Directional Emission from Tungsten Disulfide Monolayer Coupled To

Total Page:16

File Type:pdf, Size:1020Kb

Directional Emission from Tungsten Disulfide Monolayer Coupled To RESEARCH ARTICLE www.adpr-journal.com Directional Emission from Tungsten Disulfide Monolayer Coupled to Plasmonic Nanowire-on-Mirror Cavity Shailendra K. Chaubey, Gokul M. A, Diptabrata Paul, Sunny Tiwari, Atikur Rahman, and G. V. Pavan Kumar* Plasmonic nanocavities are important Influencing spectral and directional features of exciton emission characteristics architectures to study because of the very from 2D transition metal dichalcogenides by coupling it to plasmonic nano- high electric field inside the cavity caused [11] cavities has emerged as an important prospect in nanophotonics of 2D materials. by hybridization of gap plasmon. Ultrasmall volume inside the cavity provides Herein, the directional photoluminescence emission from a tungsten disulfide a large Purcell enhancement factor.[12,13] To (WS2) monolayer sandwiched between a single-crystalline plasmonic silver this end, nanocavity formed by a nanoparti- nanowire (AgNW) waveguide and a gold (Au) mirror is experimentally studied, cle on a gold film has been utilized for thus forming a AgNW–WS2–Au cavity. Using polarization-resolved Fourier-plane strong coupling at the single-molecule optical microscopy, the directional emission characteristics from the distal end of level,[14] single-molecule surface-enhanced Raman scattering (SERS),[15,16] controlled the AgNW–WS2–Au cavity are quantified. Given that the geometry simulta- reflectance properties,[17] and enhanced neously facilitates local field enhancement and waveguiding capability, its utility spontaneous emission.[13,18] in 2D material-based, on-chip nanophotonic signal processing is envisaged, Of relevance to this study is the AgNW including nonlinear and quantum optical regimes. on a gold mirror cavity. Nanocavity formed by a AgNW on a gold film, apart from the abovementioned advantages, can also work as an optoplasmonic waveguide of cavity’s 1. Introduction emission, as shown recently by our group.[19] Such nanocavities are also studied in the context of Purcell enhancement,[18] remote In the last few years, 2D transition metal dichalcogenides excitation of the molecules,[19] spontaneous emission enhance- (TMDs) have attracted significant attention because of their novel ment,[18] wavevector distribution,[19] and trion enhancement.[20] – optical and electronic properties.[1 4] Direct bandgap in their Coupling surface plasmon polaritons to TMDs can facilitate monolayer makes them a suitable candidate for electronics appli- interesting optical properties. To this end, studying the optical – cations.[3 5] Very high oscillator strength leads to a narrow peak transition characteristics of TMDs in vicinity of a plasmonic – with a pronounced optical transition.[6,7] In addition, TMDs nanostructure near resonance has gained relevance.[21 24] A vari- exhibit valley polarization effects, making them suitable candi- ety of prospects, such as PL and Raman enhancement,[25,26] – date for spin–orbit interaction studies.[8 10] Coupling 2D materi- enhanced spin–orbit interaction,[20,27] remote excitation of fi [28] [29] [30] als such as a tungsten disul de (WS2) monolayer to plasmonic SERS, spectrum tailoring, strong coupling, and trion nanocavities can enhance and influence light–matter coupling. enhancement,[20] have been achieved using such configuration. In this article, we report on our experimental studies of direc- For these purposes, many plasmonic structures, such as bowtie [31] [32] [29] [30] tional photoluminescence (PL) from WS2 monolayer sandwiched antenna, nanodisk array, nanocube, nanoparticle, and in a unique kind of cavity: silver nanowire (AgNW) on a gold NW,[20,28] have been either fabricated over TMDs[33] or TMDs is mirror. transferred onto the structures.[34] Specifically, in the context of 2D materials, TMDs have been coupled to a single AgNW for – studying remote SERS,[27] second-harmonic generation,[35 38] S. K. Chaubey, G. M. A, D. Paul, S. Tiwari, Dr. A. Rahman, logic operation,[39] Rabi splitting,[40] and plasmon–exciton inter- Prof. G. V. P. Kumar conversion.[20] Silver film–AgNW cavity has been recently uti- Department of Physics – Indian Institute of Science Education and Research lized for the trion enhancement and enhancing the spin orbit Pune 411008, India coupling.[20] E-mail: [email protected] Apart from these effects, a plasmonic AgNW can act as a sub- The ORCID identification number(s) for the author(s) of this article wavelength waveguide as well as a nanoscale antenna, which can can be found under https://doi.org/10.1002/adpr.202100002. be harnessed to route an excited signal and emit the signal at the [41] © 2021 The Authors. Advanced Photonics Research published by Wiley- distal end. This utility of AgNW both as a plasmonic cavity and VCH GmbH. This is an open access article under the terms of the Creative as a waveguide for 2D materials has not been explored, which we Commons Attribution License, which permits use, distribution and do in this article. reproduction in any medium, provided the original work is properly cited. Figure 1 shows the studied geometry. It contains a WS2 mono- DOI: 10.1002/adpr.202100002 layer sandwiched between a plasmonic AgNW and a gold mirror Adv. Photonics Res. 2021, 2100002 2100002 (1 of 6) © 2021 The Authors. Advanced Photonics Research published by Wiley-VCH GmbH www.advancedsciencenews.com www.adpr-journal.com from the other end of the cavity as a function of angle and polari- zation. To achieve this, we use polarization-resolved Fourier- plane optical microscopy to study the emission direction of – – the AgNW WS2 Au cavity and quantify the in-plane angular dis- tribution. By studying the angular distribution and polarization- – – resolved spectra, we show that the AgNW WS2 Au cavity can modify the spectral feature of the WS2 monolayer by interconver- sion between exciton and trion. 2. Result and Discussion 2.1. Directional PL from AgNW–WS2–Au Cavity Figure 1. Schematic of the experimental setup. The WS2 monolayer was Figure 2a is the bright-field image of the AgNW placed on a gold placed over a gold film separated by a 3 nm Al O spacer layer. Single 2 3 mirror AgNW–WS –Au cavity. Excitation of NW end, with a AgNW was placed over the monolayer WS flake. One end of the NW 2 2 tightly focused 532 nm laser, excites the propagating plasmons was excited with 532 nm laser. WS2 PL from the excitation point couples to the NW plasmons, which is further out-coupled from the distal end of along the NW. In addition, the excitation of hybridized gap plas- the NW. The emission from the distal end was collected and was projected mons between the AgNW and the metal film creates high local fi to spectrometer and EMCCD for spectroscopy and Fourier-plane imaging, electric eld, which enhances the PL emission from WS2 mono- respectively. layer. Because of the near field interaction, the PL emission gets coupled to the NW surface plasmon polaritons (SPPs) travelling along the length of the NW. Because of the spatial discontinuity at – – (AgNW WS2 Au cavity). A thin, Al2O3 layer is deposited on gold the NW end, these SPPs are out-coupled as free space photons. In – – mirror, which acts as a buffer layer. In such waveguide-cavity sys- Figure 2b, we observe strong PL emission from the AgNW WS2 tems, a wavevector analysis becomes an important aspect of Au cavity not only from the excitation and distal ends, but also study to quantify the emission process. Motivated by this, our throughout the NW. This is because of the high electric field study focuses on the wavevector distribution of the PL emission in the NW on a metal film cavity, which acts as a hotline along – – fi in the AgNW WS2 Au cavity. Speci cally, we excite one end of the length of the cavity. Figure 2c shows the emission spectrum – – the cavity with a focused 532 nm laser and study the PL spectrum collected from the distal end of the AgNW WS2 Au cavity. To fi Figure 2. Directional emission from the distal end of AgNW. a) Bright- eld image of NW over WS2, which is placed over a gold mirror with a 3 nm spacer layer of Al2O3.WS2 monolayer boundaries are shown with red dotted lines. One end of the NW was excited with 532 nm laser with polarization along the long axis of the NW. b) PL image of the NW after rejecting the elastically scattered light using combination of edge and notch filters. Dotted box shows the fi distal end collection of the NW. c) WS2 PL spectrum collected from the distal end of the NW as per the con guration in (b). d) Fourier space intensity distribution of the PL out-coupled from the distal end of the NW showing directional emission in narrow range of wavevectors. Adv. Photonics Res. 2021, 2100002 2100002 (2 of 6) © 2021 The Authors. Advanced Photonics Research published by Wiley-VCH GmbH www.advancedsciencenews.com www.adpr-journal.com study the wavevector of emission from the cavity, we performed near field is distributed near the top of the NW contribute to the Fourier-plane imaging, which maps the emission wavevectors in propagation.[42] An inference we draw from this is that the pres- terms of θ and φ spreading. Radial coordinate in Fourier plane is ence of gold mirror enhances the propagation length. NA ¼ n sin θ,andφ is the tangential coordinate that varies from 0 to 2π. Fourier-plane image in Figure 2d shows that the emission 2.2. Polarization-Resolved Angular Emission from from the NW end is directed toward higher ky/k and covers only a 0 – – small range of radial and azimuthal angles, indicating highly AgNW WS2 Au Cavity directional emission. Multiple measurements for the momentum space image are shown in Figure S4, Supporting Information. The emission at the distal end of NW is mediated through the A relevant question to ask is how does the presence of gold SPPs of the NW, which generally shows rich polarization signa- mirror influence the performance of the cavity on and off the ture.
Recommended publications
  • Tungsten Disulfide: a Novel Hydrogen Evolution Catalyst for Water Decomposition Andrzej Sobczynski, Attila Yildiz, Allen J
    Subscriber access provided by University of Texas Libraries Tungsten disulfide: a novel hydrogen evolution catalyst for water decomposition Andrzej Sobczynski, Attila Yildiz, Allen J. Bard, Alan Campion, Marye Anne Fox, Thomas Mallouk, Stephen E. Webber, and John M. White J. Phys. Chem., 1988, 92 (8), 2311-2315 • DOI: 10.1021/j100319a042 Downloaded from http://pubs.acs.org on February 2, 2009 More About This Article The permalink http://dx.doi.org/10.1021/j100319a042 provides access to: • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article The Journal of Physical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 J. Phys. Chem. 1988, 92, 2311-2315 2311 Tungsten Dlsulflde: A Novel Hydrogen Evolution Catalyst for Water Decomposition Andrzej Sobczynski; Attila Yildiz,* Allen J. Bard, Alan Campion, Marye Anne Fox, Thomas Mallouk, Stephen E. Webber, and John M. White* Department of Chemistry, University of Texas, Austin, Texas 78712 (Received: July 27, 1987: In Final Form: November 24, 1987) Silica-supported tungsten disulfide was prepared by the reaction of W03/Si02with H2S at 300 OC. The WS2 hexagonal structure was confirmed by X-ray diffraction analysis. AES and XPS studies show the existence of residual tungsten oxides in addition to WS2. Hydrogen evolution properties of WS2/Si02were determined by catalytic and photocatalytic (in the presence of fluorescein or CdS as sensitizers) tests and by electrochemical measurements. These were compared with silica-supported platinum. Although a graphite electrode immersed in a Pt/Si02 slurry evolved hydrogen at a more positive applied potential than in a WS2/Si02slurry, silica-supported tungsten disulfide was more active and stable than Pt/Si02 for catalytic hydrogen production both in the dark and under visible light illumination (with cadmium sulfide as a sensitizer).
    [Show full text]
  • Very High Refractive Index Transition Metal Dichalcogenide Photonic Conformal Coatings by Conversion of ALD Metal Oxides
    Lawrence Berkeley National Laboratory Recent Work Title Very High Refractive Index Transition Metal Dichalcogenide Photonic Conformal Coatings by Conversion of ALD Metal Oxides. Permalink https://escholarship.org/uc/item/5131q4m6 Journal Scientific reports, 9(1) ISSN 2045-2322 Authors Chen, Christopher T Pedrini, Jacopo Gaulding, E Ashley et al. Publication Date 2019-02-26 DOI 10.1038/s41598-019-39115-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Very High Refractive Index Transition Metal Dichalcogenide Photonic Conformal Coatings by Received: 17 September 2018 Accepted: 17 January 2019 Conversion of ALD Metal Oxides Published: xx xx xxxx Christopher T. Chen 1, Jacopo Pedrini2, E. Ashley Gaulding3, Christoph Kastl1, Giuseppe Calafore1, Scott Dhuey1, Tevye R. Kuykendall1, Stefano Cabrini1, Francesca M. Toma 3, Shaul Aloni1 & Adam M. Schwartzberg1 Materials for nanophotonic devices ideally combine ease of deposition, very high refractive index, and facile pattern formation through lithographic templating and/or etching. In this work, we present a scalable method for producing high refractive index WS2 layers by chemical conversion of WO3 synthesized via atomic layer deposition (ALD). These conformal nanocrystalline thin flms demonstrate a surprisingly high index of refraction (n > 3.9), and structural fdelity compatible with lithographically defned features down to ~10 nm. Although this process yields highly polycrystalline flms, the optical constants are in agreement with those reported for single crystal bulk WS2. Subsequently, we demonstrate three photonic structures - frst, a two-dimensional hole array made possible by patterning and etching an ALD WO3 thin flm before conversion, second, an analogue of the 2D hole array frst patterned into fused silica before conformal coating and conversion, and third, a three- dimensional inverse opal photonic crystal made by conformal coating of a self-assembled polystyrene bead template.
    [Show full text]
  • Transition Metal Dichalcogenide Metamaterials with Atomic Precision
    ARTICLE https://doi.org/10.1038/s41467-020-18428-2 OPEN Transition metal dichalcogenide metamaterials with atomic precision Battulga Munkhbat 1, Andrew B. Yankovich 1, Denis G. Baranov 1,2, Ruggero Verre1, Eva Olsson 1 & ✉ Timur O. Shegai 1 The ability to extract materials just a few atoms thick has led to the discoveries of graphene, monolayer transition metal dichalcogenides (TMDs), and other important two-dimensional 1234567890():,; materials. The next step in promoting the understanding and utility of flatland physics is to study the one-dimensional edges of these two-dimensional materials as well as to control the edge-plane ratio. Edges typically exhibit properties that are unique and distinctly different from those of planes and bulk. Thus, controlling the edges would allow the design of materials with combined edge-plane-bulk characteristics and tailored properties, that is, TMD meta- materials. However, the enabling technology to explore such metamaterials with high pre- cision has not yet been developed. Here we report a facile and controllable anisotropic wet etching method that allows scalable fabrication of TMD metamaterials with atomic precision. We show that TMDs can be etched along certain crystallographic axes, such that the obtained edges are nearly atomically sharp and exclusively zigzag-terminated. This results in hexagonal nanostructures of predefined order and complexity, including few-nanometer-thin nanoribbons and nanojunctions. Thus, this method enables future studies of a broad range of TMD metamaterials through atomically precise control of the structure. 1 Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden. 2 Center for Photonics and 2D Materials, Moscow Institute of ✉ Physics and Technology, Dolgoprudny 141700, Russia.
    [Show full text]
  • Download This Article PDF Format
    Nanoscale View Article Online PAPER View Journal | View Issue Large-area tungsten disulfide for ultrafast photonics Cite this: Nanoscale, 2017, 9, 1871 Peiguang Yan,*a Hao Chen,a Jinde Yin,a Zihan Xu,b Jiarong Li,a Zike Jiang,a Wenfei Zhang,a Jinzhang Wang,a Irene Ling Li,a Zhipei Sunc and Shuangchen Ruan*a Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have attracted significant interest in various optoelectronic applications due to their excellent nonlinear optical properties. One of the most important applications of TMDs is to be employed as an extraordinary optical modulation material (e.g., the saturable absorber (SA)) in ultrafast photonics. The main challenge arises while embedding TMDs into fiber laser systems to generate ultrafast pulse trains and thus constraints their practical applications. Herein, few-layered WS2 with a large-area was directly transferred on the facet of the pigtail and acted as a SA for erbium-doped fiber laser (EDFL) systems. In our study, WS2 SA exhibited remarkable nonlinear optical properties (e.g., modulation depth of 15.1% and saturable intensity of 157.6 MW cm−2) and was Creative Commons Attribution 3.0 Unported Licence. used for ultrafast pulse generation. The soliton pulses with remarkable performances (e.g., ultrashort pulse duration of 1.49 ps, high stability of 71.8 dB, and large pulse average output power of 62.5 mW) Received 25th November 2016, could be obtained in a telecommunication band. To the best of our knowledge, the average output Accepted 29th December 2016 power of the mode-locked pulse trains is the highest by employing TMD materials in fiber laser systems.
    [Show full text]
  • Stability, Thermal Conductivity, and Rheological Properties
    nanomaterials Article Two-Dimensional Tungsten Disulfide-Based Ethylene Glycol Nanofluids: Stability, Thermal Conductivity, and Rheological Properties Syed Nadeem Abbas Shah 1,2, Syed Shahabuddin 3,* , Mohd Faizul Mohd Sabri 1,* , Mohd Faiz Mohd Salleh 4, Suhana Mohd Said 4, Khaled Mohamed Khedher 5,6 and Nanthini Sridewi 7,* 1 Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 2 Department of Mechanical Engineering (Main Campus Lahore), University of Engineering and Technology, Lahore 54890, Pakistan 3 Department of Science, School of Technology, Pandit Deendayal Petroleum University, Knowledge Corridor, Raisan Village, Gandhinagar 382007, Gujarat, India 4 Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] (M.F.M.S.); [email protected] (S.M.S.) 5 Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; [email protected] 6 Department of Civil Engineering, High Institute of Technological Studies, Mrezgua University Campus, Nabeul 8000, Tunisia 7 Department of Maritime Science and Technology, Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia * Correspondence: [email protected] (S.S.); [email protected] (M.F.M.S.); [email protected] (N.S.) Received: 15 May 2020; Accepted: 4 July 2020; Published: 9 July 2020 Abstract: Developing stable nanofluids and improving their thermo-physical properties are highly important in heat transfer applications. In the present work, the stability, thermal conductivity, and rheological properties of tungsten disulphide (WS2) nanoparticles (NPs) with ethylene glycol (EG) were profoundly examined using a particle size analyzer, zeta-sizer, thermal property analyzer, rheometer, and pH measuring system.
    [Show full text]
  • Physical Vapor Deposition of Materials
    PHYSICAL VAPOR DEPOSITION OF MATERIALS FOR FLEXIBLE TWO DIMENSIONAL ELECTRONIC DEVICES Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemical Engineering By Phillip Thomas Hagerty Dayton, Ohio May, 2016 PHYSICAL VAPOR DEPOSITION OF MATERIALS FOR FLEXIBLE TWO DIMENSIONAL ELECTRONIC DEVICES Name: Hagerty, Phillip Thomas APPROVED BY: Christopher Muratore, Ph.D. Kevin Myers, D.Sc., P.E. Advisory Committee Chairman Committee Member Professor, Chemical and Professor, Chemical and Materials Engineering Department Materials Engineering Department Terry Murray, Ph.D. Committee Member Adjunct Professor, Chemical and Materials Engineering Department John G. Weber, Ph.D. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean Dean, School of Engineering School of Engineering ii ABSTRACT PHYSICAL VAPOR DEPOSITION OF MATERIALS FOR FLEXIBLE TWO DIMENSIONAL ELECTRONIC DEVICES Name: Hagerty, Phillip Thomas University of Dayton Advisor: Dr. Christopher Muratore Molybdenum Disulfide (MoS 2) and Tungsten Disulfide (WS 2) are two materials in a larger class of materials known as Transition Metal Dichalcogenides (TMDs) that have begun emerge as semiconducting materials. When their horizontal length scale is reduced from bulk to monolayer they demonstrate surprising combinations of properties including a direct electronic band gap and mechanical flexibility. Two dimensional (2D) materials have the potential to revolutionize performance and tailorability of electro-optical devices fabricated entirely from molecularly thin materials. In a departure from traditional exfoliation or high temperature chemical vapor deposition approaches for 2D materials synthesis, novel plasma-based physical vapor (PVD) techniques were used to fabricate uniform films over large areas.
    [Show full text]
  • 4D7ecc4538da2dbc87dd10f
    international journal of hydrogen energy xxx (2016) 1e13 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/he Two-dimensional molybdenum disulfide and tungsten disulfide interleaved nanowalls constructed on silk cocoon-derived N-doped carbon fibers for hydrogen evolution reaction ** * QingFa Wang a, , RuoPing Yanzhang a, XiaoNa Ren a, Han Zhu b, , Ming Zhang b, MingLiang Du b a Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, PR China b Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China article info abstract Article history: Finding cost-effective, active and durable catalyst materials for energy applications, such Received 14 June 2016 as electrocatalytic hydrogen production, is an intriguing challenge. Here, a facile and Received in revised form effective approach to the design and construction of two-dimensional MoS2 and WS2 23 July 2016 interleaved nanowalls with maximum exposures of active edges on silk-derived N-doped Accepted 28 July 2016 carbon fibers (SNCF) was demonstrated. The morphological evolutions of the MoS2 and Available online xxx WS2 nanocrystals on the SNCF from crescent-like nanosheets to an interleaved nanowall network can be obtained by adjusting the concentrations of the Mo and W precursors. Keywords: These robust MoS2/SNCF and WS2/SNCF electrocatalysts exhibit prominent hydrogen Silk derived N-doped carbon evolution reaction (HER) activities with onset potentials of À40 and À96 mV and Tafel À À Molybdenum sulfides slopes of 60 and 66 mV dec 1, respectively.
    [Show full text]
  • Synthesis and Characterization of WS2/Graphene/Sic Van Der Waals
    www.nature.com/scientificreports OPEN Synthesis and characterization of ­WS2/graphene/SiC van der Waals heterostructures via ­WO3−x thin flm sulfurization Jonathan Bradford1,2, Mahnaz Shafei3,4, Jennifer MacLeod1,4,5 & Nunzio Motta1,4,5* Van der Waals heterostructures of monolayer transition metal dichalcogenides (TMDs) and graphene have attracted keen scientifc interest due to the complementary properties of the materials, which have wide reaching technological applications. Direct growth of uniform, large area TMDs on graphene substrates by chemical vapor deposition (CVD) is limited by slow lateral growth rates, which result in a tendency for non-uniform multilayer growth. In this work, monolayer and few-layer WS2 was grown on epitaxial graphene on SiC by sulfurization of WO3−x thin flms deposited directly onto the substrate. Using this method, WS2 growth was achieved at temperatures as low as 700 °C – signifcantly less than the temperature required for conventional CVD. Achieving long-range uniformity remains a challenge, but this process could provide a route to synthesize a broad range of TMD/graphene van der Waals heterostructures with novel properties and functionality not accessible by conventional CVD growth. Transition metal dichalcogenides (TMDs) are a family of two-dimensional (2D) materials that exhibit an inter- esting range of layer dependent properties. Semiconducting TMDs such as MoX 2 and WX2 (where X represents S or Se) exhibit a layer-dependent bandgap with an indirect to direct transition when isolated as a monolayer1,2. Furthermore, owing to broken inversion symmetry, monolayer TMDs also possess strongly spin-split valence states, where the splitting exhibits opposite signs at K and K’ valleys enabling optically induced spin and valley polarization3–5.
    [Show full text]
  • Text Added to Existing Rules in Bold Italics DRAFT for ARC 12-31-20 1 Text Deleted from Existing Rules Shown Struck Through
    Text added to existing rules in bold italics DRAFT for ARC 12-31-20 1 Text deleted from existing rules shown struck through Explanatory comments in {bracketed blue italics} CHAPTER Env-A 1400 REGULATED TOXIC AIR POLLUTANTS Statutory Authority: RSA 125-I:6 PART Env-A 1401 PURPOSE AND APPLICABILITY; DEFINITION Env-A 1401.01 Purpose. (a) The purpose of this chapter is to implement RSA 125-I relative to preventing, controlling, abating, and limiting the emissions of toxic air pollutants into the ambient air. (b) The ambient air limits (AALs) established in this chapter are intended to promote public health by reducing human exposure to toxic air pollutants as required by RSA 125-I:1. Env-A 1401.02 Applicability. This chapter shall apply to the owner or operator of any new, modified, or existing process or device located at a stationary source that emits a regulated toxic air pollutant (RTAP) into the ambient air, unless exempted under Env-A 1402.01 or Env-A 1402.02. Env-A 1401.03 Definitions. For purposes of this part, the following definitions shall apply: (a) “Accidental release” means an unanticipated emission of an RTAP into the ambient air from a stationary source, process or device, either caused by an unintentional spill or a malfunction as defined in Env-A 101.116 104 ; (b) “Biodiesel” means a diesel fuel substitute that is composed of mono-alkyl esters of long chain fatty acids, is derived from vegetable oils or animal fats, and meets the requirements of the American Society for Testing and Materials (ASTM) specification D6751; (c) “Biofuel” means bio-oil, bio synthetic gas, or biodiesel, alone or in any combination; (d) “Biomass” means “biomass” as defined in RSA 125-C:2, III-a, as reprinted in Appendix B.
    [Show full text]
  • Electron-Beam-Irradiated Rhenium Disulfide Memristors with Low
    www.nature.com/npj2dmaterials ARTICLE OPEN Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing ✉ ✉ Sifan Li1,2,3, Bochang Li1,2,3, Xuewei Feng1,2, Li Chen1,2, Yesheng Li1,2, Li Huang 1,2, Xuanyao Fong1,2 and Kah-Wee Ang 1,2 State-of-the-art memristors are mostly formed by vertical metal–insulator–metal (MIM) structure, which rely on the formation of conductive filaments for resistive switching (RS). However, owing to the stochastic formation of filament, the set/reset voltage of vertical MIM memristors is difficult to control, which results in poor temporal and spatial switching uniformity. Here, a two-terminal lateral memristor based on electron-beam-irradiated rhenium disulfide (ReS2) is realized, which unveils a resistive switching mechanism based on Schottky barrier height (SBH) modulation. The devices exhibit a forming-free, stable gradual RS characteristic, and simultaneously achieve a small transition voltage variation during positive and negative sweeps (6.3%/5.3%). The RS is attributed to the motion of sulfur vacancies induced by voltage bias in the device, which modulates the ReS2/metal SBH. The gradual SBH modulation stabilizes the temporal variation in contrast to the abrupt RS in MIM-based memristors. Moreover, the emulation of long-term synaptic plasticity of biological synapses is demonstrated using the device, manifesting its potential as artificial synapse for energy-efficient neuromorphic computing applications. npj 2D Materials and Applications (2021) 5:1 ; https://doi.org/10.1038/s41699-020-00190-0 1234567890():,; INTRODUCTION Many vertical memristors based on 2D materials and their Memristors have been investigated extensively and are regarded derivatives have been demonstrated.
    [Show full text]
  • Safety Data Sheet – Tungsten Disulfide ACS Material LLC
    Safety Data Sheet – Tungsten Disulfide ACS Material LLC Version: 2.1 / EN Revision Date: 03/01/2017 SECTION 1: IDENTIFICATION OF THE PRODUCT AND OF THE COMPANY 1.1 Product identifiers Product Name : ACS Material Tungsten Disulfide Brand : ACS Material LLC CAS-No. : 12138-09-9 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Laboratory chemicals, Synthesis of substances 1.3 Details of the supplier of the safety data sheet Company : ACS MATERIAL LLC 959 E Walnut Street, Suite 100 Pasadena, CA 91106 USA Telephone : +1 (866)-227-0656 Fax : +1 (781)-518-0284 1.4 Emergency telephone number Emergency Phone #: +1 (866)-227-0656 SECTION 2: HAZARDS IDENTIFICATION 2.1 Classification of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) Skin Corrosion /Irritation (Category 2) H315 Serious eye damage/eye irritation (Category 2/2A) H319 Specific target organ toxicity - single exposure (Category 3) H335 Target Organ-Respiratory system For the full text of the H-Statements mentioned in this Section, see Section 16. 2.2 GHS Label elements, including precautionary statements Pictogram Signal word Warning Hazard statement(s) www.acsmaterial.com - 1 - Safety Data Sheet – Tungsten Disulfide ACS Material LLC H315 Causes skin irritation. H319 Causes serious eye irritation. H319 May cause respiratory irritation. Precautionary statement(s) P261 Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray P264 Wash skin thoroughly after handling. P271 Use only outdoors or in a well-ventilated area. P280 Wear protective gloves/clothing/eye protection/face protection P302+P352 IF ON SKIN: Wash with plenty of soap and water.
    [Show full text]
  • Adsorption Energy of Oxygen Molecules on Graphene and Two
    www.nature.com/scientificreports OPEN Adsorption energy of oxygen molecules on graphene and two- dimensional tungsten disulfide Received: 1 December 2016 Filchito Renee Bagsican1, Andrew Winchester2, Sujoy Ghosh2, Xiang Zhang3, Lulu Ma3, Minjie Accepted: 4 April 2017 Wang3,4, Hironaru Murakami1, Saikat Talapatra2, Robert Vajtai 3, Pulickel M. Ajayan3, Published: xx xx xxxx Junichiro Kono1,3,4,5, Masayoshi Tonouchi1 & Iwao Kawayama1 Adsorption of gas molecules on the surface of atomically layered two-dimensional (2D) materials, including graphene and transition metal dichalcogenides, can significantly affect their electrical and optical properties. Therefore, a microscopic and quantitative understanding of the mechanism and dynamics of molecular adsorption and desorption has to be achieved in order to advance device applications based on these materials. However, recent theoretical calculations have yielded contradictory results, particularly on the magnitude of the adsorption energy. Here, we have experimentally determined the adsorption energy of oxygen molecules on graphene and 2D tungsten disulfide using temperature-programmed terahertz (THz) emission microscopy (TPTEM). The temperature dependence of THz emission from InP surfaces covered with 2D materials reflects the change in oxygen concentration due to thermal desorption, which we used to estimate the adsorption energy of oxygen molecules on graphene (~0.15 eV) and tungsten disulphide (~0.24 eV). Furthermore, we used TPTEM to visualize relative changes in the spatial distribution of oxygen molecules on monolayer graphene during adsorption and desorption. Our results provide much insight into the mechanism of molecular adsorption on the surface of 2D materials, while introducing TPTEM as a novel and powerful tool for molecular surface science. The successful isolation of monolayer graphene in 2004 and its remarkable properties found subsequently have paved the way for a new research field of two-dimensional (2D) atomic layer materials1–4.
    [Show full text]