Download Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Collection and Screening of Basidiomycetes for Better Lignin Degraders
Int. J. LifeSc. Bt & Pharm. Res. 2012 D Seshikala and M A Singara Charya, 2012 ISSN 2250-3137 www.ijlbpr.com Vol. 1, No. 4, October 2012 © 2012 IJLBPR. All Rights Reserved Research Paper COLLECTION AND SCREENING OF BASIDIOMYCETES FOR BETTER LIGNIN DEGRADERS D Seshikala1* and M A Singara Charya1 *Corresponding Author: D Seshikala, [email protected] Considering the potentialities of white rot basidiomycetes in biobleaching process, 37 white rot fungi were collected from different forest areas of Andhra Pradesh, India. All of them were screened for lignolytic enzyme production. Out of them 25 different organisms were with lignolytic capacity. Then they were quantitatively and qualitatively analyzed for Laccase, LiP and MnP enzymes. Among the studied organisms Stereum ostrea (Laccase 40.02U/L ,MnP 51.59U/L, LiP 11.87U/L), Tremella frondosa (Laccase 35.07U/L, MnP 29.12U/L, LiP 5.95U/L) Tremates versicolour (MnP and LiP production i.e 56.13 U/L, LiP 23.26 U/L) could show maximum enzyme production. All the 25 organisms could produce Laccase but few failed to produce MnP and LiP. The organisms which produced both enzymes were grown in the liquid cultures. That culture filtrate was used for qualitative (SDS PAGE)and quantitative (enzyme assay) analysis. Keywords: Basidiomycetes, White rot fungi, Lignolytic enzymes, Laccase, MnP. INTRODUCTION fungi and their ability to degrade complex and Lignin is the most abundant renewable aromatic recalcitrant organic molecules also makes them polymer and is known as one of the most attractive microorganisms for bioremediation of recalcitrant biomaterials on earth Crawford soil contaminated by organic pollutants. -
A Forgotten Kingdom Ecologically Industrious and Alluringly Diverse, Australia’S Puffballs, Earthstars, Jellies, Agarics and Their Mycelial Kin Merit Your Attention
THE OTHER 99% – NEGLECTED NATURE The delicate umbrellas of this Mycena species last only fleetingly, while its fungal mycelium persists, mostly obscured within the log it is rotting. Photo: Alison Pouliot A Forgotten Kingdom Ecologically industrious and alluringly diverse, Australia’s puffballs, earthstars, jellies, agarics and their mycelial kin merit your attention. Ecologist Alison Pouliot ponders our bonds with the mighty fungus kingdom. s the sun rises, I venture off-track Fungi have been dubbed the ‘forgotten into a dripping forest in the Otway kingdom’ – their ubiquity and diversity ARanges. Mountain ash tower contrast with the sparseness of knowledge overhead, their lower trunks carpeted about them, they are neglected in in mosses, lichens and liverworts. The conservation despite their ecological leeches are also up early and greet me significance, and their aesthetic and with enthusiasm. natural history fascination are largely A white scallop-shaped form at the unsung in popular culture. The term base of a manna gum catches my eye. ‘flora and fauna’ is usually unthinkingly Omphalotus nidiformis, the ghost fungus. A assumed to cover the spectrum of visible valuable marker. If it’s dark when I return, life. I am part of a growing movement of the eerie pale green glow of this luminous fungal enthusiasts dedicated to lifting fungal cairn will be a welcome beacon. the profile of the ‘third f’ in science, Descending deeper into the forest, a conservation and society. It is an damp funk hits my nostrils, signalling engrossing quest, not only because of the fungi. As my eyes adjust and the morning alluring organisms themselves but also for lightens, I make out diverse fungal forms the curiosities of their social and cultural in cryptic microcosms. -
Phylogeny, Morphology, and Ecology Resurrect Previously Synonymized Species of North American Stereum Sarah G
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342840; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny, morphology, and ecology resurrect previously synonymized species of North American Stereum Sarah G. Delong-Duhon and Robin K. Bagley Department of Biology, University of Iowa, Iowa City, IA 52242 [email protected] Abstract Stereum is a globally widespread genus of basidiomycete fungi with conspicuous shelf-like fruiting bodies. Several species have been extensively studied due to their economic importance, but broader Stereum taxonomy has been stymied by pervasive morphological crypsis in the genus. Here, we provide a preliminary investigation into species boundaries among some North American Stereum. The nominal species Stereum ostrea has been referenced in field guides, textbooks, and scientific papers as a common fungus with a wide geographic range and even wider morphological variability. We use ITS sequence data of specimens from midwestern and eastern North America, alongside morphological and ecological characters, to show that Stereum ostrea is a complex of at least three reproductively isolated species. Preliminary morphological analyses show that these three species correspond to three historical taxa that were previously synonymized with S. ostrea: Stereum fasciatum, Stereum lobatum, and Stereum subtomentosum. Stereum hirsutum ITS sequences taken from GenBank suggest that other Stereum species may actually be species complexes. Future work should apply a multilocus approach and global sampling strategy to better resolve the taxonomy and evolutionary history of this important fungal genus. -
New Additions to Macrofungi of Telangana State, India
J. Indian bot. Soc. e-ISSN:2455-7218, ISSN:0019-4468 Vol. 96 (1 & 2) 2017 :70-75 NEW ADDITIONS TO MACROFUNGI OF TELANGANA STATE, INDIA C. MANOHARACHARY1 AND D. NAGARAJU2 ¹Mycology and Molecular Plant Pathology Laboratory, Department of Botany, Osmania University, Hyderabad – 500007, Telangana, India ,2Department of Botany, Govt. Degree College, Eturnagaram- 506165, Distt. Warangal, Telangana, India. Email: [email protected] Date of Online Publication:31st March 2017 During field visit (2014-16) of some of the places of Telangana state viz., Amrabad, Anathagiri, Bhadrachalam, Eturnagaram, Mannanoor, Narsapur, and Vikarabad; twenty macrofungi, associated with litter, humid soil and wood logs, were collected, respectively. Out of these 20 macrofungi; seventeen spp are the new reports from Telangana state, India Higher fungi consisting of gill fungi information, in the present communication. mushrooms, jelly fungi, stink horns, earth Topography and Climate stars, puff balls, bracket fungi ecto- mycorrhizal fungi and others belongs to Telangana State is situated on the Deccan phylum Basidiomycotina. Among these some Plateau, in the central stretch of the eastern mushrooms are edible while others are seaboard of the Indian Peninsula Ranges poisonous. Bracket fungi attack woody plants between 15o50'-19o55' and 77o14'-78o50'E). and cause damage. Further some Mushrooms The state has got 10 districts covering an area of possess medicinal, insecticidal, hallucinogenic 133, 103 km. The most important rivers of the properties and other metabolites mushroom province are Musi, Krishna, Manjira and production is a multibillion dollar industry all Godhavari. It has become 29th state of India on over the world. Higher fungi including 2nd June 2014. -
Brief Documentation of Basidiomycota and Ascomycota Diversity in Gunung Gading National Park, Sarawak
Journal of Science and Mathematics Letters, Vol 8, Issue 1, 2020 (37-47) ISSN 2462-2052, eISSN 2600-8718 RESEARCH PAPER Brief Documentation of Basidiomycota and Ascomycota Diversity in Gunung Gading National Park, Sarawak Mohamad Fhaizal Mohamad Bukhori*, Besar Ketol, Khairil Rizadh Razali, Azizi Hussain and Mohd Faizullah Rohmon Biology Unit, Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia *Corresponding author: [email protected] DOI: https://doi.org/10.37134/jsml.vol8.1.5.2020 Received: 22 May 2019; Accepted: 16 December 2019; Published: 6 January 2020 Received: 22May 2019; Accepted: 16 December 2019; Published: 06 January 2020 Abstract To facilitate the learning objectives of ecology, biodiversity and environment course, in situ activities remain the finest key to complement by conducting real fieldwork and hands on study. The specific objectives of the study are to promote sustainable learning, adopting effective practice in academic and scientific documentation, and implementing holistic and blended learning approach in the course by introducing a comprehensive learning experience in biodiversity-related discipline. Therefore, Basidiomycota and Ascomycota study based on diversity, host association and community structure in Gunung Gading National Park was chosen and resulted with the following attributes, where, four different species of macrofungi were identified and classified including Ganoderma, Coprinellus and Cookeina. Information on Basidiomycota and Ascomycota diversity -
Forestry Department Food and Agriculture Organization of the United Nations
Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS INDONESIA January 2007 Forest Resources Development Service Working Paper FBS/19E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests - Indonesia DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Indonesia. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests - Indonesia TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases.................................................................................................................. -
Methoxylaricinolic Acid, a New Sesquiterpene from the Fruiting
J. Antibiot. 59(7): 432–434, 2006 THE JOURNAL OF NOTE [_ ANTIBIOTICSJ Methoxylaricinolic Acid, a New Sesquiterpene from the Fruiting Bodies of Stereum ostrea Young-Hee Kim, Bong-Sik Yun, In-Ja Ryoo, Jong-Pyung Kim, Hiroyuki Koshino, Ick-Dong Yoo Received: May 18, 2006 / Accepted: July 19, 2006 © Japan Antibiotics Research Association Abstract Methoxylaricinolic acid (1), a new room temperature. The combined extract was concentrated sesquiterpene with drimane skeleton was isolated from the in vacuo to give a syrup, which was partitioned between fruiting bodies of Stereum ostrea, together with the known chloroform and water. The chloroform-soluble part (7.7 g) compound laricinolic acid (2). The structure of 1 was was subjected to silica gel column chromatography and determined as 12-methoxy-7-oxo-11-drimanoic acid on the eluted by a gradient with increasing amount of methanol basis of spectroscopic analysis. in chloroform (from 100 : 1 to 1 : 1, v/v) to give an active fraction. The active fraction was chromatographed on a Keywords methoxylaricinolic acid, Stereum ostrea, column of Sephadex LH-20 eluting with chloroform/ chemical structure methanol (1 : 1, v/v), followed by HPLC using a YMC pack ODS-A column (4.6 mm i.d.ϫ150 mm) eluting with acetonitrile/water (70 : 30, v/v) to afford compounds 1 and 2 having retention times of 10.4 and 13.5 minutes, Stereum species produce many unique secondary respectively. metabolites including sesquiterpenes such as hirsutane [1], The physico-chemical properties of methoxylaricinolic Ϫ sterepolide [2] and sterpurene [3], benzaldehydes [4] and acid (1) are as follows; yellow oil, [a]D 80.0° (c 0.01, benzofurans [5]. -
Kinetic Properties of Manganese Peroxidase from the Mushroom Stereum Ostrea and Its Ability to Decolorize Dyes
J. Microbiol. Biotechnol. (2012), 22(11), 1540–1548 http://dx.doi.org/10.4014/jmb.1112.12011 First published online July 29, 2012 pISSN 1017-7825 eISSN 1738-8872 Kinetic Properties of Manganese Peroxidase from the Mushroom Stereum ostrea and its Ability to Decolorize Dyes Praveen, K.1, K. Y. Usha1, Buddolla Viswanath2, and B. Rajasekhar Reddy1* 1Department of Microbiology, Sri Krishnadevaraya University, Anantapur-515 055, Andhra Pradesh, India 2Department of Virology, Sri Venkateswara University, Tirupati-517502, Andhra Pradesh, India Received: December 7, 2011 / Revised: June 21, 2012 / Accepted: June 26, 2012 Manganese peroxidase (MnP) was isolated from the peroxidases (LiP). Owing to the low substrate specificity culture filtrate of the wood log mushroom Stereum ostrea of lignolytic enzymes, they can oxidize a wide range of (S. ostrea), grown on Koroljova medium, and then purified compounds with structural similarities to lignin, so they by ammonium sulfate [70% (w/v)] fractionation, DEAE- play an important role in the bioremediation of various cellulose anion exchange chromatography, and Sephadex toxic compounds in soils and waste waters [25]. White-rot G-100 column chromatography, with an attainment of fungi form a diverse group that contains a large number 88.6-fold purification and the recovery of 22.8% of initial of genera, some of which have not been explored for use activity. According to SDS-PAGE the molecular mass of in lignolytic systems. Certain white-rot fungi such as the MnP was 40 kDa. The optimal pH and temperature Phanerochaete chrysosporium, Pleurotus eryngii, Pleurotus were found to be 4.5 and 35oC, respectively. The enzyme ostreatus, and Trametes versicolor have drawn more was stable even after exposure to a pH range of 4.5 to 6.0, attention than other ligninolytic enzymes [4, 24, 30, 33]. -
Diversity of Ganoderma Pathogen in Pontianak, West Kalimantan: Characteristics, Virulence and Ability to Infect Acacia Mangium Seedlings
BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 2, March 2018 E-ISSN: 2085-4722 Pages: 465-471 DOI: 10.13057/biodiv/d190213 Diversity of Ganoderma pathogen in Pontianak, West Kalimantan: Characteristics, virulence and ability to infect Acacia mangium seedlings ROSA SURYANTINI♥, REINE SUCI WULANDARI♥♥ Faculty of Forestry, Universitas Tanjungpura. Jl. Imam Bonjol, Pontianak 78124, West Kalimantan, Indonesia. Tel./Fax. +62-561-767373, ♥email: [email protected], ♥♥ [email protected] Manuscript received: 19 January 2018. Revision accepted: 20 February 2018. Abstract. Suryantini R, Wulandari RS. 2018. Diversity of Ganoderma pathogen in Pontianak, West Kalimantan: Characteristics, virulence and ability to infect Acacia mangium seedlings. Biodiversitas 19: 465-471. The study aimed to determine morphological characteristics and virulence of Ganoderma isolates. The method that was used: isolation and characterization isolate from Acacia mangium, palm oil (Elaeis guineensis) and rubber (Hevea brasiliensis); inoculation of isolate in A. mangium; its influence to seedling dry weight. Results showed that isolated from A. mangium is G. lucidum, from palm oil is G. boninense and isolated from rubber plant is G. applanatum. Symptoms were observed within 3 months after inoculation. Symptoms began with chlorosis, necrosis and then seedling death. The G. lucidum is of highest virulent (2.08) compare to G. boninense (1.42). Whereas the one which isolated from rubber plant is moderately virulent (0.92). Ganoderma infection was indicated by decreasing the dry weight of infected seedlings. Difference type of isolates did not significantly effect to the decreasing of seedling dry weight 3.82 g (inoculated by G. lucidum), 4.01 g (inoculated by G. boninense), 5.02 g (inoculated by G. -
Bat Fungus Takes Its Toll on the Little Guys in Early 2006, a Caver Noticed and Photographed What Appeared to Be a Fine White Mass on Bats in Howe’S Cave in New York
50:3 N ⁄ D 2009 .. Bat Fungus Takes Its Toll on the Little Guys In early 2006, a caver noticed and photographed what appeared to be a fine white mass on bats in Howe’s Cave in New York. Within a year biologists at the New York State Department of Environmental Conservation documented the condition and gave it the name “white-nose syndrome” (WNS) because the fine white fungal mat appeared around the faces of some bats. In fact, the fungus was found to have invaded deep into the skin and wings of many bats. WNS appears to be responsible for killing large numbers of bats. In some caves the losses are between 90 and 100 percent! The white-nose syndrome has subsequently been identified in other northeastern states: Connecticut, Massachusetts, Maine, and Vermont. This winter WNS was confirmed in New Jersey, Pennsylvania, West Virginia, and Virginia. Recent news reports state that the fungus has been found on bats in the state of Delaware. In an effort to halt or at least restrict the spread of the fungus among bats, the United States Forest Service, Department of Agriculture, and the Fish & Wildlife Service, Department of the Interior, have closed thousands of caves and abandoned mines (where bats are known to hibernate) located on federal lands and requested a voluntary moratorium on recreational activities in caves in 17 states. (Continued on page 7) Above right: Close-up of In This Issue white-nose syndrome. Photo provided by Marc Bosch, U.S. From the President...................... 2 Field Service (Department of Agriculture). Alberta’s Mushroom .................. -
Turkey Tail Fungus Is Found on Decaying Trees, Stumps, and Logs
A Thanksgiving Tail A common mushroom, turkey tail fungus is found on decaying trees, stumps, and logs. By J. Morton Galetto, CU Maurice River In honor of the upcoming holiday I’ve decided to talk about one of our most common fungi, turkey tail, a shelf or bracket fungus. Its name comes from the concentric rings in varying shades of brown on its fanned upper side, resembling a wild turkey’s tail. Its scientific name is trametes versicolor, versicolor meaning “of several colors.” Turkey tail’s spore-producing reproductive structure is called a conk, which is the visible fanned portion above the ground with multicolored stripes in concentric arcs. These colors are extremely variable: beige, cinnamons, oranges to brown, and reddish to purple hues. The semi- circular rings are usually well defined. The upper striped side of the conk is covered in fine hairs that are velvety. The underside is white and covered in pores that hold its reproductive spores, gills that are more common to other mushroom fungi. This variety is tough and leathery compared to other fungi. It can be eaten but is not tasty, leading most guides to call it inedible. However extracts, teas, and other compounds are made from it, primarily for alternative medicines. We will touch on that later. The pores place it into a family called polyporaceae or polypore fungi. These small tubes on the underside are hard to see with the naked eye but appear at 2-5 tubes per millimeter, so they are really tiny. The conks are not limited to a specific time of year. -
Hyphodiscus</I> (<I>Helotiales</I>) on <I>Stereum</I>
ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON Volume 115, pp. 11–17 January–March 2011 doi: 10.5248/115.11 A new species of Hyphodiscus (Helotiales) on Stereum Kadri Pärtel1,2* & Kadri Põldmaa1 1Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu Lai 40, EE-51005, Tartu, Estonia 2Mycological Herbarium, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Riia 181, EE-51014 Tartu, Estonia *Corresponding author: [email protected] Abstract — A new species, Hyphodiscus stereicola, is described based on material from Northern Europe, the Canary Islands, and North America. In all of these, greenish apothecia grew on decayed basidiomata of Stereum spp. Morphology and host specialisation of the new species are compared with those of other members of the genus. Key words — fungicolous ascomycetes, rDNA, taxonomy Introduction Hyphodiscus is a genus in the order Helotiales characterised by hairy apothecia that are formed on dead, often decorticated, deciduous or coniferous wood. Several species occur on decaying fruitbodies of polypores and corticioid fungi. Several years ago a light glaucous fungus was found on old basidiomata of Stereum in Mexico. The material was sent for identification to the late Ain Raitviir (Tartu, Estonia), who made some hand-written remarks about the delimitation of this fungicolous species as a member of the genus Hyphodiscus. Soon a similar specimen was collected in Northern Europe, from Estonia. In autumn 2008, additional material was found from La Gomera (Canary Islands) and Estonia. All four collections are similar in their morphology and host. As these represent a unique combination of characters in the genus Hyphodiscus, a new species will be described herein.