New Additions to Macrofungi of Telangana State, India
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Collection and Screening of Basidiomycetes for Better Lignin Degraders
Int. J. LifeSc. Bt & Pharm. Res. 2012 D Seshikala and M A Singara Charya, 2012 ISSN 2250-3137 www.ijlbpr.com Vol. 1, No. 4, October 2012 © 2012 IJLBPR. All Rights Reserved Research Paper COLLECTION AND SCREENING OF BASIDIOMYCETES FOR BETTER LIGNIN DEGRADERS D Seshikala1* and M A Singara Charya1 *Corresponding Author: D Seshikala, [email protected] Considering the potentialities of white rot basidiomycetes in biobleaching process, 37 white rot fungi were collected from different forest areas of Andhra Pradesh, India. All of them were screened for lignolytic enzyme production. Out of them 25 different organisms were with lignolytic capacity. Then they were quantitatively and qualitatively analyzed for Laccase, LiP and MnP enzymes. Among the studied organisms Stereum ostrea (Laccase 40.02U/L ,MnP 51.59U/L, LiP 11.87U/L), Tremella frondosa (Laccase 35.07U/L, MnP 29.12U/L, LiP 5.95U/L) Tremates versicolour (MnP and LiP production i.e 56.13 U/L, LiP 23.26 U/L) could show maximum enzyme production. All the 25 organisms could produce Laccase but few failed to produce MnP and LiP. The organisms which produced both enzymes were grown in the liquid cultures. That culture filtrate was used for qualitative (SDS PAGE)and quantitative (enzyme assay) analysis. Keywords: Basidiomycetes, White rot fungi, Lignolytic enzymes, Laccase, MnP. INTRODUCTION fungi and their ability to degrade complex and Lignin is the most abundant renewable aromatic recalcitrant organic molecules also makes them polymer and is known as one of the most attractive microorganisms for bioremediation of recalcitrant biomaterials on earth Crawford soil contaminated by organic pollutants. -
A Forgotten Kingdom Ecologically Industrious and Alluringly Diverse, Australia’S Puffballs, Earthstars, Jellies, Agarics and Their Mycelial Kin Merit Your Attention
THE OTHER 99% – NEGLECTED NATURE The delicate umbrellas of this Mycena species last only fleetingly, while its fungal mycelium persists, mostly obscured within the log it is rotting. Photo: Alison Pouliot A Forgotten Kingdom Ecologically industrious and alluringly diverse, Australia’s puffballs, earthstars, jellies, agarics and their mycelial kin merit your attention. Ecologist Alison Pouliot ponders our bonds with the mighty fungus kingdom. s the sun rises, I venture off-track Fungi have been dubbed the ‘forgotten into a dripping forest in the Otway kingdom’ – their ubiquity and diversity ARanges. Mountain ash tower contrast with the sparseness of knowledge overhead, their lower trunks carpeted about them, they are neglected in in mosses, lichens and liverworts. The conservation despite their ecological leeches are also up early and greet me significance, and their aesthetic and with enthusiasm. natural history fascination are largely A white scallop-shaped form at the unsung in popular culture. The term base of a manna gum catches my eye. ‘flora and fauna’ is usually unthinkingly Omphalotus nidiformis, the ghost fungus. A assumed to cover the spectrum of visible valuable marker. If it’s dark when I return, life. I am part of a growing movement of the eerie pale green glow of this luminous fungal enthusiasts dedicated to lifting fungal cairn will be a welcome beacon. the profile of the ‘third f’ in science, Descending deeper into the forest, a conservation and society. It is an damp funk hits my nostrils, signalling engrossing quest, not only because of the fungi. As my eyes adjust and the morning alluring organisms themselves but also for lightens, I make out diverse fungal forms the curiosities of their social and cultural in cryptic microcosms. -
Phylogeny, Morphology, and Ecology Resurrect Previously Synonymized Species of North American Stereum Sarah G
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342840; this version posted October 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny, morphology, and ecology resurrect previously synonymized species of North American Stereum Sarah G. Delong-Duhon and Robin K. Bagley Department of Biology, University of Iowa, Iowa City, IA 52242 [email protected] Abstract Stereum is a globally widespread genus of basidiomycete fungi with conspicuous shelf-like fruiting bodies. Several species have been extensively studied due to their economic importance, but broader Stereum taxonomy has been stymied by pervasive morphological crypsis in the genus. Here, we provide a preliminary investigation into species boundaries among some North American Stereum. The nominal species Stereum ostrea has been referenced in field guides, textbooks, and scientific papers as a common fungus with a wide geographic range and even wider morphological variability. We use ITS sequence data of specimens from midwestern and eastern North America, alongside morphological and ecological characters, to show that Stereum ostrea is a complex of at least three reproductively isolated species. Preliminary morphological analyses show that these three species correspond to three historical taxa that were previously synonymized with S. ostrea: Stereum fasciatum, Stereum lobatum, and Stereum subtomentosum. Stereum hirsutum ITS sequences taken from GenBank suggest that other Stereum species may actually be species complexes. Future work should apply a multilocus approach and global sampling strategy to better resolve the taxonomy and evolutionary history of this important fungal genus. -
Mushrumors the Newsletter of the Northwest Mushroomers Association Volume 20 Issue 3 September - November 2009
MushRumors The Newsletter of the Northwest Mushroomers Association Volume 20 Issue 3 September - November 2009 2009 Mushroom Season Blasts into October with a Flourish A Surprising Turnout at the Annual Fall Show by Our Fungal Friends, and a Visit by David Arora Highlighted this Extraordinary Year for the Northwest Mushroomers On the heels of a year where the weather in Northwest Washington could be described as anything but nor- mal, to the surprise of many, include yours truly, it was actually a good year for mushrooms and the Northwest Mushroomers Association shined again at our traditional fall exhibit. The members, as well as the mushrooms, rose to the occasion, despite brutal conditions for collecting which included a sideways driving rain (which we photo by Pam Anderson thought had come too late), and even a thunderstorm, as we prepared to gather for the greatly anticipated sorting of our catch at the hallowed Bloedel Donovan Community Building. I wondered, not without some trepidation, about what fungi would actually show up for this years’ event. Buck McAdoo, Dick Morrison, and I had spent several harrowing hours some- what lost in the woods off the South Pass Road in a torrential downpour, all the while being filmed for posterity by Buck’s step-son, Travis, a videographer creating a documentary about mushrooming. I had to wonder about the resolve of our mem- bers to go forth in such conditions in or- In This Issue: Fabulous first impressions: Marjorie Hooks der to find the mush- David Arora Visits Bellingham crafted another artwork for the centerpiece. -
Methoxylaricinolic Acid, a New Sesquiterpene from the Fruiting
J. Antibiot. 59(7): 432–434, 2006 THE JOURNAL OF NOTE [_ ANTIBIOTICSJ Methoxylaricinolic Acid, a New Sesquiterpene from the Fruiting Bodies of Stereum ostrea Young-Hee Kim, Bong-Sik Yun, In-Ja Ryoo, Jong-Pyung Kim, Hiroyuki Koshino, Ick-Dong Yoo Received: May 18, 2006 / Accepted: July 19, 2006 © Japan Antibiotics Research Association Abstract Methoxylaricinolic acid (1), a new room temperature. The combined extract was concentrated sesquiterpene with drimane skeleton was isolated from the in vacuo to give a syrup, which was partitioned between fruiting bodies of Stereum ostrea, together with the known chloroform and water. The chloroform-soluble part (7.7 g) compound laricinolic acid (2). The structure of 1 was was subjected to silica gel column chromatography and determined as 12-methoxy-7-oxo-11-drimanoic acid on the eluted by a gradient with increasing amount of methanol basis of spectroscopic analysis. in chloroform (from 100 : 1 to 1 : 1, v/v) to give an active fraction. The active fraction was chromatographed on a Keywords methoxylaricinolic acid, Stereum ostrea, column of Sephadex LH-20 eluting with chloroform/ chemical structure methanol (1 : 1, v/v), followed by HPLC using a YMC pack ODS-A column (4.6 mm i.d.ϫ150 mm) eluting with acetonitrile/water (70 : 30, v/v) to afford compounds 1 and 2 having retention times of 10.4 and 13.5 minutes, Stereum species produce many unique secondary respectively. metabolites including sesquiterpenes such as hirsutane [1], The physico-chemical properties of methoxylaricinolic Ϫ sterepolide [2] and sterpurene [3], benzaldehydes [4] and acid (1) are as follows; yellow oil, [a]D 80.0° (c 0.01, benzofurans [5]. -
Kinetic Properties of Manganese Peroxidase from the Mushroom Stereum Ostrea and Its Ability to Decolorize Dyes
J. Microbiol. Biotechnol. (2012), 22(11), 1540–1548 http://dx.doi.org/10.4014/jmb.1112.12011 First published online July 29, 2012 pISSN 1017-7825 eISSN 1738-8872 Kinetic Properties of Manganese Peroxidase from the Mushroom Stereum ostrea and its Ability to Decolorize Dyes Praveen, K.1, K. Y. Usha1, Buddolla Viswanath2, and B. Rajasekhar Reddy1* 1Department of Microbiology, Sri Krishnadevaraya University, Anantapur-515 055, Andhra Pradesh, India 2Department of Virology, Sri Venkateswara University, Tirupati-517502, Andhra Pradesh, India Received: December 7, 2011 / Revised: June 21, 2012 / Accepted: June 26, 2012 Manganese peroxidase (MnP) was isolated from the peroxidases (LiP). Owing to the low substrate specificity culture filtrate of the wood log mushroom Stereum ostrea of lignolytic enzymes, they can oxidize a wide range of (S. ostrea), grown on Koroljova medium, and then purified compounds with structural similarities to lignin, so they by ammonium sulfate [70% (w/v)] fractionation, DEAE- play an important role in the bioremediation of various cellulose anion exchange chromatography, and Sephadex toxic compounds in soils and waste waters [25]. White-rot G-100 column chromatography, with an attainment of fungi form a diverse group that contains a large number 88.6-fold purification and the recovery of 22.8% of initial of genera, some of which have not been explored for use activity. According to SDS-PAGE the molecular mass of in lignolytic systems. Certain white-rot fungi such as the MnP was 40 kDa. The optimal pH and temperature Phanerochaete chrysosporium, Pleurotus eryngii, Pleurotus were found to be 4.5 and 35oC, respectively. The enzyme ostreatus, and Trametes versicolor have drawn more was stable even after exposure to a pH range of 4.5 to 6.0, attention than other ligninolytic enzymes [4, 24, 30, 33]. -
Fall 2012 Species List Annex October 2012 Lummi Island Foray Species List
MushRumors The Newsletter of the Northwest Mushroomers Association Volume 23, Issue 2 Summer - Fall, 2012 Record 88 Days Without Measurable Precipitation Defines Northwest Washington’s 2012 Mushroom Season As June had faded into the first week of July, after a second consecutive year of far above average rainfall, no one could have anticipated that by the end of the second week of July we would see virtually no more rain until October 13th, only days before the Northwest Mushroomer’s Association annual Fall Mushroom Show. The early part of the season had offered up bumper crops of the prince (Agaricus augustus), and, a bit later, similar Photo by Jack Waytz quantities of the sulphur shelf (Laetiporus coniferarum). There were also some anomalous fruitings, which seemed completely inexplicable, such as matsutake mushrooms found in June and an exquisite fruiting of Boletus edulis var. grand edulis in Mt. Vernon at the end of the first week of July, under birch, (Pictured on page 2 of this letter) and Erin Moore ran across the king at the Nooksack in Deming, under western hemlock! As was the case last year, there was a very robust fruiting of lobster mushrooms in advance of the rains. It would seem that they need little, or no moisture at all, to have significant flushes. Apparently, a combination of other conditions, which remain hidden from the 3 princes, 3 pounds! mushroom hunters, herald their awakening. The effects of the sudden drought were predictably profound on the mycological landscape. I ventured out to Baker Lake on September 30th, and to my dismay, the luxuriant carpet of moss which normally supports a myriad of Photo by Jack Waytz species had the feel of astro turf, and I found not a single mushroom there, of any species. -
Bat Fungus Takes Its Toll on the Little Guys in Early 2006, a Caver Noticed and Photographed What Appeared to Be a Fine White Mass on Bats in Howe’S Cave in New York
50:3 N ⁄ D 2009 .. Bat Fungus Takes Its Toll on the Little Guys In early 2006, a caver noticed and photographed what appeared to be a fine white mass on bats in Howe’s Cave in New York. Within a year biologists at the New York State Department of Environmental Conservation documented the condition and gave it the name “white-nose syndrome” (WNS) because the fine white fungal mat appeared around the faces of some bats. In fact, the fungus was found to have invaded deep into the skin and wings of many bats. WNS appears to be responsible for killing large numbers of bats. In some caves the losses are between 90 and 100 percent! The white-nose syndrome has subsequently been identified in other northeastern states: Connecticut, Massachusetts, Maine, and Vermont. This winter WNS was confirmed in New Jersey, Pennsylvania, West Virginia, and Virginia. Recent news reports state that the fungus has been found on bats in the state of Delaware. In an effort to halt or at least restrict the spread of the fungus among bats, the United States Forest Service, Department of Agriculture, and the Fish & Wildlife Service, Department of the Interior, have closed thousands of caves and abandoned mines (where bats are known to hibernate) located on federal lands and requested a voluntary moratorium on recreational activities in caves in 17 states. (Continued on page 7) Above right: Close-up of In This Issue white-nose syndrome. Photo provided by Marc Bosch, U.S. From the President...................... 2 Field Service (Department of Agriculture). Alberta’s Mushroom .................. -
Turkey Tail Fungus Is Found on Decaying Trees, Stumps, and Logs
A Thanksgiving Tail A common mushroom, turkey tail fungus is found on decaying trees, stumps, and logs. By J. Morton Galetto, CU Maurice River In honor of the upcoming holiday I’ve decided to talk about one of our most common fungi, turkey tail, a shelf or bracket fungus. Its name comes from the concentric rings in varying shades of brown on its fanned upper side, resembling a wild turkey’s tail. Its scientific name is trametes versicolor, versicolor meaning “of several colors.” Turkey tail’s spore-producing reproductive structure is called a conk, which is the visible fanned portion above the ground with multicolored stripes in concentric arcs. These colors are extremely variable: beige, cinnamons, oranges to brown, and reddish to purple hues. The semi- circular rings are usually well defined. The upper striped side of the conk is covered in fine hairs that are velvety. The underside is white and covered in pores that hold its reproductive spores, gills that are more common to other mushroom fungi. This variety is tough and leathery compared to other fungi. It can be eaten but is not tasty, leading most guides to call it inedible. However extracts, teas, and other compounds are made from it, primarily for alternative medicines. We will touch on that later. The pores place it into a family called polyporaceae or polypore fungi. These small tubes on the underside are hard to see with the naked eye but appear at 2-5 tubes per millimeter, so they are really tiny. The conks are not limited to a specific time of year. -
Hyphodiscus</I> (<I>Helotiales</I>) on <I>Stereum</I>
ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON Volume 115, pp. 11–17 January–March 2011 doi: 10.5248/115.11 A new species of Hyphodiscus (Helotiales) on Stereum Kadri Pärtel1,2* & Kadri Põldmaa1 1Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu Lai 40, EE-51005, Tartu, Estonia 2Mycological Herbarium, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Riia 181, EE-51014 Tartu, Estonia *Corresponding author: [email protected] Abstract — A new species, Hyphodiscus stereicola, is described based on material from Northern Europe, the Canary Islands, and North America. In all of these, greenish apothecia grew on decayed basidiomata of Stereum spp. Morphology and host specialisation of the new species are compared with those of other members of the genus. Key words — fungicolous ascomycetes, rDNA, taxonomy Introduction Hyphodiscus is a genus in the order Helotiales characterised by hairy apothecia that are formed on dead, often decorticated, deciduous or coniferous wood. Several species occur on decaying fruitbodies of polypores and corticioid fungi. Several years ago a light glaucous fungus was found on old basidiomata of Stereum in Mexico. The material was sent for identification to the late Ain Raitviir (Tartu, Estonia), who made some hand-written remarks about the delimitation of this fungicolous species as a member of the genus Hyphodiscus. Soon a similar specimen was collected in Northern Europe, from Estonia. In autumn 2008, additional material was found from La Gomera (Canary Islands) and Estonia. All four collections are similar in their morphology and host. As these represent a unique combination of characters in the genus Hyphodiscus, a new species will be described herein. -
A Sequence Database for the Identification of Ectomycorrhizal Basidiomycetes by Phylogenetic Analysis
Molecular Ecology (1998) 7, 257–272 A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis T. D. BRUNS,* T. M. SZARO,* M. GARDES,† K. W. CULLINGS,‡ J. J. PAN,§ D. L. TAYLOR,** T. R. HORTON,†† A. KRETZER,‡‡ M. GARBELOTTO,* and Y. LI§§ *Department of Plant and Microbial Biology, University of California, Berkeley, 94720–3102, USA, †CESAC/CNRS, Université Paul Sabatier/Toulouse III, 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4, France, ‡NASA-Ames Research Center, MS-239-4, Moffett Field, CA 94035-1000, §Department of Biology, Indiana University, Bloomington IN 47405, USA, **Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA, ††USDA Forest Service, Forest Science Laboratory, Corvallis, OR 97331, USA, ‡‡Dept of Botany and Plant Pathology, Corvallis, OR 97331, USA, §§Fox Chase Cancer Center, 7701 Burholme Ave, Philadelphia, PA19911, USA Abstract We have assembled a sequence database for 80 genera of Basidiomycota from the Hymenomycete lineage (sensu Swann & Taylor 1993) for a small region of the mitochon- drial large subunit rRNA gene. Our taxonomic sample is highly biased toward known ectomycorrhizal (EM) taxa, but also includes some related saprobic species. This gene fragment can be amplified directly from mycorrhizae, sequenced, and used to determine the family or subfamily of many unknown mycorrhizal basidiomycetes. The method is robust to minor sequencing errors, minor misalignments, and method of phylogenetic analysis. Evolutionary inferences are limited by the small size and conservative nature of the gene fragment. Nevertheless two interesting patterns emerge: (i) the switch between ectomycorrhizae and saprobic lifestyles appears to have happened convergently several and perhaps many times; and (ii) at least five independent lineages of ectomycorrhizal fungi are characterized by very short branch lengths. -
<I>Rickenella Fibula</I>
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2017 Stable isotopes, phylogenetics, and experimental data indicate a unique nutritional mode for Rickenella fibula, a bryophyte- associate in the Hymenochaetales Hailee Brynn Korotkin University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Evolution Commons Recommended Citation Korotkin, Hailee Brynn, "Stable isotopes, phylogenetics, and experimental data indicate a unique nutritional mode for Rickenella fibula, a bryophyte-associate in the Hymenochaetales. " Master's Thesis, University of Tennessee, 2017. https://trace.tennessee.edu/utk_gradthes/4886 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Hailee Brynn Korotkin entitled "Stable isotopes, phylogenetics, and experimental data indicate a unique nutritional mode for Rickenella fibula, a bryophyte-associate in the Hymenochaetales." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Ecology