Age Determination of Arianta Arbustorum (L.) (Pulmonata) Based on Growth Breaks and Inner Layers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
San Gabriel Chestnut ESA Petition
BEFORE THE SECRETARY OF THE INTERIOR PETITION TO THE U.S. FISH AND WILDLIFE SERVICE TO PROTECT THE SAN GABRIEL CHESTNUT SNAIL UNDER THE ENDANGERED SPECIES ACT © James Bailey CENTER FOR BIOLOGICAL DIVERSITY Notice of Petition Ryan Zinke, Secretary U.S. Department of the Interior 1849 C Street NW Washington, D.C. 20240 [email protected] Greg Sheehan, Acting Director U.S. Fish and Wildlife Service 1849 C Street NW Washington, D.C. 20240 [email protected] Paul Souza, Director Region 8 U.S. Fish and Wildlife Service Pacific Southwest Region 2800 Cottage Way Sacramento, CA 95825 [email protected] Petitioner The Center for Biological Diversity is a national, nonprofit conservation organization with more than 1.3 million members and supporters dedicated to the protection of endangered species and wild places. http://www.biologicaldiversity.org Failure to grant the requested petition will adversely affect the aesthetic, recreational, commercial, research, and scientific interests of the petitioning organization’s members and the people of the United States. Morally, aesthetically, recreationally, and commercially, the public shows increasing concern for wild ecosystems and for biodiversity in general. 1 November 13, 2017 Dear Mr. Zinke: Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. §1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R. §424.14(a), the Center for Biological Diversity and Tierra Curry hereby formally petition the Secretary of the Interior, through the United States Fish and Wildlife Service (“FWS”, “the Service”) to list the San Gabriel chestnut snail (Glyptostoma gabrielense) as a threatened or endangered species under the Endangered Species Act and to designate critical habitat concurrently with listing. -
Shell Morphology, Radula and Genital Structures of New Invasive Giant African Land
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.877977; this version posted December 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Shell Morphology, Radula and Genital Structures of New Invasive Giant African Land 2 Snail Species, Achatina fulica Bowdich, 1822,Achatina albopicta E.A. Smith (1878) and 3 Achatina reticulata Pfeiffer 1845 (Gastropoda:Achatinidae) in Southwest Nigeria 4 5 6 7 8 9 Alexander B. Odaibo1 and Suraj O. Olayinka2 10 11 1,2Department of Zoology, University of Ibadan, Ibadan, Nigeria 12 13 Corresponding author: Alexander B. Odaibo 14 E.mail :[email protected] (AB) 15 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.877977; this version posted December 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The aim of this study was to determine the differences in the shell, radula and genital 21 structures of 3 new invasive species, Achatina fulica Bowdich, 1822,Achatina albopicta E.A. 22 Smith (1878) and Achatina reticulata Pfeiffer, 1845 collected from southwestern Nigeria and to 23 determine features that would be of importance in the identification of these invasive species in 24 Nigeria. -
Arianta 6, 2018
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arianta Jahr/Year: 2018 Band/Volume: 6 Autor(en)/Author(s): diverse Artikel/Article: Abstracts Talks Alpine and other land snails 11-27 ARIANTA 6 and correspond ecologically. For instance, the common redstart is a bird species breeding in the lowlands, whereas the black redstart is native to higher altitudes. Some species such as common swift and kestrel, which are originally adapted to enduring in rocky areas, even found a secondary habitat in the house facades and street canyons of towns and big cities. Classic rock dwellers include peregrine, eagle owl, rockthrush, snowfinch and alpine swift. The presentation focuses on the biology, causes of threat as well as conservation measures taken by the national park concerning the species golden eagle, wallcreeper, crag martin and ptarmigan. Birds breeding in the rocks might not be that high in number, but their survival is all the more fascinating and worth protecting as such! Abstracts Talks Alpine and other land snails Arranged in chronological order of the program Rangeconstrained cooccurrence simulation reveals little niche partitioning among rockdwelling Montenegrina land snails (Gastropoda: Clausiliidae) Zoltán Fehér1,2,3, Katharina JakschMason1,2,4, Miklós Szekeres5, Elisabeth Haring1,4, Sonja Bamberger1, Barna PállGergely6, Péter Sólymos7 1 Central Research Laboratories, Natural History Museum Vienna, Austria; [email protected] -
Mollusca, Archaeogastropoda) from the Northeastern Pacific
Zoologica Scripta, Vol. 25, No. 1, pp. 35-49, 1996 Pergamon Elsevier Science Ltd © 1996 The Norwegian Academy of Science and Letters Printed in Great Britain. All rights reserved 0300-3256(95)00015-1 0300-3256/96 $ 15.00 + 0.00 Anatomy and systematics of bathyphytophilid limpets (Mollusca, Archaeogastropoda) from the northeastern Pacific GERHARD HASZPRUNAR and JAMES H. McLEAN Accepted 28 September 1995 Haszprunar, G. & McLean, J. H. 1995. Anatomy and systematics of bathyphytophilid limpets (Mollusca, Archaeogastropoda) from the northeastern Pacific.—Zool. Scr. 25: 35^9. Bathyphytophilus diegensis sp. n. is described on basis of shell and radula characters. The radula of another species of Bathyphytophilus is illustrated, but the species is not described since the shell is unknown. Both species feed on detached blades of the surfgrass Phyllospadix carried by turbidity currents into continental slope depths in the San Diego Trough. The anatomy of B. diegensis was investigated by means of semithin serial sectioning and graphic reconstruction. The shell is limpet like; the protoconch resembles that of pseudococculinids and other lepetelloids. The radula is a distinctive, highly modified rhipidoglossate type with close similarities to the lepetellid radula. The anatomy falls well into the lepetelloid bauplan and is in general similar to that of Pseudococculini- dae and Pyropeltidae. Apomorphic features are the presence of gill-leaflets at both sides of the pallial roof (shared with certain pseudococculinids), the lack of jaws, and in particular many enigmatic pouches (bacterial chambers?) which open into the posterior oesophagus. Autapomor- phic characters of shell, radula and anatomy confirm the placement of Bathyphytophilus (with Aenigmabonus) in a distinct family, Bathyphytophilidae Moskalev, 1978. -
Survival After Nonlethal Shell Damage in the Gastropod Conus Sponsalis 1
Survival After Nonlethal Shell Damage in the Gastropod Conus sponsalis 1 EDITH ZIPSER and GEERAT J. VERMEIJ Department of Zoology, University of Maryland, College Park, Md. 20742 Abstract- Individuals in a population of Conus sponsalis Hwas s from Pago Bay , Guam , were marked and released in order to study the short-term consequences of artificially inflicted nonlethal shell damage ofa type frequently encountered in the field. Damage to the outer lip had no effect on short-term survival , and the size distribution of injured cones recovered 30 days after release was the same as that at the beginning of the experiment. We conclude that shell damage had no immediate effect on mortality . Repair frequency (number of scars per body whorl) is very low on small individuals and reaches the highest level (0.27) in snails longer than 2 l mm. Two size-dependent factors, growth rate and resistance to crushing , probably contribute to the size distribution of repaired shell injuries. Introduction Repaired injuries on the shells of gastropods record past nonlethal damage that in many cases was probably induced by would-be predators. Relatively high frequencies of repair have been observed in snails from tropical regions. A collection of Conus lividus from Hawaii, for example, contained individuals with as many as 4 scars on the body whorl; the frequency for the whole population was 1.2 scars per body whorl (Currey and Kohn , 1976). This level of damage is not unusual in the genus Conus or in many other tropical taxa (Vermeij , 1978, in preparation; Vermeij, Zipser, and Dudley, 1980). -
Evolution of Nervous Systems and Brains 2
Evolution of Nervous Systems and Brains 2 Gerhard Roth and Ursula Dicke The modern theory of biological evolution, as estab- drift”) is incomplete; they point to a number of other lished by Charles Darwin and Alfred Russel Wallace and perhaps equally important mechanisms such as in the middle of the nineteenth century, is based on (i) neutral gene evolution without natural selection, three interrelated facts: (i) phylogeny – the common (ii) mass extinctions wiping out up to 90 % of existing history of organisms on earth stretching back over 3.5 species (such as the Cambrian, Devonian, Permian, and billion years, (ii) evolution in a narrow sense – Cretaceous-Tertiary mass extinctions) and (iii) genetic modi fi cations of organisms during phylogeny and and epigenetic-developmental (“ evo - devo ”) self-canal- underlying mechanisms, and (iii) speciation – the ization of evolutionary processes [ 2 ] . It remains uncer- process by which new species arise during phylogeny. tain as to which of these possible processes principally Regarding the phylogeny, it is now commonly accepted drive the evolution of nervous systems and brains. that all organisms on Earth are derived from a com- mon ancestor or an ancestral gene pool, while contro- versies have remained since the time of Darwin and 2.1 Reconstruction of the Evolution Wallace about the major mechanisms underlying the of Nervous Systems and Brains observed modi fi cations during phylogeny (cf . [1 ] ). The prevalent view of neodarwinism (or better In most cases, the reconstruction of the evolution of “new” or “modern evolutionary synthesis”) is charac- nervous systems and brains cannot be based on fossil- terized by the assumption that evolutionary changes ized material, since their soft tissues decompose, but are caused by a combination of two major processes, has to make use of the distribution of neural traits in (i) heritable variation of individual genomes within a extant species. -
Calma Glaucoides: a Study in Adaptation
Calma Glaucoides: A study in adaptation. By T. J. Evans, M.A. (Oxoii.), Lecturer in the Medical School, Guy's Hospital, London University. With Plate 11 and 3 Text-figures. A' DETAILED description of certain portions of the anatomy of a small British mollusc is here submitted, not so much as an extension of our knowledge of molluscan structure, as on account of the general biological interest of a unique metabolic type. Whilst retaining the shape and general structural plan of an ueolidiomorph Nudibranch, Calma presents a combination of important departures from that type which may all be directly or indirectly referred to its specialized diet, namely, the eggs and embryos of the smaller shore fishes. So close is the external resemblance to the Aeolid that Alder and Hancock originally (1, PI. xxii, letterpress) placed it in Cuvier's genus Eolis, whereas the modifications to be described are in some respects so great as to be comparable with those associated with a parasitic life. The genus has been recorded only from European waters, and contains Calma glaucoides of Alder and Hancock, commonly taken at Plymouth, Roscoff, and Concarneau, the Eolis albicans of Friele and Hansen (5) from the North Atlantic, and the Forestia mirabilis of Trinchese (9) from the Mediterranean. All three will probably be found on re-examination to belong to one species, C. glaucoides. At Roscoff, Hecht (6) found the animal feeding during June and July on developing eggs of Cottus, Lepadogaster and Liparis under stones, and in September in the swollen radical 440 T. J. EVANS sacs of Laminaria flexicaulis. -
First Record of Double Aperture in a Gastropod Shell
First record of double aperture in a gastropod shell MARCOS V. DA SILVA 1*, MARIANNY K.S. LIMA 1, CRISTIANE X. BARROSO 1, SORAYA G. RABAY 1, CARLOS A.O. MEIRELLES 1, 2 & HELENA MATTHEWS-CASCON 1, 2, 3 1 Universidade Federal do Ceará, Departamento de Biologia, Laboratório de Invertebrados Marinhos do Ceará (LIMCE), Bloco 909, Campus do Pici, 60455-760, Fortaleza, Ceará, Brasil. 2 Programa de Pós-Graduação em Engenharia de Pesca, Campus do Pici, 60356-600, Fortaleza, Ceará, Brasil. 3 Programa de Pós-Graduação em Ciências Marinhas Tropicais, Instituto de Ciências do Mar (LABOMAR), Av. da Abolição, 3207 - Meireles, 60165-081, Fortaleza, Ceará, Brasil. Corresponding author: [email protected] m Abstract. The present study reports the occurrence of a Cerithium atratum (Born, 1778) shell with two apertures. The original aperture (measuring 5.8 by 5.0 mm), blocked by a small pebble fragment, could have prevented the head-foot part of the body to emerge. The gastropod (24.8 mm length) formed a new aperture similar to the original, measuring 5.9 by 4.6 mm and presenting a polished and circular outer lip, and partially formed anal and siphonal canal. This anomaly had not been registered yet in mollusks. Keywords: Cerithium atratum, anomalous, double aperture, neoformation Resumo. Primeiro registro de dupla abertura em concha de gastrópode. O presente estudo relata a ocorrência de um Cerithium atratum (Born, 1778) com dupla abertura na concha. A abertura original (5,8 mm x 5,0 mm), bloqueada por um pequeno fragmento de seixo, pode ter impedido a saída da região cefalopediosa. -
Sperm Allocation in the Simultaneously Hermaphroditic Land Snail Arianta Arbustorum
ANIMAL BEHAVIOUR, 1998, 56, 839–845 Article No. ar980855 Sperm allocation in the simultaneously hermaphroditic land snail Arianta arbustorum BRUNO BAUR, ROLF LOCHER & ANETTE BAUR Department of Integrative Biology, Section of Conservation Biology (NLU), University of Basel (Received 3 November 1997; accepted 13 January 1998; final acceptance 6 March 1998; MS. number: 5697) ABSTRACT To test the idea that individuals of the simultaneously hermaphroditic land snail Arianta arbustorum can control the number of spermatozoa in their spermatophores, we investigated whether they differentially release sperm to virgin or nonvirgin partners with respect to the potential risk of sperm competition in a given mating. The number of sperm transferred ranged from 802 620 to 3 968 800 (X= 2 185 100; N=91), but was related neither to the mating history of the partner nor to copulation duration. This indicates that individuals of A. arbustorum are not able to adjust sperm expenditure to the mating history of the partner. Furthermore, the number of sperm transferred was correlated neither with the size of the donor nor with the size of the recipient. It has been proposed that the sexual conflict between the two genders in simultaneous hermaphrodites could be resolved by gamete trading. Theory predicts that sperm trading should occur in hermaphrodites in which the female role controls fertilization, for example in gastropods with a gametolytic gland and/or sperm storage such as A. arbustorum. To see whether sperm trading occurs, we also examined whether individuals of A. arbustorum adjust the number of sperm they release to the number they receive from their mating partner. -
European Red List of Non-Marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert
European Red List of Non-marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert European Red List of Non-marine Molluscs Annabelle Cuttelod, Mary Seddon and Eike Neubert IUCN Global Species Programme IUCN Regional Office for Europe IUCN Species Survival Commission Published by the European Commission. This publication has been prepared by IUCN (International Union for Conservation of Nature) and the Natural History of Bern, Switzerland. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, the Natural History Museum of Bern or the European Union concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN, the Natural History Museum of Bern or the European Commission. Citation: Cuttelod, A., Seddon, M. and Neubert, E. 2011. European Red List of Non-marine Molluscs. Luxembourg: Publications Office of the European Union. Design & Layout by: Tasamim Design - www.tasamim.net Printed by: The Colchester Print Group, United Kingdom Picture credits on cover page: The rare “Hélice catalorzu” Tacheocampylaea acropachia acropachia is endemic to the southern half of Corsica and is considered as Endangered. Its populations are very scattered and poor in individuals. This picture was taken in the Forêt de Muracciole in Central Corsica, an occurrence which was known since the end of the 19th century, but was completely destroyed by a heavy man-made forest fire in 2000. -
White Garden Snail, Theba Pisana (Müller) (Gastropoda: Helicidae)1 Jane E
EENY-197 doi.org/10.32473/edis-in354-2002 White Garden Snail, Theba pisana (Müller) (Gastropoda: Helicidae)1 Jane E. Deisler, Lionel A. Stange, and Thomas R. Fasulo2 The Featured Creatures collection provides in-depth profiles of insects, nematodes, arachnids and other organisms relevant to Florida. These profiles are intended for the use of interested laypersons with some knowledge of biology as well as academic audiences. Introduction The white garden snail, Theba pisana (Müller), is the worst potential agricultural pest of the helicid snails introduced to North America (Mead 1971). It is the most frequently intercepted foreign land snail (Hanna 1966; Mead 1971), generally arriving in shipments from the Mediterranean Figure 1. The white garden snail, Theba pisana (Müller). countries. Theba pisana shows a strong proclivity for Credits: Esculapio climbing up and into freight for aestivation and is difficult to detect. This snail can survive long and arduous journeys Distribution because of its ability to form a wall of dried mucus, called Theba pisana is native in the Mediterranean countries of an epiphragm, in the aperture of its shell, which reduces Europe, Africa, and the Mid-East (Pilsbry 1939; Burch water loss during dormancy. 1960). The type locality is Italy. Its habitat in Europe is near the coasts of Belguim, southwestern England, and south Theba pisana is capable of explosive reproductive rates Wales, east and south Ireland, western France, Netherlands, where it has been introduced and can be found in densities Portugal, and Spain (where it is occasionally found in the of up to 3000 snails per tree (Mead 1971) after periods of interior) (Kerney and Cameron 1979; Schultes 2011). -
A Review on Persisting Threats to Snail's Diversity and Its Conservation Approaches
Archives of Agriculture and Environmental Science 5(2): 205-217 (2020) https://doi.org/10.26832/24566632.2020.0502019 This content is available online at AESA Archives of Agriculture and Environmental Science Journal homepage: journals.aesacademy.org/index.php/aaes e-ISSN: 2456-6632 REVIEW ARTICLE A review on persisting threats to snail’s diversity and its conservation approaches Varun Dhiman1* , Deepak Pant2, Dushyant Kumar Sharma3 and Prem Prakash4 1Waste Management Laboratory, School of Earth & Environmental Sciences, Central University of Himachal Pradesh, Shahpur - 176206 (Himachal Pradesh), INDIA 2School of Chemical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana-123031, INDIA 3Department of Tree improvement and Genetic resources, College of Horticulture and Forestry, Neri, Hamirpur (Himachal Pradesh) – 177001, INDIA 4Department of Silviculture and Agroforestry, College of Horticulture and Forestry, Neri, Hamirpur (Himachal Pradesh) – 177001, INDIA *Corresponding author’s E-mail: [email protected] ARTICLE HISTORY ABSTRACT Received: 24 March 2020 Snails are important part of our terrestrial, freshwater and marine ecosystems. They are Revised received: 15 May 2020 molluscian members having their effective role in biomonitoring, nutrient cycling and medici- Accepted: 26 May 2020 nal development. They are integral part of food chain system and have direct or indirect impact in maintaining ecological functioning. Besides their importance, they are documented with largest extinction rate as compared to other existed taxa. This is due to the fact that, Keywords unexploration and poor attention has been given in the research and development by the scientific world. Till now, a little information is available related to systematics, life history, Conservation Diversity population biology, threats and conservation status of these slimy organisms.