact our applications engineers who are located in NI sales offices around the world and speak the local language. Discussion Forums - Visit forums.ni.com for a diverse set of discussion boards on topics you care about. Online Community - Visit community.ni.com to find, contribute, or collaborate on customer-contributed technical content with users like you.

Repair

While you may never need your hardware repaired, NI understands that unexpected events may lead to necessary repairs. NI offers repair services performed by highly trained technicians who quickly return your device with the guarantee that it will perform to factory specifications. For more information, visit ni.com/repair.

Training and Certifications 4/10 www.ni.com Training and Certifications

The NI training and certification program delivers the fastest, most certain route to increased proficiency and productivity using NI software and hardware. Training builds the skills to more efficiently develop robust, maintainable applications, while certification validates your knowledge and ability. Classroom training in cities worldwide - the most comprehensive hands-on training taught by engineers. On-site training at your facility - an excellent option to train multiple employees at the same time. Online instructor-led training - lower-cost, remote training if classroom or on-site courses are not possible. Course kits - lowest-cost, self-paced training that you can use as reference guides. Training memberships and training credits - to buy now and schedule training later. Visit ni.com/training for more information.

Extended Warranty

NI offers options for extending the standard product warranty to meet the life-cycle requirements of your project. In addition, because NI understands that your requirements may change, the extended warranty is flexible in length and easily renewed. For more information, visit ni.com/warranty.

OEM

NI offers design-in consulting and product integration assistance if you need NI products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem.

Alliance

Our Professional Services Team is comprised of NI applications engineers, NI Consulting Services, and a worldwide National Instruments Alliance Partner program of more than 700 independent consultants and integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance.

Back to Top

Detailed Specifications These specifications are for the NI cDAQ-9171/9174/9178 chassis only. These specifications are typical at 25 °C unless otherwise noted. For the C Series I/O module specifications, refer to the documentation for the C Series I/O module you are using.

Analog Input

Input FIFO size 127 samples per slot

Maximum sample rate 1 Determined by the C Series I/O module(s)

Timing accuracy 2 50 ppm of sample rate

Timing resolution 2 12.5 ns

Number of channels supported Determined by the C Series I/O module(s)

Analog Output

Numbers of channels supported

Hardware-timed task

Onboard regeneration 16

Non-regeneration Determined by the C Series I/O module(s)

Non-hardware-timed task Determined by the C Series I/O module(s)

Maximum update rate

Onboard regeneration 1.6 MS/s (multi-channel, aggregate)

Non-regeneration Determined by the C Series I/O module(s)

Timing accuracy 50 ppm of sample rate

Timing resolution 12.5 ns

Output FIFO size

Regeneration 8,191 samples shared among channels used

Non-regeneration 127 samples per slot

Non-periodic waveform, periodic waveform regeneration mode from onboard AO waveform modes memory, periodic waveform regeneration from host buffer including dynamic update

Digital Waveform Characteristics

Waveform acquisition (DI) FIFO 127 samples per slot

Waveform generation (DO) FIFO

5/10 www.ni.com NI cDAQ-9171 2,047 samples

NI cDAQ-9174

Slots 1-4 2,047 samples

NI cDAQ-9178

Slots 1-4 2,047 samples

Slots 5-8 1,023 samples

Note (NI cDAQ-9178) When modules are installed in slots 1 through 4, FIFO is 2,047 samples per slot for all slots. When any module is installed in slots 5 through 8, FIFO is 1,023 samples per slot for all eight slots.

Digital input sample clock frequency

Streaming to application memory System-dependent

Finite 0 to 10 MHz

Digital output sample clock frequency

Streaming from application memory System-dependent

Regenerate from FIFO 0 to 10 MHz

Finite 0 to 10 MHz Any PFI, analog sample or convert clock, analog output sample clock, Ctr n Digital output or digital input sample clock source Internal Output, and many other sources

General-Purpose Counter/Timers

Number of counter/timers 4

Resolution 32 bits

Counter measurements Edge counting, pulse, semi-period, period, two-edge separation, pulse width

Position measurements X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding Pulse, pulse train with dynamic updates, frequency division, equivalent time Output applications sampling Internal base clocks 80 MHz, 20 MHz, 100 kHz

External base clock frequency 0 to 20 MHz

Base clock accuracy 50 ppm

Output frequency 0 to 20 MHz

Inputs Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down

Routing options for inputs Any module PFI, chassis PFI BNC, analog trigger, many internal signals

FIFO Dedicated 127-samples FIFO

Frequency Generator

Number of channels 1

Base clocks 10 MHz, 20 MHz, 100 kHz

Divisors 1 to 16 (integers)

Base clock accuracy 50 ppm

Output

NI cDAQ-9171/9174 Available on module PFI terminals

NI cDAQ-9178 Available on any chassis PFI BNC terminal or module PFI terminals

Module PFI Characteristics

Functionality Static digital input, static digital output, timing input, and timing output

Many analog input, analog output, counter, digital input, and digital output Timing output sources timing signals Selectable per input: 125 ns, 6.425 µs, 2.56 ms, disable, high and low Debounce filter settings transitions Timing input frequency 0 - 20 MHz

Timing output frequency 0 - 20 MHz

Chassis PFI Characteristics (NI cDAQ-9178 Only)

6/10 www.ni.com Max input or output frequency 1 MHz

Cable length 3 m (10 ft)

Cable impedance 50 Ω

TRIG 0 (PFI 0), TRIG 1 (PFI 1) connectors BNC

Power-on state High impedance

Input/output voltage protection

Voltage Minimum Maximum Input –20 V 25 V Output –15 V 20 V

Maximum operating conditions

Level Minimum Maximum

IOL output low current -- 8 mA

IOH output high current -- –8 mA

DC input characteristics

Level Minimum Maximum Positive going threshold 1.43 V 2.28 V Negative going threshold 0.86 V 1.53 V Hysteresis 0.48 V 0.87 V

DC output characteristics - Level High

Conditions Minimum Maximum -- -- 5.25 V Sourcing 100 μA 4.65 V -- Sourcing 2 mA 3.60 V -- Sourcing 3.5 mA 3.44 V --

DC output characteristics - Level Low

Conditions Minimum Maximum Sinking 100 μA -- 0.10 V Sinking 2 mA -- 0.64 V Sinking 3.5 mA -- 0.8 V

Digital Triggers

Source

NI cDAQ-9171/9174 Any module PFI terminal

NI cDAQ-9178 Any chassis PFI BNC terminal or module PFI terminal

Polarity Software-selectable for most signals Start Trigger, Reference Trigger, Pause Trigger, Sample Clock, Sample Clock Analog input function Timebase Analog output function Start Trigger, Pause Trigger, Sample Clock, Sample Clock Timebase

Counter/timer functions Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down

Module I/O States

Module-dependent. Refer to the documentation included with the C Series I/O At power-on module(s). Note The chassis may revert the input/output of the modules to its power-on state when the USB cable is removed.

Power Requirements

Caution You must use a National Electric Code (NEC) Class 2 power source with the NI cDAQ-9178/9174 chassis.

Note Some I/O modules have additional power requirements. For more information about C Series I/O module(s) power requirements, refer to documentation included with the C Series I/O module(s).

Note Sleep mode for C Series I/O modules is not supported in the NI cDAQ-917x.

NI cDAQ-9171

Power consumption from USB, 4.75 to 5.25 V 500 mA maximum

Suspend mode 2.5 mA maximum

NI cDAQ-9174/9178

Input voltage range 9–30 V

7/10 www.ni.com Maximum required input power 15 W 2 positions 3.5 mm pitch pluggable screw terminal with screw locks similar to Power input connector Sauro CTMH020F8-0N001 Power input mating connector Sauro CTF020V8, Phoenix Contact 1714977, or equivalent

Power consumption from USB, 4.10 to 5.25 V 500 μA maximum

Bus Interface

USB specification USB 2.0 Hi-Speed

High-performance data streams

NI cDAQ-9171 6

NI cDAQ-9174/9178 7 Analog input, analog output, digital input, digital output, counter/timer input, Data stream types available counter/timer output Note If you are connecting the NI cDAQ-917x to a USB hub, the hub must be externally powered.

Physical Characteristics

NI cDAQ-9171 chassis

Weight (unloaded) Approx. 353 g (12.5 oz)

Dimensions (unloaded) 131.4 mm × 88.6 mm × 33.3 mm (5.17 in. × 3.49 in. × 1.31 in.)

NI cDAQ-9174 chassis

Weight (unloaded) Approx. 574 g (20.2 oz)

Dimensions (unloaded) 15.9 cm x 8.81 cm x 5.89 cm (6.28 in. x 3.5 in. x 2.3 in.)

NI cDAQ-9178 chassis

Weight (unloaded) Approx. 878 g (31.0 oz)

Dimensions (unloaded) 25.4 cm x 8.81 cm x 5.89 cm (10.0 in. x 3.5 in. x 2.3 in.)

If you need to clean the chassis, wipe it with a dry towel.

Safety

Safety Standards

If you need to clean the chassis, wipe it with a dry towel.

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

IEC 61010-1, EN 61010-1 UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or visit ni.com/certificaton, search by model number or product line, and click the appropriate link in the Certification column.

Environmental

Temperature

Operating –20 °C to 55 °C (IEC-60068-2-1 and IEC-60068-2-2)

Storage –40 °C to 85 °C (IEC-60068-2-1 and IEC-60068-2-2)

NI cDAQ-9174/9178 ingress protection IP 30

Humidity

Operating 10 to 90% RH, noncondensing (IEC-60068-2-56)

Storage 5 to 95% RH, noncondensing (IEC-60068-2-56)

Maximum altitude 2,000 m

Pollution Degree (IEC 60664) 2

Indoor use only.

Shock and Vibration

To meet these specifications, you must panel mount the NI cDAQ-917x system, use an NI locking USB cable, and affix ferrules to the ends of the terminal lines. 30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC-60068-2-27. Operating shock Test profile developed in accordance with MIL-PRF-28800F.)

8/10 www.ni.com Random vibration

Operating 5 to 500 Hz, 0.3 grms 5 to 500 Hz, 2.4 grms (Tested in accordance with IEC-60068-2-64. Non-operating Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

IEC 61010-1, EN 61010-1 UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.

Electromagnetic Compatibility

This product is designed to meet the requirements of the following standards of EMC for electrical equipment for measurement, control, and laboratory use:

EN 61326 EMC requirements; Minimum Immunity EN 55011 Emissions; Group 1, Class A AS/NZS CISPR 11: Group 1, Class A emissions FCC 47 CFR Part 15B: Class A emissions ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generates radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the Online Product Certification section..

CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

2006/95/EC; Low-Voltage Directive (safety) 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by module number or product line, and click the appropriate link in the Certification column.

Environmental Management

National Instruments is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial not only to the environment but also to NI customers.

For additional environmental information, refer to the NI and the Environment Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of their life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.

1 Performance dependent on type of installed C Series I/O modules and number of channels in the task. 2 Does not include group delay. Refer to C Series I/O module documentation for more information

Back to Top

©2010 National Instruments. All rights reserved. CompactRIO, CVI, FieldPoint, LabVIEW, Measurement Studio, National Instruments, National Instruments Alliance Partner, NI, ni.com, NI CompactDAQ, and NI-DAQ are trademarks of National Instruments. The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other product and company names listed are trademarks or trade names of their respective companies. A National Instruments Alliance Partner is a business entity independent from National Instruments and has no agency, partnership, or joint-venture relationship with National Instruments.

9/10 www.ni.com My Profile | RSS | Privacy | Legal | Contact NI © 2014 National Instruments Corporation. All rights reserved.

10/10 www.ni.com C.8 National Instruments 9234 Datainsamlingsmodul Technical Sales

(866) 531-6285 [email protected]

Ordering Information | Detailed Specifications | Pinouts/Front Panel Connections For user manuals and dimensional drawings, visit the product page resources tab on ni.com.

Last Revised: 2014-09-24 23:07:52.0 NI 9234 ±5 V, IEPE and AC/DC Analog Input, 51.2 kS/s/ch, 4 Ch Module

51.2 kS/s per channel maximum sampling rate; ±5 V input Software-selectable IEPE signal conditioning (0 mA or 2 mA) 24-bit resolution; 102 dB dynamic range; anti-aliasing filters Transducer Electronic Data Sheet smart sensor compatibility Software-selectable AC/DC coupling; AC-coupled (0.5 Hz) -40 °C to 70 °C operating, 5 g vibration, 50 g shock

Overview The NI 9234 is a 4-channel C Series dynamic signal acquisition module for making high-accuracy audio frequency measurements from integrated electronic piezoelectric (IEPE) and non-IEPE sensors with NI CompactDAQ or CompactRIO systems. The NI 9234 delivers 102 dB of dynamic range and incorporates software-selectable AC/DC coupling and IEPE signal conditioning for accelerometers and microphones. The four input channels simultaneously digitize signals at rates up to 51.2 kHz per channel with built-in anti-aliasing filters that automatically adjust to your sampling rate.

Recommended Software NI sound and vibration analysis software, including the NI Sound and Vibration Measurement Suite and the NI Sound and Vibration Toolkit, provides signal processing functionality for performing audio measurements, fractional-octave analysis, frequency analysis, transient analysis, and order tracking. NI analysis software features NI Sound and Vibration Assistant interactive software for quickly acquiring, analyzing, and logging acoustic, noise, and vibration data. With a configuration-based, flexible measurement library and open-analysis capability, the Sound and Vibration Assistant is designed for quick data capture through a unique software-based measurement approach to create customized applications.

Recommended Accessories None

Box Contents -1 NI 9234 C Series module -1 NI 9234 Operating Instructions and Specifications manual

Back to Top

Comparison Tables

Product Name Signal Ranges Channels Sample Rate Simultaneous Resolution Excitation Isolation Connectivity

NI 9232 ±30 V 3 differential 102.4 kS/s/ch Yes 24-Bit 4 mA 60 VDC Ch-Earth Screw Terminal

NI 9234 ±5 V 4 differential 51.2 kS/s/ch Yes 24-Bit 2 mA None BNC

Back to Top

Application and Technology NI C Series Overview

1/9 www.ni.com NI C Series modules are designed to provide high-accuracy measurements to meet the demands of advanced DAQ and control applications. Each module contains measurement-specific signal conditioning to connect to an array of sensors and signals, bank and channel-to-channel isolation options, and support for wide temperature ranges to meet a variety of application and environmental needs all in a single rugged package. You can choose from more than 100 C Series modules for measurement, control, and communication to connect your applications to any sensor on any bus.

Most C Series I/O modules work with both the NI CompactDAQ and CompactRIO platforms. The modules are identical, and you can move them from one platform to the other with no modification.

NI CompactRIO Platform

Powered by the NI LabVIEW reconfigurable I/O (RIO) architecture, NI CompactRIO combines an open embedded architecture with small size, extreme ruggedness, and hot-swappable industrial I/O modules. Each system contains an FPGA for custom timing, triggering, and processing with a wide array of modular I/O to meet any embedded application requirement.

Configure Your Complete NI CompactRIO System

NI CompactDAQ Platform

NI CompactDAQ is a portable, rugged data acquisition platform that integrates connectivity and signal conditioning into modular I/O to directly interface with any sensor or signal. Using NI CompactDAQ with LabVIEW, you can easily customize how you acquire, analyze, present, and manage your measurement data. From research to development to validation, NI provides programmable software, high-accuracy measurements, and local technical support to help ensure you meet your exact measurement application requirements.

Configure Your Complete NI CompactDAQ System

Back to Top

Ordering Information

2/9 www.ni.com For a complete list of accessories, visit the product page on ni.com.

Back to Top

Software Recommendations

LabVIEW Professional Advanced software tools for large project NI LabVIEW FPGA Module Design FPGA applications for NI Development System for development reconfigurable I/O (RIO) hardware targets Windows Automatic code generation using DAQ Program with the same graphical Assistant and Instrument I/O Assistant environment used for desktop and real-time Tight integration with a wide range of applications hardware Execute control algorithms with loop rates up Advanced measurement analysis and digital to 300 MHz signal processing Implement custom timing and triggering logic, Open connectivity with DLLs, ActiveX, and digital protocols, and DSP algorithms .NET objects Incorporate existing HDL code and third-party Capability to build DLLs, executables, and IP including Xilinx CORE Generator functions MSI installers Included in the LabVIEW Embedded Control and Monitoring Suite

NI LabVIEW Real-Time Design deterministic real-time applications NI Sound and Vibration Minimize development time with ready-to-run Module with LabVIEW graphical programming Measurement Suite application examples Download to dedicated NI or third-party Get started quickly with application example hardware for reliable execution and a wide projects selection of I/O Build custom DAQ systems faster than ever Take advantage of built-in PID control, signal with DAQ configuration XControl processing, and analysis functions Avoid the expense of verification with NI Automatically take advantage of multicore ANSI- and IEC-compliant octave and CPUs or set processor affinity manually sound-quality analysis Includes real-time OS, development and Decrease test time with parallel processing debugging support, and board support Purchase individually or as part of a LabVIEW suite

Back to Top

Support and Services System Assurance Programs

NI system assurance programs are designed to make it even easier for you to own an NI system. These programs include configuration and deployment services for your NI PXI, CompactRIO, or Compact FieldPoint system. The NI Basic System Assurance Program provides a simple integration test and ensures that your system is delivered completely assembled in one box. When you configure your system with the NI Standard System Assurance Program, you can select from available NI system driver sets and application development environments to create customized, reorderable software configurations. Your system arrives fully assembled and tested in one box with your software preinstalled. When you order your system with the standard program, you also receive system-specific documentation including a bill of materials, an integration test report, a recommended maintenance plan, and frequently asked question documents. Finally, the standard program reduces the total cost of owning an NI system by providing three years of warranty coverage and calibration service. Use the online product advisors at ni.com/advisor to find a system assurance program to meet your needs.

Calibration

NI measurement hardware is calibrated to ensure measurement accuracy and verify that the device meets its published specifications. To ensure the ongoing accuracy of your measurement hardware, NI offers basic or detailed recalibration service that provides ongoing ISO 9001 audit compliance and confidence in your measurements. To learn more about NI calibration services or to locate a qualified service center near you, contact your local sales office or visit ni.com/calibration.

Technical Support

Get answers to your technical questions using the following National Instruments resources. Support - Visit ni.com/support to access the NI KnowledgeBase, example programs, and tutorials or to contact our applications engineers who are located in NI sales offices around the world and speak the local language. Discussion Forums - Visit forums.ni.com for a diverse set of discussion boards on topics you care about. Online Community - Visit community.ni.com to find, contribute, or collaborate on customer-contributed technical content with users like you.

Repair

While you may never need your hardware repaired, NI understands that unexpected events may lead to necessary repairs. NI offers repair services performed by highly trained technicians who quickly return your device with the guarantee that it will perform to factory specifications. For more information, visit ni.com/repair.

Training and Certifications

The NI training and certification program delivers the fastest, most certain route to increased proficiency and productivity using NI software and hardware. Training builds the skills to more efficiently develop robust, maintainable applications, while certification validates your knowledge and ability.

Classroom training in cities worldwide - the most comprehensive hands-on training taught by engineers. 3/9 www.ni.com Classroom training in cities worldwide - the most comprehensive hands-on training taught by engineers. On-site training at your facility - an excellent option to train multiple employees at the same time. Online instructor-led training - lower-cost, remote training if classroom or on-site courses are not possible. Course kits - lowest-cost, self-paced training that you can use as reference guides. Training memberships and training credits - to buy now and schedule training later. Visit ni.com/training for more information.

Extended Warranty

NI offers options for extending the standard product warranty to meet the life-cycle requirements of your project. In addition, because NI understands that your requirements may change, the extended warranty is flexible in length and easily renewed. For more information, visit ni.com/warranty.

OEM

NI offers design-in consulting and product integration assistance if you need NI products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem.

Alliance

Our Professional Services Team is comprised of NI applications engineers, NI Consulting Services, and a worldwide National Instruments Alliance Partner program of more than 700 independent consultants and integrators. Services range from start-up assistance to turnkey system integration. Visit ni.com/alliance.

Back to Top

Detailed Specifications

The following specifications are typical for the range –40 to 70 °C unless otherwise noted.

Input Characteristics

Number of channels 4 analog input channels

ADC resolution 24 bits

Type of ADC Delta-Sigma (with analog prefiltering)

Sampling mode Simultaneous

Type of TEDS supported IEEE 1451.4 TEDS Class I

Internal master timebase (ƒM )

Frequency 13.1072 MHz

Accuracy ±50 ppm max

Data rate range (ƒs ) using internal master timebase

Minimum 1.652 kS/s

Maximum 51.2 kS/s

Data rate range (ƒs ) using external master timebase

Minimum 0.391 kS/s

Maximum 52.734 kS/s

1 Data rates (ƒs )

Input coupling AC/DC (software-selectable)

AC cutoff frequency

–3 dB 0.5 Hz

–0.1 dB 4.6 Hz max

AC cutoff frequency response

4/9 www.ni.com Input range ±5 V

AC voltage full-scale range

Minimum ±5 Vpk

Typical ±5.1 Vpk

Maximum ±5.2 Vpk

Common-mode voltage range (AI– to earth ground) ±2 V max

IEPE excitation current (software-selectable on/off)

Minimum 2.0 mA

Typical 2.1 mA

Power-on glitch 90 μA for 10 μs

IEPE compliance voltage 19 V max

If you are using an IEPE sensor, use the following equation to make sure your configuration meets the IEPE compliance voltage range.

(Vcommon-mode + Vbias ± Vfull-scale ) must be 0 to 19, where Vcommon-mode is the common-mode voltage applied to the NI 9234, Vbias is the bias voltage of the IEPE sensor, and V full-scale is the full-scale voltage of the IEPE sensor.

Overvoltage protection (with respect to chassis ground)

For a signal source connected to AI+ and AI– ±30 V

For a low-impedance source connected to AI+ and AI– –6 to 30 V

Input delay 38.4/ƒs + 3.2 μs

Accuracy 2

Measurement Conditions Percent of Reading (Gain Error) Percent of Range 3 (Offset Error)

Calibrated max (–40 to 70 °C) 0.34%, ±0.03 dB ±0.14%, 7.1 mV

Calibrated typ (25 °C ±5 °C) 0.05%, ±0.005 dB ±0.006%, 0.3 mV

Uncalibrated max (–40 to 70 °C) 1.9%, ±0.16 dB ±0.27%, 13.9 mV

Uncalibrated typ (25 °C ±5 °C) 0.48%, ±0.04 dB ±0.04%, 2.3 mV

Gain drift

Typical 0.14 mdB/°C (16 ppm/°C)

Maximum 0.45 mdB/°C (52 ppm/°C)

Offset drift

Typical 19.2 μV/°C

Maximum 118 μV/°C

Channel-to-channel matching

Gain

Typical 0.01 dB

Maximum 0.04 dB

Phase (ƒin in kHz) ƒin · 0.045° + 0.04 max

Passband

Frequency 0.45 · ƒs

5/9 www.ni.com Flatness (ƒs = 51.2 kS/s) ±40 mdB (pk-to-pk max)

Phase nonlinearity (ƒs = 51.2 kS/s) ±0.45° max

Stopband

Frequency 0.55 · ƒs

Rejection 100 dB

Alias-free bandwidth 0.45 · ƒs

Oversample rate 64 · ƒs

Crosstalk (1 kHz) –110 dB

CMRR (ƒin ≤ 1 kHz)

Minimum 40 dB

Typical 47 dB

SFDR (ƒin = 1 kHz, – 60 dBFS) 120 dB

Idle channel noise and noise density

Idle Channel 51.2 kS/s 25.6 kS/s 2.048 kS/s

Noise 97 dBFS 99 dBFS 103 dBFS

50 μVrms 40 μVrms 25 μVrms

Noise density 310 nV/√Hz 350 nV/√Hz 780 nV/√Hz

Input impedance

Differential 305 kΩ

AI– (shield) to chassis ground 50 Ω

Total harmonic distortion (THD)

Input Amplitude 1 kHz 8 kHz

–1 dBFS –95 dB –87 dB

–20 dBFS –95 dB –80 dB

Intermodulation distortion (–1 dBFS)

DIN 250 Hz/8 kHz, 4:1 amplitude ratio –80 dB

CCIF 11 kHz/12 kHz, 1:1 amplitude ratio –93 dB

MTBF 390,362 hours at 25 °C; Bellcore Issue 2, Method 1, Case 3, Limited Part Stress Method

Note Contact NI for Bellcore MTBF specifications at other temperatures or for MIL-HDBK-217F specifications.

Power Requirements

Power consumption from chassis

Active mode 900 mW max

Sleep mode 25 μW max

Thermal dissipation (at 70 °C)

Active mode 930 mW max

Sleep mode 25 μW max

Physical Characteristics

Weight 173 g (6.1 oz)

Safety

If you need to clean the module, wipe it with a dry towel.

6/9 www.ni.com Safety Voltages Connect only voltages that are within the following limits. Channel-to-earth ground ±30 V max, Measurement Category I

Isolation

Channel-to-channel None

Channel-to-earth ground None

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS 4 voltage. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Caution Do not connect the NI 9234 to signals or use for measurements within Measurement Categories II, III, or IV.

Hazardous Locations

U.S. (UL) Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, AEx nA IIC T4

Canada (C-UL) Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, Ex nA IIC T4

Europe (DEMKO) Ex nA IIC T4

Safety Standards

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

IEC 61010-1, EN 61010-1 UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

EN 61326 (IEC 61326): Class A emissions; Basic immunity EN 55011 (CISPR 11): Group 1, Class A emissions AS/NZS CISPR 11: Group 1, Class A emissions FCC 47 CFR Part 15B: Class A emissions ICES-001: Class A emissions

Note For the standards applied to assess the EMC of this product, refer to the Online Product Certification section.

Note For EMC compliance, operate this device with shielded cables.

CE Compliance

This product meets the essential requirements of applicable European Directives, as amended for CE marking, as follows:

2006/95/EC; Low-Voltage Directive (safety) 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Note For the standards applied to assess the EMC of this product, refer to the Online Product Certification section.

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by module number or product line, and click the appropriate link in the Certification column.

Shock and Vibration

To meet these specifications, you must panel mount the system. Operating vibration

Random (IEC 60068-2-64) 5 grms, 10 to 500 Hz

Sinusoidal (IEC 60068-2-6) 5 g, 10 to 500 Hz

Operating shock (IEC 60068-2-27) 30 g, 11 ms half sine, 50 g, 3 ms half sine, 18 shocks at 6 orientations

Environmental

National Instruments C Series modules are intended for indoor use only but may be used outdoors if installed in a suitable enclosure. Refer to the manual for the chassis you are using for more information about meeting these specifications. Operating temperature (IEC 60068-2-1, IEC 60068-2-2) –40 to 70 °C

Storage temperature (IEC 60068-2-1, IEC 60068-2-2) –40 to 85 °C

Ingress protection IP 40

Operating humidity (IEC 60068-2-56) 10 to 90% RH, noncondensing

Storage humidity (IEC 60068-2-56) 5 to 95% RH, noncondensing

7/9 www.ni.com Maximum altitude 2,000 m

Pollution Degree (IEC 60664) 2

Environmental Management

National Instruments is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial not only to the environment but also to NI customers.

For additional environmental information, refer to the NI and the Environment Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of their life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers and National Instruments WEEE initiatives, visit ni.com/environment/weee.htm.

Calibration

You can obtain the calibration certificate for this device at ni.com/calibration. Calibration interval 1 year

1 The data rate must remain within the appropriate data range. Refer to the Understanding NI 9234 Data Rates section of NI 9234 Operating Instructions and Specifications for more information. 2 Refer to the NI 9234 Circuitry section of the NI 9234 Operating Instructions and Specifications for information regarding grounded signal sources and measurement accuracy. 3 Range = 5.1 Vpk 4 MAINS is defined as the (hazardous live) electrical supply system to which equipment is designed to be connected for the purpose of powering the equipment. Suitably rated measuring circuits may be connected to the MAINS for measuring purposes.

Back to Top

8/9 www.ni.com Pinouts/Front Panel Connections

Back to Top

©2014 National Instruments. All rights reserved. CompactRIO, FieldPoint, LabVIEW, National Instruments, NI, ni.com, and NI CompactDAQ are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their respective companies. A National Instruments Alliance Partner is a business entity independent from National Instruments and has no agency, partnership, or joint-venture relationship with National Instruments.

My Profile | RSS | Privacy | Legal | Contact NI © 2014 National Instruments Corporation. All rights reserved.

9/9 www.ni.com