Strategic Ejaculation in Simultaneously Hermaphroditic Land Snails: More Sperm Into Virgin Mates Kazuki Kimura* and Satoshi Chiba

Total Page:16

File Type:pdf, Size:1020Kb

Strategic Ejaculation in Simultaneously Hermaphroditic Land Snails: More Sperm Into Virgin Mates Kazuki Kimura* and Satoshi Chiba Kimura and Chiba BMC Evolutionary Biology 2013, 13:264 http://www.biomedcentral.com/1471-2148/13/264 RESEARCH ARTICLE Open Access Strategic ejaculation in simultaneously hermaphroditic land snails: more sperm into virgin mates Kazuki Kimura* and Satoshi Chiba Abstract Background: It has been theorised that sperm competition promotes the strategic usage of costly sperm. Although sperm competition is thought to be an important driving force of reproductive traits in simultaneous hermaphrodites as well as in species with separate sexes, empirical studies on strategic ejaculation in simultaneous hermaphrodites are scarce. Results: In the present study, we tested whether the simultaneously hermaphroditic land snail Euhadra quaesita adjusts the number of sperm donated according to the condition of the mate and whether the pattern of strategic ejaculation is in line with previously suggested theories. We found that individuals donated much more sperm when they copulated with a virgin mate than when they copulated with a non-virgin. Conclusion: The virgin-biased pattern of ejaculation matches the theoretical prediction and suggests that sperm competition significantly influence the reproductive traits of simultaneously hermaphroditic land snails. Keywords: Sperm competition, Strategic ejaculation, Sperm allocation, Simultaneous hermaphrodites, Land snails Background expected fertility in a mating event, which include mate If a female copulates with more than one male and condition and sperm competition levels [10,11]. Indeed, stores the resulting sperm, sexual selection is likely to such strategic ejaculation has been reported in many an- continue after copulation via sperm competition and imals, including insects, fish, and mammals [12]. As in cryptic female choice. Although the outcome of sperm species with separate sexes, post-copulatory sexual selec- competition can be influenced by non-numerical factors tion is thought to be an important evolutionary force such as sperm length and seminal fluid composition leading to morphological and behavioral diversification [1,2], the relative number of sperm transferred by com- in simultaneous hermaphrodites, which have male and peting males is a key predictor of fertilization success female functions at the same time [13,14]. Moreover, under post-copulatory reproductive conditions in several previous empirical studies have shown that such organ- species [3-5]. Because sperm cells are relatively small isms are careful about the use of resources for and require less energy to produce than eggs, males are reproduction and can adjust the allocation of resources expected to evolve an undiscriminating eagerness to between their male and female functions [15]. Therefore, copulate and transfer their sperm, whereas females are simultaneous hermaphrodites are also expected to be expected to show a discriminating passivity [6]. How- prudent with their limited male reserves. However, the ever, accumulating evidence has suggested that sperm literature on this point has been dominated by studies and seminal fluids are, in fact, costly to produce [7-9]. on species with separate sexes. Selection would therefore favour males that adjust their Several factors are known to be involved in the stra- ejaculate expenditure according to the indicators of tegic usage of limited male reserves. Among these fac- tors, sperm competition risk and intensity have been well studied from both theoretical [16-18] and empirical * Correspondence: [email protected] Department of Environmental Life Sciences, Graduate School of Life perspectives [19-21]. The sperm competition risk model Sciences, Tohoku University, Kawauchi 41, Aoba-ku, Sendai 980-8576, Japan considers the probability that sperm competition occurs © 2013 Kimura and Chiba; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Kimura and Chiba BMC Evolutionary Biology 2013, 13:264 Page 2 of 7 http://www.biomedcentral.com/1471-2148/13/264 in a focal female [18]. Alternatively, the sperm competi- sperm transfer [30]. When individuals reciprocally tion intensity model applies the number of competitors intromit their penises in a single mating event, they may when females mate with more than two males [17]. For alter the amount of sperm transferred to their mates example, animals use the number of rivals and the mat- (autosperm) based on the amount of sperm received ing history of their mates as indicators in these cases. (allosperm). Although a pattern of strategic ejaculation Theoretical studies have shown that the properties of according to the mate’s mating status (virgin or non- the mates with which males should spend more ejaculate virgin) was reported in a simultaneously hermaphroditic are species or population specific [11]. Engqvist & freshwater snail, there remains the possibility that the Reinhold [22] have shown that when ejaculates from patterns of resource allocation to a female function differ more than two males compete to fertilize ova (i.e., the between virgin and non-virgin mates, and thus the effect sperm competition intensity model), the remating fre- of mate’s fecundity was unclear [31]. Moreover, although quency of the mates and the fertilization pattern of the large individuals of the hermaphroditic land snail sperm from several mates determine the evolutionary Succinea putris adjust their ejaculate expenditures ac- consequences of strategic ejaculation. Their model has cording to the body sizes of their mates, this result may predicted that a strategy in which larger ejaculations are be explainable in terms of sperm transfer number of the invested in favour of non-virgin mates is evolutionary mates because body size is significantly correlated with stable whenever the remating rate is low. On the other ejaculation size in this species [32]. Therefore, experi- hand, when the remating rate is high, last-male sperm ments that examine these factors at the same time are precedence (i.e., the fertilization priority of sperm from needed to test the theories of sperm competition inten- the latter male) is necessary for the evolution of the sity in simultaneous hermaphrodites. Although only a strategy focusing on non-virgins. Conversely, first-male limited literature exists on strategic ejaculation in simul- sperm precedence or random fertilization lead to stra- taneous hermaphrodites, Baur et al. [33] examined it tegic ejaculation that prioritizes virgin mates. Simultan- and found no evidence of strategic ejaculation according eous hermaphrodites that have a habit of mating with to either mate mating status, mate body size, and mate reciprocal intromission (i.e., they play both male and sperm transfer number in the simultaneously hermaph- female roles and exchange sperm in a single mating roditic land snail Arianta arbustorum. However, it has event) are expected to satisfy the conditions of sperm been suggested that sexual selection including sperm competition intensity models. Such hermaphroditic ani- competition is weak in Arianta arbustorum [34-36]. mals are thought to be intensely promiscuous because Moreover, although Anthes et al. [37] found that copula- the fertilization success of their male function is ex- tion duration was correlated with sperm competition pected to increase with an increasing number of matings intensity in a simultaneously hermaphroditic sea slug, [23], but see [24], which leads to high remating rates Lange et al. [38] revealed that copulation duration was and sperm competition among several individuals. In not a reliable proxy for sperm transfer number in that hermaphrodites, therefore, the strategy of ejaculation species. Therefore, whether the pattern of strategic should be determined by the sperm priority pattern ac- ejaculation in simultaneous hermaphrodites is in line cording to the theoretical models proposed by Engqvist with the theories of sperm competition games remains & Reinhold [22]. Contrary to the theoretical prediction, an unclear, controversial issue. however, the simultaneously hermaphroditic earthworm In this study, we examined the effects of the mating Eisenia andrei, in which the fertilization pattern is history of the mate (virgin or non-virgin) and other po- thought to be random, exhibits greater ejaculate expend- tential factors (quality and sperm transfer of mates) on iture during copulation with a non-virgin mate than that ejaculate size in the simultaneously hermaphroditic land with a virgin mate [25]. snail Euhadra quaesita. In contrast to the reproductive Other factors have been proposed as important for the traits of A. arbustorum, those of E. quaesita have been allocation of the costly ejaculate of males. Female quality suggested to be influenced by sexual selection [39]. In (e.g., fecundity) is thought to influence ejaculate expend- Cornu aspersum, it has been determined that allosperm iture [26-28]. Moreover, because of their unique repro- near the internal wall of the allosperm storage organ of a ductive systems, another potential factor affects ejaculate mate can survive longer and may have a better chance size in simultaneous hermaphrodites. When there is a of successful fertilisation [40]. Therefore, allosperm from difference in the expected fitness gain between sex roles, the first donor would reach this limited hospitable individuals
Recommended publications
  • Natural Selection in the Origin
    Natural selection in the origin: how does selection act on snails’ shell colour in the source of a diversified population? Shun Ito1, Takahiro Hirano1, Satoshi Chiba1, and Junji Konuma2 1Tohoku University 2Toho University June 7, 2021 Abstract The mechanisms of adaptive radiation with phenotypic diversification and further adaptive speciation have been becoming clearer through a number of studies. Natural selection is one of the primary factors that contribute to these mechanisms. It has been demonstrated that divergent natural selection acts on a certain trait in adaptive radiation. However, it is not often known how natural selection acts on the source of a diversified population, although it has been detected in phylogenetic studies. Our study demonstrates how selection acts on a trait in a source population of diversified population using the Japanese land snail Euhadra peliomphala simodae. This snail’s shell colour has diversified due to disruptive selection after migration from the mainland to islands. We used trail-camera traps to identify the cause of natural selection on both the mainland and an island. We then conducted a mark-recapture experiment on the mainland to detect natural selection and compare the shape and strength of it to previous study in an island. In total, we captured and marked around 1,700 snails, and some of them were preyed on by an unknown predator. The trail-camera traps showed that the predator is the large Japanese field mouse Apodemus speciosus, but this predation did not correlate with shell colour. A Bayesian approach showed that the stabilising selection from factors other than predation acted on shell colour.
    [Show full text]
  • The Asian Tramp Snail Bradybaena Similaris in a Tropical Greenhouse in Arnhem, the Netherlands
    Basteria73(1-3)-TOTAAL:Basteria-basis.qxd 05/10/2009 23:37 Page 61 BASTERIA, 73: 61-64, 2009 The Asian tramp snail Bradybaena similaris in a tropical greenhouse in Arnhem, The Netherlands A.J. DE WINTER, H.J.W.M. CREMERS & D.M. SOES National Museum of Natural History Naturalis, Postbus 9517, 2300 RA Leiden, The Netherlands; [email protected] The occurrence of the Asian tramp snail Bradybaena similaris (Férussac, 1821) is reported from a tropical greenhouse in Burgers’ Zoo near Arnhem, The Netherlands, where the species has been present at least since 2002. The snail was introduced unintentionally from an unknown source, probably with plant material. The morphology of the genitalia is compared with descriptions in the literature from Brazil and Nosi-Be island (Madagascar). This appears to be the first European record for the species. Keywords: Gastropoda, Stylommatophora, Hygromiidae, Bradybaenidae, invasive species In 2002 the first two authors independently collected respectively a juvenile and an adult shell of a land snail species unfamiliar to them in the tropical greenhouse “Burgers’ Bush”, Burgers’ Zoo, Arnhem, The Netherlands. In 2005 the second author collected a larger sample, which the first author recognized as Bradybaena similaris (Férussac, 1821). This snail was introduced unintentionally from an unknown source, probably with plant material. During joint visits by all authors in 2008 and 2009 the species was found abun- dantly. This probably represents the first published record of B. similaris from The Netherlands. The species was not mentioned by Meeuse & Hubert (1949) in their overview of Dutch greenhouse snails. We have searched in vain for records from other European countries.
    [Show full text]
  • The Ultrastructure of Spermatozoa and Spermiogenesis in Pyramidellid Gastropods, and Its Systematic Importance John M
    HELGOLANDER MEERESUNTERSUCHUNGEN Helgol~inder Meeresunters. 42,303-318 (1988) The ultrastructure of spermatozoa and spermiogenesis in pyramidellid gastropods, and its systematic importance John M. Healy School of Biological Sciences (Zoology, A08), University of Sydney; 2006, New South Wales, Australia ABSTRACT: Ultrastructural observations on spermiogenesis and spermatozoa of selected pyramidellid gastropods (species of Turbonilla, ~gulina, Cingufina and Hinemoa) are presented. During spermatid development, the condensing nucleus becomes initially anterio-posteriorly com- pressed or sometimes cup-shaped. Concurrently, the acrosomal complex attaches to an electron- dense layer at the presumptive anterior pole of the nucleus, while at the opposite (posterior) pole of the nucleus a shallow invagination is formed to accommodate the centriolar derivative. Midpiece formation begins soon after these events have taken place, and involves the following processes: (1) the wrapping of individual mitochondria around the axoneme/coarse fibre complex; (2) later internal metamorphosis resulting in replacement of cristae by paracrystalline layers which envelope the matrix material; and (3) formation of a glycogen-filled helix within the mitochondrial derivative (via a secondary wrapping of mitochondria). Advanced stages of nuclear condensation {elongation, transformation of fibres into lamellae, subsequent compaction) and midpiece formation proceed within a microtubular sheath ('manchette'). Pyramidellid spermatozoa consist of an acrosomal complex (round
    [Show full text]
  • Husbandry of the Carnivorous Land Snail, Powelliphanta Augusta (Gastropoda: Pulmonata: Rhytdidae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ResearchArchive at Victoria University of Wellington Husbandry of the Carnivorous Land Snail, Powelliphanta augusta (Gastropoda: Pulmonata: Rhytdidae) By Thomas Edward Allan A thesis submitted to the Victoria University of Wellington in fulfillment of the requirements for the degree of Master of Science in Ecological Restoration Victoria University of Wellington 2010 1 Abstract Key aspects of the captive husbandry of Powelliphanta augusta, a newly-described New Zealand land snail are investigated: how they should be managed and fed to provide individuals for release, and how a long-term captive population can be maintained as an insurance against extinction in the wild. This project arises from almost all members of this species having been brought into captivity due to their displacement in the wild by an opencast coalmine. Powelliphanta (F: Rhytididae) is a genus of endemic carnivorous snails, which includes 10 species, 27 subspecies and numerous undescribed taxa. As well as its diversity, Powelliphanta is renowned for the large size of its members (up to 90mm diameter) and their attractively-patterned shells. Most taxa are threatened due to habitat loss and predation by introduced mammalian predators. The study commences with a literature review to refine husbandry methods and to assess requirements for captive breeding of snails. From this review investigations are made into stocking densities, substrate, reproductive biology, body condition and growth of the P. augusta captive population. To determine an appropriate stocking density for P. augusta groups of six snails were kept at two densities; with either 720cm2, or 1440cm2 per group.
    [Show full text]
  • Mollusca Three Classes
    Mollusca Three Classes 1. Gastropoda (gastropods)~ slugs and snails 2. Bivalvia (bivalves) ~ clams and other two- shelled shellfish 3. Cephalopoda (cephalopods) ~ squids, octopuses and cuttlefish 1 Bodies of Mollusks • A mollusk has a soft body which is usually covered by a hard outer shell. • Exceptions: – Slugs and octopuses have lost their shells through evolution – Squids have very reduced shells Anatomy of a Mollusk • All mollusks have: – Foot ~ the muscular foot helps it move – Visceral mass ~ contains the gills, gut, and other organs – Mantle ~ covers the visceral mass to protect the mollusks without shells • Most mollusks have: – Shell ~ protects the mollusk from predators and keeps land mollusks from drying out. 2 Symmetry of Mollusks • Mollusks have bilateral symmetry. – The two halves of the body mirror each other. Anatomy of a Snail (gastropod) 3 Anatomy of a Clam (bivalve) Anatomy of a Squid (cephalopod) 4 Eating Behaviors • Bivalves (clams) ~ filter tiny plant and bacteria from the water • Gastropods (snails) ~ eat with a radula (tiny tongue covered with teeth. – The radula is used to scrape algae off rocks and pieces of leaves and seaweed • Cephalopods (squid) ~use tentacles to grab their prey and put it in their powerful jaws. Blue-ringed octopus 5 Market Squid Moon Snail chasing its food 6 Achatina fulica Giant African Land Snail The largest land snail known is the Giant African Land Snail. It can weigh up to 2 pounds and be 15 inches long. Commonly Eaten Mollusks cockles conch oysters clams scallops abalone whelks Mussels Pen shells 7.
    [Show full text]
  • Endemic Land Snail Fauna (Mollusca) on a Remote Peninsula in the Ogasawara Archipelago, Northwestern Pacific1
    Endemic Land Snail Fauna (Mollusca) on a Remote Peninsula in the Ogasawara Archipelago, Northwestern Pacific1 Satoshi Chiba2,3, Angus Davison,4 and Hideaki Mori3 Abstract: Historically, the Ogasawara Archipelago harbored more than 90 na- tive land snail species, 90% of which were endemic. Unfortunately, about 40% of the species have already gone extinct across the entire archipelago. On Haha- jima, the second-largest island and the one on which the greatest number of species was recorded, more than 50% of species are thought to have been lost. We report here the results of a recent survey of the snails of a remote peninsula, Higashizaki, on the eastern coast of Hahajima. Although the peninsula is small (@0.3 km2) and only part is covered by forest (<0.1 km2), we found 12 land snail species, all of which are endemic to Ogasawara. Among these species, five had been thought to already be extinct on Hahajima, including Ogasawarana yoshi- warana and Hirasea acutissima. Of the former, there has been no record since its original description in 1902. Except for the much larger island of Anijima and the main part of Hahajima, no single region on the Ogasawara Archipelago maintains as great a number of native land snail species. It is probable that the land snail fauna of the Higashizaki Peninsula is exceptionally well preserved be- cause of a lack of anthropogenic disturbance and introduced species. In some circumstances, even an extremely small area can be an important and effective refuge for threatened land snail faunas. The native land snail fauna of the Pacific one such example: of 95 recorded species, islands is one of the most seriously endan- more than 90% are endemic (Kuroda 1930, gered faunas in the world (e.g., Murray et al.
    [Show full text]
  • (Archachatina Marginata) FED MILK LEAF (Euphorbia Heterophylla) SUPPLEMENTED with CALCIUM from THREE SOURCES (EGG SHELL, OYSTER SHELL and BONE MEAL) O.O
    European Journal of Agriculture and Forestry Research Vol.3, No.3, pp.28-33, July 2015 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) PERFORMANCE OF GROWING SNAILS (Archachatina Marginata) FED MILK LEAF (Euphorbia heterophylla) SUPPLEMENTED WITH CALCIUM FROM THREE SOURCES (EGG SHELL, OYSTER SHELL AND BONE MEAL) O.O. Babalolaab*, P.A. Oyewusib, B.N. Adelekeb aDepartment of Biological Sciences, Landmark University, P.M.B. 1001, Omu-Aran, Kwara State, Nigeria. bDepartment of Science Technology, Federal Polytechnic, P.M.B. 5351, Ado-Ekiti, Ekiti State, Nigeria. ABSTRACT: An experiment was conducted to study the performance of growing snails fed a basal diet of milk leaf (Euphorbia heterophylla) supplemented with calcium from three sources (egg shell, oyster shell and bone meal). A total of 120 growing snails with weight range of 100- 110g were randomly allotted to four treatment groups (T1, T2, T3 and T4), replicated three times with 10 snails per replicate in a completely randomized design. The snails on T1, T2 and T3 were fed with milk leaf supplemented with egg shell, oyster shell and bone meal as calcium sources respectively. T4 consisted of snails fed with milk leaf alone. The feeding trial lasted 13 weeks. Calcium supplements analysed contained 73.6% calcium for eggshell, 59.4% calcium for oyster shell and 33.2% calcium for bone meal. The results showed that the total weight gain, shell length, shell width and shell thickness was highest with snails on egg shell (T1). Snails on bonemeal as the calcium supplement (T3) recorded the highest mortality of 40% and had the poorest performance which was similar to those of snails on control diet of milk leaf alone (T4).
    [Show full text]
  • Gastropoda, Stylommatophora) 1 Doi: 10.3897/Zookeys.372.6581 Research Article Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 372:Revision 1–16 (2014) of three camaenid and one bradybaenid species (Gastropoda, Stylommatophora) 1 doi: 10.3897/zookeys.372.6581 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Revision of three camaenid and one bradybaenid species (Gastropoda, Stylommatophora) from China based on morphological and molecular data, with description of a new bradybaenid subspecies from Inner Mongolia, China Pei Wang1,†, Qiong Xiao1,‡, Wei-Chuan Zhou1,§, Chung-Chi Hwang2,| 1 Key Laboratory of Molluscan Quarantine and Identification of AQSIQ, Fujian Entry-Exit Inspection & Quarantine Bureau, Fuzhou, Fujian 350001, China 2 Department of Life Sciences, National University of Kaohsiung, No.700, Kaohsiung University Road, Nan-Tzu District, Kaohsiung 81148, Taiwan † http://zoobank.org/053584B0-FF18-4DB1-B1FB-DD5B1598A848 ‡ http://zoobank.org/899F4240-3528-49E2-9634-CEC190648F50 § http://zoobank.org/F2D83F80-3A6A-4DC8-ABC4-2093430589C7 | http://zoobank.org/D1BC3819-15B9-48C6-AC2F-03A8239F409D Corresponding author: Wei-Chuan Zhou ([email protected]); Chung-Chi Hwang ([email protected]) Academic editor: M. Haase | Received 7 November 2013 | Accepted 9 January 2014 | Published 22 January 2014 http://zoobank.org/5766D7E9-5513-45B4-9C2C-23EC9571D857 Citation: Wang P, Xiao Q, Zhou W-C, Hwang C-C (2014) Revision of three camaenid and one bradybaenid species (Gastropoda, Stylommatophora) from China based on morphological and molecular data, with description of a new bradybaenid subspecies from Inner Mongolia, China. ZooKeys 372: 1–16. doi: 10.3897/zookeys.372.6581 Abstract We have revised the taxonomy of three camaenid and one bradybaenid species from China and described one new subspecies of the genus Bradybaena (Family Bradybaenidae) from Inner Mongolia, China.
    [Show full text]
  • A Phylogenetic Analysis of Polygyridae (Gastropoda: Pulmonata) Based on Mitochondrial DNA Sequence Data Nicholas A
    Southern Illinois University Carbondale OpenSIUC Honors Theses University Honors Program 2012 A Phylogenetic Analysis of Polygyridae (Gastropoda: Pulmonata) Based on Mitochondrial DNA Sequence Data Nicholas A. Defreitas Southern Illinois University Carbondale, [email protected] Follow this and additional works at: http://opensiuc.lib.siu.edu/uhp_theses Recommended Citation Defreitas, Nicholas A., "A Phylogenetic Analysis of Polygyridae (Gastropoda: Pulmonata) Based on Mitochondrial DNA Sequence Data" (2012). Honors Theses. Paper 348. This Dissertation/Thesis is brought to you for free and open access by the University Honors Program at OpenSIUC. It has been accepted for inclusion in Honors Theses by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. A Phylogenetic Analysis of Polygyridae (Gastropoda: Pulmonata) Based on Mitochondrial DNA Sequence Data Nicholas Defreitas University Honors Program Senior Thesis Introduction Despite the increasing use of molecular methods to determine evolutionary relationships among taxa, molecular sequence data have never been used to assess the relationships among the polygyrid snails (Gastropoda:Pulmonata:Polygyridae). This is surprising, considering how large, charismatic and common they are. Polygyrids range across North America, going as far north as parts of Canada and south as Mexico and even deeper into Central America (Pilsbry 1940). There is a particular concentration of these snails in the Appalachian Mountains, where they primarily serve as detritivores and prey for various woodland vertebrates in forest habitats. Yet despite the broad geographic distribution and high abundance of polygyrids in many forest habitats, there is still little known about their phylogeny (evolutionary relationships). Polygyrids are broadly distributed across North America. Mesodontini and Triodopsini are both found in eastern North America (Hubricht 1985).
    [Show full text]
  • Speciation and Gene Flow Between Snails of Opposite Chirality
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Open access, freely available online PLoS BIOLOGY Speciation and Gene Flow between Snails of Opposite Chirality Angus Davison1,2,3*, Satoshi Chiba1, Nicholas H. Barton2,4, Bryan Clarke3 1 Graduate School of Life Sciences, Tohoku University, Aramaki-Aza-Aoba, Aoba-ku, Japan, 2 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom, 3 Institute of Genetics, School of Biology, University of Nottingham, Nottingham, United Kingdom, 4 Department of Genetics, University of Cambridge, Cambridge, United Kingdom Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent ‘‘single-gene speciation’’ or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal- effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation.
    [Show full text]
  • Chromosome Diversity and Evolution in Helicoide a (Gastropoda: Stylommatophora): a Synthesis from Original and Literature Data
    animals Article Chromosome Diversity and Evolution in Helicoide a (Gastropoda: Stylommatophora): A Synthesis from Original and Literature Data Agnese Petraccioli 1, Paolo Crovato 2, Fabio Maria Guarino 1 , Marcello Mezzasalma 1,3,* , Gaetano Odierna 1,* , Orfeo Picariello 1 and Nicola Maio 1 1 Department of Biology, University of Naples Federico II, I-80126 Naples, Italy; [email protected] (A.P.); [email protected] (F.M.G.); [email protected] (O.P.); [email protected] (N.M.) 2 Società Italiana di Malacologia, Via Mezzocannone, 8-80134 Naples, Italy; [email protected] 3 CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairaõ, Portugal * Correspondence: [email protected] (M.M.); [email protected] (G.O.) Simple Summary: The superfamily Helicoidea is a large and diverse group of Eupulmonata. The su- perfamily has been the subject of several molecular and phylogenetic studies which greatly improved our knowledge on the evolutionary relationships and historical biogeography of many families. In contrast, the available karyological information on Helicoidea still results in an obscure general picture, lacking a homogeneous methodological approach and a consistent taxonomic record. Never- theless, the available karyological information highlights the occurrence of a significant chromosomal diversity in the superfamily in terms of chromosome number (varying from 2n = 40 to 2n = 62), Citation: Petraccioli, A.; Crovato, P.; chromosome morphology and the distribution of different karyological features among different Guarino, F.M.; Mezzasalma, M.; taxonomic groups. Here we performed a molecular and a comparative cytogenetic analysis on of Odierna, G.; Picariello, O.; Maio, N.
    [Show full text]
  • European Red List of Non-Marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert
    European Red List of Non-marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert European Red List of Non-marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert IUCN Global Species Programme IUCN Regional Office for Europe IUCN Species Survival Commission Published by the European Commission. This publication has been prepared by IUCN (International Union for Conservation of Nature) and the Natural History of Bern, Switzerland. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, the Natural History Museum of Bern or the European Union concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN, the Natural History Museum of Bern or the European Commission. Citation: Cuttelod, A., Seddon, M. and Neubert, E. 2011. European Red List of Non-marine Molluscs. Luxembourg: Publications Office of the European Union. Design & Layout by: Tasamim Design - www.tasamim.net Printed by: The Colchester Print Group, United Kingdom Picture credits on cover page: The rare “Hélice catalorzu” Tacheocampylaea acropachia acropachia is endemic to the southern half of Corsica and is considered as Endangered. Its populations are very scattered and poor in individuals. This picture was taken in the Forêt de Muracciole in Central Corsica, an occurrence which was known since the end of the 19th century, but was completely destroyed by a heavy man-made forest fire in 2000.
    [Show full text]