MERL – A MITSUBISHI ELECTRIC RESEARCH LABORATORY http://www.merl.com Style Machines Matthew Brand Aaron Hertzmann MERL NYU Media Research Laboratory 201 Broadway 719 Broadway Cambridge, MA 02139 New York, NY 1003
[email protected] [email protected] TR-2000-14 April 2000 Abstract We approach the problem of stylistic motion synthesis by learning motion patterns from a highly varied set of motion capture sequences. Each sequence may have a distinct choreography, performed in a distinct style. Learning identifies common choreographic elements across sequences, the different styles in which each element is performed, and a small number of stylistic degrees of freedom which span the many variations in the dataset. The learned model can synthesize novel motion data in any interpolation or extrapolation of styles. For example, it can convert novice ballet motions into the more graceful modern dance of an expert. The model can also be driven by video, by scripts, or even by noise to generate new choreography and synthesize virtual motion-capture in many styles. In Proceedings of SIGGRAPH 2000, July 23-28, 2000. New Orleans, Louisiana, USA. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice.