MONGOLIA: COUNTRY REPORT to the FAO INTERNATIONAL TECHNICAL CONFERENCE on PLANT GENETIC RESOURCES (Leipzig,1996)

Total Page:16

File Type:pdf, Size:1020Kb

MONGOLIA: COUNTRY REPORT to the FAO INTERNATIONAL TECHNICAL CONFERENCE on PLANT GENETIC RESOURCES (Leipzig,1996) MONGOLIA: COUNTRY REPORT TO THE FAO INTERNATIONAL TECHNICAL CONFERENCE ON PLANT GENETIC RESOURCES (Leipzig,1996) Prepared by: Norovyn Altansukh National Plant Genetic resources Research and exstension Programme Ulan Bator, May 1995 MONGOLIA country report 2 Note by FAO This Country Report has been prepared by the national authorities in the context of the preparatory process for the FAO International Technical Conference on Plant Genetic Resources, Leipzig, Germany, 17-23 June 1996. The Report is being made available by FAO as requested by the International Technical Conference. However, the report is solely the responsibility of the national authorities. The information in this report has not been verified by FAO, and the opinions expressed do not necessarily represent the views or policy of FAO. The designations employed and the presentation of the material and maps in this document do not imply the expression of any option whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. MONGOLIA country report 3 Table of Contents CHAPTER 1 INTRODUCTION 5 1.1 PHYSICAL RESOURCES 6 1.2 ECOLOGICAL RESOURCES 6 1.3 HUMAN AND ECONOMIC DEVELOPMENT 7 1.4 AGRICULTURE 7 1.5 LIVESTOCK 8 1.6 QUALITY OF LIFE VALUES 9 CHAPTER 2 NATURAL RESOURCES 10 2.1 GENERAL 10 2.2 CLIMATE 10 2.3 SOILS 11 2.4 LAND RESOURCES AND LAND USE 11 2.5 WATER RESOURCES 14 CHAPTER 3 SOCIOPOLITICAL AND ADMINISTRATIVE STRUCTURE 16 CHAPTER 4 ROLE OF AGRICULTURE IN THE ECONOMY 17 4.1 AGRICULTURAL SECTOR CONTRIBUTION TO THE ECONOMY 17 4.1.1 Agricultural Sector and Domestic Economy 17 CHAPTER 5 PLANT GENETIC RESOURCES 22 5.1 FORAGE GRASS 22 5.1.1 The High Mountain Belt 23 5.1.2 The Mountain-Taiga Belt 23 5.1.3 The Mountain Forest-Steppe Belt 24 5.1.4 The Steppe Zone 24 5.1.5 The Desert-Steppe Zone 24 5.1.6 The Desert Zone 25 5.2 FOREST RESOURCES 31 5.2.1 Utilization of Forestry Products 33 5.3 FRUITS AND BERRIES RESOURCES 34 CHAPTER 6 CROP GENETIC RESOURCES 41 6.1 COLLECTION 48 MONGOLIA country report 4 CHAPTER 7 EVALUATION REGENERATION AND UTILISATION 49 CHAPTER 8 PLANT GERMPLASM CONSERVATION 51 8.1 CHARACTERIZATION AND DOCUMENTATION 52 8.2 ORGANIZATION 54 8.2.1 Plant Science and Agricultural research institute of MNA University 55 8.2.2 East Regional institute of MNA University (ERARI) 55 8.2.3 Altain Regional institute of MNA University (ARARI) 55 8.2.4 West Regional research Station of MNA University (WRAR) 56 8.2.5 Research Institute of Animal Husbandry of MNA University (RIAH) 56 8.2.6 Institute of Botany Mongolian Academy of Science 56 8.3 INTERNATIONAL COOPERATION 56 8.4 FUTURE PERSPECTIVES AND NEEDS 57 ANNEX 1 ENVIRONMENTAL PACKAGE LAWS OF MONGOLIA 59 Acknowledgements 60 MONGOLIA country report 5 CHAPTER 1 INTRODUCTION Mongolia is 1,565,000 sq km in area, the 18th largest country in the world. Nearly 90 per cent can be used for agricultural or pastoral pursuits, 9.6 per cent is forest and 0.9 per cent is covered by water. Less than one per cent has no effective use. Climate is the over-riding element of Mongolian agriculture. The period of grazing, the growth and quality of cultivated and natural plans, the timing and methods of performing many animal and crop production tasks depend directly on climatic and weather conditions. Mongolia is suited between latitude 41.33 deg and 52.06 deg North. The average annual temperature fluctuates between -5.3 deg C and +4.0 deg C. In the mountainous northern and north-western parts it is below zero and in the south and south-east it is above zero. The lowest temperature recorded so far is -53 deg C and highest is 41 deg C. Short summers and sharp falls in temperature and frosts during the warm period make agriculture very difficult. Climatic stress, particularly unseasonal frosts, can cause harvest losses of between 10 and 30 per cent of crops. For successful agriculture under conditions of potential climatic stress it is necessary to: · Use short season varieties of grains and vegetables. · Harvest grain and vegetables in the shortest possible time. · This requires considerable mechanization. · Use the best available technology of sowing, growing and harvesting of grain and vegetables. Common Development Needs of country. · Land-locked (no direct access to hardbours or major land transportation centres), · low density of population, · low degree of industrial development and poor infrastructure scarce number of cultivable areas, · economic activity mainly comprising of animal husbandry and basic agricultural activities (nomadic-pastoral form of agriculture), MONGOLIA country report 6 · a climate with extreme temperatures varying per season and per day and night, · rich in mineral resources (but due to poor infrastructure only a small part of the resources has been explored and exploited), · dependent on more economically developed (adjacent) coastal areas and/or centres of industry, · difficulty to attract capital funds for its social and economic development because of one or more of above features, · mostly inhabited by traditional societies based on ecological principles of harmony with nature. 1.1 PHYSICAL RESOURCES The northern mountain regions of Hovsgol similar to eastern Siberia, the hangai Hentil and Altai Mountains each having different climatic conditions and creating different zones between. As the weather systems are forced to rise over mountains from east to west the same rainfall level occurs at progressively higher altitudes and the occurrence of Tundra and Taiga alpine zones becomes less. The Altai are relatively drier, the main body of the Steppe and Gobi are considered part of the central Asian Steppe geo-climatic area. There is a large rain shadow geo-climatic area between the Gobi Altai and the Altai Hangai Hovsgol Mountains known as the Valley of Lakes or Great Lake Depression. This area has a high percentage of the country's sand dune systems which have grown at 0.8%. 1.2 ECOLOGICAL RESOURCES Mongolia possesses some 10-15 million ha of standing forests almost 50% of which are considered accessible being on grades less than 22%. Harvests are estimated to be less than the sustainable yield of about 9.9 million in 3 per year. Mongolia is rich in mineral resources much of it yet unexploited including one of the largest known phosphate deposits in Asia and significant energy resources of some 20 million tonnes of coal. Mongolia has large relatively undisturbed wild life areas covering a broad range of habitats. Most of the nation's land can be considered to be in a semi-natural state where wild life and domestic livestock have co-existed for millennia. The modern development of roads and firearms may be changing this long term situation MONGOLIA country report 7 of co-existence particularly around the larger urban areas. However Mongolian's have pride in their documented conservation efforts e.g. the Bogd Mountain Reserve which dates back to 1,200 AD. This cultural factor has importance in planning for environmental protection in the future. 1.3 HUMAN AND ECONOMIC DEVELOPMENT Mongolia had one of the highest population growth rates in Asia at 2.5% per annum between 1988-1990 and the rate is said to have increased further since. However it has a very low population density and perhaps 60-65% live in urban areas including sum/local town/centres. Consistent with this high growth rate a high percentage of the population is under 25. The recent fall in GDP due to the cessation of CMEA aid has placed great strain on this urban population and many have taken up livestock raising in near urban areas. 1.4 AGRICULTURE Geography influences agriculture both positively and negatively. Positively, the location of Mongolia in the centre and east of the Asian Continent with dry and temperate climatic conditions and co-evolvement with large herbivores favoured the development of steppe grazing lands that are highly productive and resilient to grazing by large herbivores. the presence of north west to south east oriented mountain ranges in the western portion of Mongolia and the arid Gobi in southern Mongolia provides zonal vegetation capable of providing winter, summer and spring-fall transitional pastures for domestic and wild grazing herbivores. However, alignment of topography also funnels Siberian cold fronts to Southern Mongolia and increases the stress on livestock during winter and spring. Total land area of Mongolia is 1,565 million ha of which 1,260 million ha (80%) is capable of agricultural production (primarily extensive livestock production). Arable land occupies 1.35 million ha of total area. Over 57% of total arable land is located in the north-central aimags of Tuv and Selenge and the north eastern aimag of Dornod. The aimags forming the Gobi third of Mongolia have 1% or less arable land. Other aimags have amounts of arable land ranging between 1.1 and 9.5 %. Arable soils are characteristically dark chestnut and chestnut soils and are typical of soils that evolved with grass steppe vegetation. Organic matter content is 3 to 4%, with pH of 6.0 to 7.0. Soils are shallow (average of less than 30 cm) even in the crop producing aimags of Tuv and Selenge aimags where conditions are most suited for MONGOLIA country report 8 intensive agricultural production. In these aimags, only valley bottom land and lower slopes of hills on primarily north aspects are cultivated because of greater soil depth and higher soil moisture retention.
Recommended publications
  • Ancient Iranian Nomads in Western Central Asia
    ISBN 978-92-3-102846-5 ANCIENT IRANIAN NOMADS IN. 1 ANCIENT IRANIAN NOMADS IN WESTERN CENTRAL ASIA* A. Abetekov and H. Yusupov Contents Literary sources on the ancient Iranian nomads of Central Asia ............ 25 Society and economy of the Iranian nomads of Central Asia .............. 26 Culture of the Iranian nomads of Central Asia ..................... 29 The territory of Central Asia, which consists of vast expanses of steppe-land, desert and semi-desert with fine seasonal pastures, was destined by nature for the development of nomadic cattle-breeding. Between the seventh and third centuries b.c. it was inhabited by a large number of tribes, called Scythians by the Greeks, and Sakas by the Persians. The history of the Central Asian nomads is inseparable from that of the nomadic and semi-nomadic peoples of the Eurasian steppe zone. Their political and economic life was closely linked, and their material culture had much in common. It should also be noted that, despite their distinctive qualities, the nomadic tribes were closely connected with the agricultural population of Central Asia. In fact, the history and movements of these nomadic tribes and the settled population cannot be considered in isolation; each had its impact on the other, and this interdependence must be properly understood. * See Map 1. 24 ISBN 978-92-3-102846-5 Literary sources on the ancient Iranian. Literary sources on the ancient Iranian nomads of Central Asia The term ‘Tura’¯ 1 is the name by which the Central Asian nomadic tribes were in one of the earliest parts of the Avesta. The Turas¯ are portrayed as enemies of the sedentary Iranians and described, in Yašt XVII (prayer to the goddess Aši), 55–6, as possessing fleet-footed horses.2 As early as 641 or 640 b.c.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Pricing Forage in the Field
    Pricing Forage in Ag Decision Maker the Field File A1-65 uestions often arise about how to arrive Example 2 at a fair price for standing crops such Qas corn silage, oats, hay, and cornstalks. Silage moisture level 70% Although there are no widely quoted market Silage dry matter level 100% - 70% = 30% prices for these crops, they can be valued Silage value at 65% $28.35 per ton according to their relative feed value and $28.35 x (30 / 35) = compared to other crops that have a known Silage value at 70% market price, such as corn grain or hay. $24.30 per ton Corn Silage The quantity of silage harvested can be estimated Corn silage can be quickly valued according to the by: price of corn grain. Taking into account the value 1. weighing several loads and counting the total of the grain, the extra fertilizer cost incurred and number of loads, the harvesting costs saved, a ton of corn silage in 2. calculating the storage capacity of the silo in the field is usually worth 8-10 times as much as a which it is stored (see AgDM Information File bushel of corn, depending on the potential grain and Decision Tool C6-82, Estimated Storage yield. Silage from a field that would yield above Capacity for Grains, Forages, and Liquids, 200 bushels per acre can be valued at 10 times the www.extension.iastate.edu/agdm/wholefarm/ corn price. But if the potential yield is less than pdf/c6-82.pdf), or 100 bushels per acre, the silage should be valued 3.
    [Show full text]
  • Making Grass Silage
    Making Grass Silage Dr. Dan Undersander University of Wisconsin Fermentation analysis profile Legume Grass Corn Silage Silage Silage Moisture: 65%+ <65% 60-65% pH 4.0-4.3 4.3-4.7 3.8-4.2 Lactic Acid 6.0-8.0 6.0-10.0 5.0-10.0 Acetic Acid 1.0-3.0 1.0-3.0 1.0-3.0 Ethanol (% of DM) <1.0 <1.0 <3.0 Ammonia-N (% of CP) <15.0 <12.0 <8.0 Lactic: Acetic ratio 2+ 2+ 3+ Lactic (% of total acids) 60+ 60+ 70+ Dan Undersander-Agronomy © 2013 High quality grass silage results from: 1. Harvesting high quality forage 2. Inoculation 3. Proper packing 4. Covering Dan Undersander-Agronomy © 2013 Making Good Grass Silage Want 10–15% WSC (sugars) in the dry matter Young, leafy grass that has been well fertilized, grass/clover mixtures and autumn cuts tend to have low sugar levels Buffering capacity is directly related to how much sugar it takes to lower silage pH. Grass typically has a low buffering capacity and an adequate supply of sugars High rates of N increase buffering capacity. Dan Undersander-Agronomy © 2013 Grass Dry Matter Digestibility 80 70 60 Indigestible DM 50 40 Recommended harvest 30 Digestible DM 20 10 0 leaf stage boot stage heading full flower Dan Undersander-Agronomy © 2013 Dan Undersander-Agronomy © 2013 Cool Season Grasses Head only on first Cutting 2nd and later cuttings Harvest 1st cutting at boot stage are primarily leaves Boot stage Heading Dan Undersander-Agronomy © 2013 Mowing, Conditioning Mowing height - 3.5 to 4 inches Promotes rapid grass regrowth Reduces dirt contamination Condition with flail conditioner Make wide
    [Show full text]
  • Cust-Gall Forest Plan Comments May 2019
    PO Box 8783 ● Missoula, MT 59807-8783 May 15, 2019 Custer Gallatin National Forest Attn: Forest Plan Revision Team P.O. Box 130 Bozeman, MT 59771 Dear Custer-Gallatin Forest Plan Revision Team, Thank you for the opportunity to comment on the revision of the Custer Gallatin Forest Plan. We are writing on behalf of over 700 members of the Montana Native Plant Society (MNPS). The Society is a non-profit organization dedicated to preserving, conserving, and studying Montana’s native plants and plant communities, and educating the public about the values of our native flora and its habitats. Our comments, organized by draft document page, are below and submitted online. 2.3.5 Watershed and Aquatics (WTR), Objectives 01 MNPS believes that stream and wetland restoration is important for maintaining plant species diversity. The natural hydrology of wetlands such as fens and marshes as well as riparian areas should be protected and restored as much as possible. 2.3.5 Watershed and Aquatics (WTR), Objectives 03 MNPS believes that protection and restoration of at-risk aquatic plants should be prioritized. 2.3.9 At-Risk Plant Species (PRISK), Objectives 01 At-risk species occurring on Custer-Gallatin should first be ranked based on their degree of risk. For example, Carex gravida is associated with green ash woodlands on the Sioux and Ashland districts. These woodlands are heavily used for livestock grazing. On the other hand, Shoshonea pulvinata is globally rare but is not threatened by human activities at this time, so at this time it should be ranked lower than Carex gravida.
    [Show full text]
  • Agr79: Producing Corn for Silage
    AGR-79 Producing Corn for Silage Chad D. Lee, James H. Herbek, Garry Lacefi eld, and Ray Smith, Department of Plant and Soil Sciences orn for silage has been a valuable source of feed for cattle. lage is often in the 113 to 120 days maturity range in Kentucky. CHigh-quality corn silage is obtained with a combination Depending on acreage and harvesting requirements, selecting of good crop management practices, good silage management hybrids across this range in maturity can help with harvest sched- practices, and optimum weather conditions. This publication will ules. Not only does selecting a range in maturity help spread out focus on the management practices of growing corn for silage. harvesting, but it can help spread out the workload for postemer- gence weed control and the risks associated with pollination. Crop Management Practices The growth and maturity of a corn hybrid are closely Hybrid Selection related to daily and sea- Selecting hybrids is an important decision in silage produc- sonal temperature levels. A tion. Capitalizing on high-yielding hybrids will allow you to more accurate scheme for raise more silage per acre. labeling corn hybrid matu- Each year, hybrids for grain are evaluated at seven locations rity is the growing degree across the state in the University of Kentucky Hybrid Corn Perfor- day (GDD) method. The mance Test. The hybrid performance test provides an annual report GGD method predicts corn and ranks yields from each location, averaged over all locations maturities based on mean and averaged across one, two, and three years. Land grant universi- daily temperatures during the ties in neighboring states conduct similar tests.
    [Show full text]
  • From Harvest to Feed: Understanding Silage Management Contents
    From Harvest to Feed: Understanding Silage Management Contents Introduction .................................................................. 1 Advantages of silage .................................................... 1 Disadvantages of silage ................................................ 1 Silage Fermentation .................................................... 2 Phases of normal fermentation ................................... 2 Undesirable fermentation ............................................ 4 Harvest Guidelines to Maximize Forage Quality and Minimize Losses ....................... 6 Pre-harvest preparations .............................................. 6 Moisture content and maturity ................................... 6 Chop length and particle size .................................... 10 Oxygen exclusion ........................................................ 11 Management practices specific to silo type ............. 12 Harvest concerns specific to crop type..................... 15 Harvest concerns related to weather ........................ 15 Silage Additives ......................................................... 19 Fermentation stimulants ............................................ 19 Fermentation inhibitors .............................................. 22 Nutrient additives ....................................................... 22 Recommendations for additive use .......................... 23 Conclusions .................................................................. 25 Feeding Management ..............................................
    [Show full text]
  • FOH Newsletter 2012
    FRIENDS Of The University Of Montana HERBARIUM Spring 2012 ....Bruce McCune MORE THAN VASCULAR AT MONTU By Andrea Pipp While perusing the vascular plant, moss, and lichen were the ecological relatives of mosses and incorporated specimens at MONTU you might see the name of Bruce them into his work. He relied on Mason Hale’s first edi- McCune. During his years at UM (1971-1979) Bruce con- tion of How to Know the Lichens and a long paper with tributed mounts of 62 vascular plant species and a larger keys titled “Lichens of the State of Washington” by Grace number of moss and lichen vouchers to the herbarium. Howard. He soon realized Hale’s book was very biased Bruce came to Missoula from the Midwest. Having toward eastern species, for even the most conspicuous grown up in Cincinnati and after completing his freshman lichens found on Mt. Sentinel weren’t in the book. Later year at Lawrence University in Appleton, Wisconsin, he discovered that Howard’s key contained as much mis- Bruce attended a wilderness botany class in northern Min- (Continued on page 7) nesota. There in the moss-carpeted forests he became quite interested in mosses and, in his words, was swept away by a remarkable young lady (Patricia Muir). Eager to escape the industrial winter of Appleton, Bruce fol- lowed Patricia to the University of Montana. That was 1971. The ‘new’ library was under construction, Hitch- cock and Cronquist, as a book, did not exist, and Botany stood on its own – a vibrant, active department, firmly ensconced in its own building.
    [Show full text]
  • North and Central Asia FAO-Unesco Soil Tnap of the World 1 : 5 000 000 Volume VIII North and Central Asia FAO - Unesco Soil Map of the World
    FAO-Unesco S oilmap of the 'world 1:5 000 000 Volume VII North and Central Asia FAO-Unesco Soil tnap of the world 1 : 5 000 000 Volume VIII North and Central Asia FAO - Unesco Soil map of the world Volume I Legend Volume II North America Volume III Mexico and Central America Volume IV South America Volume V Europe Volume VI Africa Volume VII South Asia Volume VIIINorth and Central Asia Volume IX Southeast Asia Volume X Australasia FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION FAO-Unesco Soilmap of the world 1: 5 000 000 Volume VIII North and Central Asia Prepared by the Food and Agriculture Organization of the United Nations Unesco-Paris 1978 The designations employed and the presentation of material in this publication do not irnply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations or of the United Nations Educa- tional, Scientific and Cultural Organization con- cerning the legal status of any country, territory, city or area or of its authorities, or concerning the delirnitation of its frontiers or boundaries. Printed by Tipolitografia F. Failli, Rome, for the Food and Agriculture Organization of the United Nations and the United Nations Educational, Scientific and Cultural Organization Published in 1978 by the United Nations Educational, Scientific and Cultural Organization Place de Fontenoy, 75700 Paris C) FAO/Unesco 1978 ISBN 92-3-101345-9 Printed in Italy PREFACE The project for a joint FAO/Unesco Soil Map of vested with the responsibility of compiling the techni- the World was undertaken following a recommenda- cal information, correlating the studies and drafting tion of the International Society of Soil Science.
    [Show full text]
  • A Chronology of the Scythian Antiquities of Eurasia
    University of Groningen A chronology of the Scythian antiquities of Eurasia based on new archaeological and C-14 data Alekseev, A.Yu.; Bokovenko, N.A.; Boltrik, Yu.; Chugunov, K.A.; Cook, G.; Dergachev, V.A.; Kovalyukh, N.; Possnert, G.; Plicht, J. van der; Scott, E.M. Published in: Radiocarbon IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2001 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Alekseev, A. Y., Bokovenko, N. A., Boltrik, Y., Chugunov, K. A., Cook, G., Dergachev, V. A., ... Zaitseva, G. (2001). A chronology of the Scythian antiquities of Eurasia based on new archaeological and C-14 data. Radiocarbon, 43(2B), 1085-1107. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 A CHRONOLOGY OF THE SCYTHIAN ANTIQUITIES OF EURASIA BASED ON NEW ARCHAEOLOGICAL AND 14C DATA A Yu Alekseev 1 N A Bokovenko 2 Yu Boltrik 3 K A Chugunov 4 G Cook5 V A Dergachev 6 N Kovalyukh 7 G Possnert 8 J van der Plicht 9 E M Scott10 A Sementsov 2 V Skripkin 7 S Vasiliev6 G Zaitseva 2 ABSTRACT.
    [Show full text]
  • New Twists to Butyric Acid in Haylages and Prevention
    NEW TWISTS TO BUTYRIC ACID IN HAYLAGES AND PREVENTION Preventing clostridial growth and the production of deleterious fermentation byproducts such as butyric acid, iso-butyric acid, amines, ammonia etc. is critical to insure high quality haylage crops. Until only recently it seemed that we knew how to prevent the prevention of butyric acid production in haylages. The first key to preventing clostridial fementation and or the production of butyric acid and amines was proper dry matter. Wilting small grain silages and haylages to moisture levels of 65% or less, i.e minimum dry matter of 35% or greater supposedly assured clostridial fermentations would be prevented and hence so would butyric acid and other undesirable by-products. Preventing contamination of haylage crops with excessive soil (and manure) has also been considered critical to preventing clostridia. “Ash” poses several challenges. First it is a source of undesirable micro-organisms. Second, the ash itself is a buffer, requiring more acid produced in order to reach the same terminal pH. Other key practices to preventing clostridia and butyric acid production would include filling and packing haylage crops as fast as possible to prevent prolonged plant respiration from depleting the necesaary sugars to fuel an adquate fermentation. Even when producers use best management practices, there is a preponderance of research documenting the benefit of using both bacterial inoculants and or combinations of bacteria and enzymes to help improve the fermentation of haylages and lessen the risk of clostridial fermentation. Recently however we see more and more instances of low to moderate levels of butyric acid and other evidence of clostridial fermentations even in relatively dry haylages (over 35% dry matter) that are low in ash (10-12%) that were harvested correctly, packed well and sealed well and even inoculated.
    [Show full text]
  • Vegetation at the Taiga Forest–Steppe Borderline in the Western Khentey Mountains, Northern Mongolia
    Ann. Bot. Fennici 42: 411–426 ISSN 0003-3847 Helsinki 19 December 2005 © Finnish Zoological and Botanical Publishing Board 2005 Vegetation at the taiga forest–steppe borderline in the western Khentey Mountains, northern Mongolia Choimaa Dulamsuren1, Markus Hauck2 & Michael Mühlenberg1 1) Center of Nature Conservation, University of Göttingen, Von-Siebold-Straße 2, D-37075 Göttingen, Germany (e-mail: [email protected]) 2) Albrecht von Haller Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany (e-mail: [email protected]) Received 31 Aug. 2004, revised version received 11 Nov. 2004, accepted 7 Jan. 2005 Dulamsuren, C., Hauck, M. & Mühlenberg, M. 2005: Vegetation at the taiga forest–steppe border- line in the western Khentey Mountains, northern Mongolia. — Ann. Bot. Fennici 42: 411–426. Vegetation of an area of 500 km2 in the western Khentey Mountains, northern Mon- golia is phytosociologically classified with the help of 254 relevés. Twenty-one main vegetation units are described. The study area is situated at the interface between the western Siberian dark taiga, the eastern Siberian light taiga and the Mongolian-Daurian forest steppe. A small-scale pattern of these three major vegetation types was found depending on site characteristics. Dark taiga forests of Pinus sibirica, Abies sibirica, Picea obovata, and Larix sibirica grow at the most humid sites. Light taiga forests dominated by Larix sibirica and Betula platyphylla occur on relatively dry northern slopes of the lower montane belt. Sun-exposed, southern slopes of the lower montane belt are covered by montane meadow and mountain steppe. DCA ordination suggests that the distribution of vegetation types depends on water supply and altitude.
    [Show full text]