Quantum Computing: Lecture Notes Ronald de Wolf QuSoft, CWI and University of Amsterdam arXiv:1907.09415v2 [quant-ph] 20 Jan 2021 Dedicated to the memory of my father Abraham de Wolf (1942{2019) ii Preface from 2011 These lecture notes were formed in small chunks during my \Quantum computing" course at the University of Amsterdam, Feb-May 2011, and compiled into one text thereafter. Each chapter was covered in a lecture of 2 × 45 minutes, with an additional 45-minute lecture for exercises and homework. The first half of the course (Chapters 1{7) covers quantum algorithms, the second half covers quantum complexity (Chapters 8{9), stuff involving Alice and Bob (Chapters 10{13), and error-correction (Chapter 14). A 15th lecture about physical implementations and general outlook was more sketchy, and I didn't write lecture notes for it. These chapters may also be read as a general introduction to the area of quantum computation and information from the perspective of a theoretical computer scientist. While I made an effort to make the text self-contained and consistent, it may still be somewhat rough around the edges; I hope to continue polishing and adding to it. Comments & constructive criticism are very welcome, and can be sent to
[email protected] Those who want to read more (much more. ): see the book by Nielsen and Chuang [144] for the general area, the book of John Watrous [175] for quantum information theory, and the lecture notes of John Preskill [146] for the theoretical physics perspective. Attribution, acknowledgments, subsequent updates Most of the material in Chapters 1{6 [chapter numbers in this paragraph are for the 2011 ver- sion] comes from the first chapter of my PhD thesis [176], with a number of additions: the lower bound for Simon, the Fourier transform, the geometric explanation of Grover.