Data Linkage Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Data Linkage Techniques Outline Data Linkage Techniques: What is data linkage? Past, Present and Future Applications and challenges Peter Christen The past Department of Computer Science, A short history of data linkage The Australian National University Contact: [email protected] The present Project Web site: http://datamining.anu.edu.au/linkage.html Computer science based approaches: Learning to link Funded by the Australian National University, the NSW Department of Health, The future the Australian Research Council (ARC) under Linkage Project 0453463, Scalability, automation, and privacy and confidentiality and the Australian Partnership for Advanced Computing (APAC) Our project: Febrl (Freely extensible biomedical record linkage) Peter Christen, August 2006 – p.1/32 Peter Christen, August 2006 – p.2/32 What is data (or record) linkage? Recent interest in data linkage The process of linking and aggregating records Traditionally, data linkage has been used in from one or more data sources representing the health (epidemiology) and statistics (census) same entity (patient, customer, business name, etc.) In recent years, increased interest from Also called data matching, data integration, data businesses and governments scrubbing, ETL (extraction, transformation and A lot of data is being collected by many organisations loading), object identification, merge-purge, etc. Increased computing power and storage capacities Challenging if no unique entity identifiers available Data warehousing and distributed databases E.g., which of these records represent the same person? Data mining of large data collections Dr Smith, Peter 42 Miller Street 2602 O'Connor E-Commerce and Web applications (for example online Pete Smith 42 Miller St 2600 Canberra A.C.T. product comparisons: http://froogle.com) P. Smithers 24 Mill Street 2600 Canberra ACT Geocoding and spatial data analysis Peter Christen, August 2006 – p.3/32 Peter Christen, August 2006 – p.4/32 Applications and usage Challenge 1: Dirty data Applications of data linkage Real world data is often dirty Remove duplicates in a data set (internal linkage) Missing values, inconsistencies Merge new records into a larger master data set Typographical errors and other variations Create patient or customer oriented statistics Different coding schemes / formats Compile data for longitudinal (over time) studies Out-of-date data Geocode matching (with reference address data) Names and addresses are especially prone to Widespread use of data linkage data entry errors (over phone, hand-written, scanned) Immigration, taxation, social security, census Cleaned and standardised data is needed for Fraud, crime and terrorism intelligence loading into databases and data warehouses Business mailing lists, exchange of customer data data mining and other data analysis studies Social, health and biomedical research data linkage and deduplication Peter Christen, August 2006 – p.5/32 Peter Christen, August 2006 – p.6/32 Challenge 3: Privacy and Challenge 2: Scalability confidentiality General public is worried about their information Data collections with tens or even hundreds of being linked and shared between organisations millions of records are not uncommon Good: research, health, statistics, crime and fraud Number of possible record pairs to compare equals the product of the sizes of the two data sets detection (taxation, social security, etc.) (linking two data sets with 1,000,000 records each will result Scary: intelligence, surveillance, commercial data mining in 106× 106 = 1012 record pairs) (not much information from businesses, no regulation) Performance bottleneck in a data linkage system is Bad: identify fraud, re-identification usually the (expensive) comparison of attribute Traditionally, identified data has to be given to the (field) values between record pairs person or organisation performing the linkage Blocking / indexing / filtering techniques are used Privacy of individuals in data sets is invaded to reduce the large amount of comparisons Consent of individuals involved is needed Linkage process should be automatic Alternatively, seek approval from ethics committees Peter Christen, August 2006 – p.7/32 Peter Christen, August 2006 – p.8/32 Outline: The past Traditional data linkage techniques What is data linkage? Computer assisted data linkage goes back as far as the 1950s (based on ad-hoc heuristic methods) Applications and challenges Deterministic linkage The past Exact linkage, if a unique identi®er of high quality is A short history of data linkage available (has to be precise, robust, stable over time) The present Examples: Medicare, ABN or Tax ®le number (are they really unique, stable, trustworthy?) Computer science based approaches: Learning to link Rules based linkage (complex to build and maintain) The future Probabilistic linkage Scalability, automation, and privacy and confidentiality Our project: Febrl Apply linkage using available (personal) information (Freely extensible biomedical record linkage) (like names, addresses, dates of birth, etc) Peter Christen, August 2006 – p.9/32 Peter Christen, August 2006 – p.10/32 Probabilistic data linkage Fellegi and Sunter classification Basic ideas of probabilistic linkage were For each compared record pair a vector containing introduced by Newcombe & Kennedy (1962) matching weights is calculated Theoretical foundation by Fellegi & Sunter (1969) Record A: [`dr', `peter', `paul', `miller'] Record B: [`mr', `john', `', `miller'] No unique entity identifiers available Matching weights: [0.2, -3.2, 0.0, 2.4 ] Compare common record attributes (or fields) Fellegi & Sunter approach sums all weights Compute matching weights based on frequency ratios (then uses two thresholds to classify record pairs as (global or value specific) and error estimates non-matches, possible matches, or matches) Sum of the matching weights is used to classify a pair of Lower Upper threshold threshold records as match, non-match, or possible match Many more with lower weights... Problems: Estimating errors and threshold values, assumption of independence, and manual clerical review Still the basis of many linkage systems −5 0 5 10 15 Total matching weight Peter Christen, August 2006 – p.11/32 Peter Christen, August 2006 – p.12/32 Traditional blocking Outline: The present Traditional blocking works by only comparing What is data linkage? record pairs that have the same value for a blocking variable (for example, only compare records Applications and challenges that have the same postcode value) The past Problems with traditional blocking A short history of data linkage An erroneous value in a blocking variable results in a The present record being inserted into the wrong block (several Computer science based approaches: Learning to link passes with different blocking variables can solve this) The future Values of blocking variable should be uniformly distributed (as the most frequent values determine Scalability, automation, and privacy and confidentiality the size of the largest blocks) Our project: Febrl Example: Frequency of `Smith' in NSW: 25,425 (Freely extensible biomedical record linkage) Peter Christen, August 2006 – p.13/32 Peter Christen, August 2006 – p.14/32 Improved classification Classification challenges Summing of matching weights results in loss of In many cases there is no training data available information (e.g. two record pairs: same name but Possible to use results of earlier linkage projects? , different address different address but same name) Or from clerical review process? View record pair classification as a multi- How confident can we be about correct manual dimensional binary classification problem classification of possible links? (use matching weight vectors to classify record pairs into matches or non-matches, but no possible matches) Often there is no gold standard available (no data sets with true known linkage status) Different machine learning techniques can be used No test data set collection available Supervised: Manually prepared training data needed (like in information retrieval or data mining) (record pairs and their match status), almost like manual Recent small repository: RIDDLE clerical review before the linkage http://www.cs.utexas.edu/users/ml/riddle/ Un-supervised: Find (local) structure in the data (similar (Repository of Information on Duplicate Detection, Record Linkage, and Identity Uncertainty) record pairs) without training data Peter Christen, August 2006 – p.15/32 Peter Christen, August 2006 – p.16/32 Classification research (1) Classification research (2) Information retrieval based Semi-supervised techniques Aim is to reduce manual training effort Represent records as document vectors Active learning (select a record pair for manual class- Calculate distance between vectors (tf-idf weights) ification that a set of classifiers disagree on the most) Database research approaches Semi-supervised clustering (provide some manually Extend SQL language (fuzzy join operator) classified record pairs) Implement linkage algorithms using SQL statements Un-supervised techniques Supervised machine learning techniques Clustering techniques (k-means, farthest first, etc.) Learn string distance measures (edit-distance costs for Hierarchical graphical models (probabilistic approaches) character insert, delete, substitute) Main critic point: Often only confidential or small Decision trees, genetic programming, association rules, test data sets (like bibliographic citations, restaurant expert systems, etc. names, etc.) Peter Christen, August 2006 – p.17/32 Peter
Recommended publications
  • A Framework for Detecting Unnecessary Industrial Data in ETL Processes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo A Framework for Detecting Unnecessary Industrial Data in ETL Processes Philip Woodall Duncan McFarlane Department of Engineering Department of Engineering University of Cambridge, UK. University of Cambridge, UK. [email protected] Amar Shah, Department of Engineering Torben Jess University of Cambridge, UK Department of Engineering University of Cambridge, UK. William Krechel Boeing, USA Mark Harrison Eric Nicks Department of Engineering Boeing, USA. University of Cambridge, UK Abstract—Extract, transform and load (ETL) is a critical procurement system that is used to select suppliers for the process used by industrial organisations to shift data from one orders of the parts. These orders may then also be transferred database to another, such as from an operational system to a data by ETL into the order release system, ready to send to the warehouse. With the increasing amount of data stored by suppliers. Moreover, for reporting, these orders may be sent via industrial organisations, some ETL processes can take in excess ETL to a data warehouse that is used by managers to, for of 12 hours to complete; this can leave decision makers stranded example, scrutinise various orders over the last month. while they wait for the data needed to support their decisions. After designing the ETL processes, inevitably data requirements However, the problem is that ETL is a time-consuming and can change, and much of the data that goes through the ETL expensive process, which can leave decision makers in process may not ever be used or needed.
    [Show full text]
  • Large Scale Record Linkage in the Presence of Missing Data Otherwise (A8,A 9 ) Is a Member of U (True Non-Matches) and A8 and Definition 3.3 (Relational Signature)
    Large Scale Record Linkage in the Presence of Missing Data Thilina Ranbaduge Peter Christen Rainer Schnell The Australian National University The Australian National University University Duisburg-Essen Canberra, Australia Canberra, Australia Duisburg, Germany [email protected] [email protected] [email protected] ABSTRACT One major data quality aspect that so far has only seen limited Record linkage is aimed at the accurate and efficient identifica- attention in RL is missing data [4, 16, 19, 28]. There are various tion of records that represent the same entity within or across reasons why missing values can occur, ranging from equipment disparate databases. It is a fundamental task in data integration malfunction or data items not considered to be important, to dele- and increasingly required for accurate decision making in appli- tion of values due to inconsistencies, or even the refusal of individ- cation domains ranging from health analytics to national security. uals to provide information for example when answering surveys. Traditional record linkage techniques calculate string similarities Missing data can be categorised into different types [26]. between quasi-identifying (QID) values, such as the names and ad- Data missing completely at random (MCAR) are missing values dresses of people. Errors, variations, and missing QID values can that occur without any patterns or correlations at all with any however lead to low linkage quality because the similarities be- other values in the same record or database. For example, if a first tween records cannot be calculated accurately. To overcome this name is missing for an individual, then neither last name, address, challenge, we propose a novel technique that can accurately link age, nor gender, can help predict the missing first name value (as- records even when QID values contain errors or variations, or are suming no external database is accessible where a complete record missing.
    [Show full text]
  • Historical Census Record Linkage
    Historical Census Record Linkage Steven Ruggles† University of Minnesota Catherine Fitch University of Minnesota Evan Roberts University of Minnesota December 2017 Working Paper No. 2017-3 https://doi.org/10.18128/ MPC2017-3 †Correspondence should be directed to: Steven Ruggles University of Minnesota, 50 Willey Hall, 225 19th Ave S., Minneapolis, MN 55455 e-mail: [email protected], phone: 612-624-5818, fax:612-626-8375 Abstract For the past 80 years, social scientists have been linking historical censuses across time to study economic and geographic mobility. In recent decades, the quantity of historical census record linkage has exploded, owing largely to the advent of new machine-readable data created by genealogical organizations. Investigators are examining economic and geographic mobility across multiple generations, but also engaging many new topics. Several analysts are exploring the effects of early-life socioeconomic conditions, environmental exposures, or natural disasters on family, health and economic outcomes in later life. Other studies exploit natural experiments to gauge the impact of policy interventions such as social welfare programs and educational reforms. The new data sources have led to a proliferation of record linkage methodology, and some widespread approaches inadvertently introduce errors that can lead to false inferences. A new generation of large-scale shared data infrastructure now in preparation will ameliorate weaknesses of current linkage methods. Introduction Historical census data are indispensable for studying long-run change, since they provide the only record of the lives of millions of people over the past two centuries. In much of Europe and North America, investigators can access individual-level data based on original census manuscripts (Szołtysek & Gruber 2016).
    [Show full text]
  • Volume I, Record Linkage Issues and Resul
    Chapter Two Administrative Data and Record Linkage Issues For research purposes, administrative data have the advantage of detailed and accurate measurement of program status and outcomes, complete coverage of populations of interest (enabling detailed subgroup analyses), data on the same individuals over long periods, low cost relative to survey data, and the ability to obtain many kinds of information through matching (Hotz et al., 1998). In addition, many types of administrative data have relatively high degrees of uniformity in content across geographic areas.13,14 Government agencies have recognized the potential research uses of administrative data. Of 10 data development initiatives recently identified by USDA’s Economic Research Service, only one did not involve administrative data (Wittenburg et al., 2001). Five of the 10 initiatives involve creation of linked databases matching administrative records from multiple agencies, or matching administrative records to survey responses. Linked databases are a way to create “new” data from existing sources. For example, the National Center for Health Statistics (NCHS) determines infant mortality rates using state files of linked data from birth and death certificates (Mathews et al., 2002). The Department of Transportation examines motor vehicle crash outcomes by linking records of police-reported crashes to hospital discharge data, EMS data, and hospital emergency department data (NHTSA, 1996a). In the social services arena, a number of States have developed master client indexes that
    [Show full text]
  • Approaches to Multiple Record Linkage
    Approaches to Multiple Record Linkage Mauricio Sadinle, Rob Hall, and Stephen E. Fienberg Department of Statistics, Heinz College, and Department of Machine Learning Carnegie Mellon University Pittsburgh, PA 15213-3890, U.S.A. E-mail: [email protected]; [email protected]; fi[email protected] We review the theory and techniques of record linkage that date back to pioneering work by Fellegi and Sunter on matching records( in) two lists. When the task involves linking K > 2 lists, the most common approach K consists of performing all 2 possible pairs of lists using a Fellegi-Sunter-like approach and then somehow reconciling the discrepancies in an ad hoc fashion. We describe some important uses of the methodology, provide a principled way of accomplishing the reconciliation and we finally present some key parts of the generalization of Fellegi and Sunter's method to K > 2 lists. Introduction Record linkage is a family of techniques for matching two data files using names, addresses, and other fields that are typically not unique identifiers of entities. Most record linkage approaches are based or emulate a method presented in a pioneering paper by Fellegi and Sunter (1969). Winkler (1999) and Herzog et al. (2007) document the basic two-list methodology and several variations. We begin by reviewing some common applications of record linkage techniques, including the linking K > 2 lists. Data Integration. Synthesizing data on a group of individuals from two or more files in the absence of unique identifiers requires record linkage, e.g., to create a data warehouse to be used for querying such as credit checks, e.g., see Talburt (2011), or to assess enrollment in multiple government programs, e.g., see Cole (2003).
    [Show full text]
  • Record Linkage: a Machine Learning Approach, a Toolbox, and a Digital Government Web Service
    Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 2003 Record Linkage: A Machine Learning Approach, A Toolbox, and a Digital Government Web Service Mohamed G. Elfeky Vassilios S. Verykios Ahmed K. Elmagarmid Purdue University, [email protected] Thanaa M. Ghanem Ahmed R. Huwait Report Number: 03-024 Elfeky, Mohamed G.; Verykios, Vassilios S.; Elmagarmid, Ahmed K.; Ghanem, Thanaa M.; and Huwait, Ahmed R., "Record Linkage: A Machine Learning Approach, A Toolbox, and a Digital Government Web Service" (2003). Department of Computer Science Technical Reports. Paper 1573. https://docs.lib.purdue.edu/cstech/1573 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. RECORD LINKAGE, A MACHINE LEARNING APPROACH, A TOOLBOX, AND A DIGITAL GOVERNMENT WEB SERVICE Mohamed G. Elfeky Vassilios S. Verykios Ahmed K. Elmagarmid Thanaa M. Ghanem Ahmed R. Huwait CSD TR #03-024 July 2003 Record Linkage: A Machine Learning Approach, A Toolbox, and A Digital Government Web Service' l Mohamed G. Elfeky 1 VassiliosS. Verykios Ahmed K. Elmagarrnid 1 Purdue University Drexel University Hewlett-Packard [email protected] [email protected] [email protected] Thanaa M. Ghanem Ahmed R. Huwait 2 Purdue University Ain Shams University [email protected],edu [email protected] Abstract Data cleaning is a vital process mat ensures the quality of data smred in real·world databases. Data cleaning problems are frequently encountered in many research areas, such as kllowledge discovery in databases, data warellOusing. system imegratioll and e­ services.
    [Show full text]
  • Contributions to Record Linkage for Disclosure Risk Assessment
    Contributions to Record Linkage for Disclosure Risk Assessment by Jordi Nin Guerrero Advisor: Dr. Vicenç Torra i Reventós A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor in Artificial Intelligence at the Departament de Ciències de la Computació Universitat Autònoma de Barcelona A la Mireia , que fa seves les meves il·lusions. I a en Xavier, a qui esperem amb entusiasme. ii I am only a child playing on the beach, while vast oceans of truth lie undiscovered before me. Isaac Newton (1642-1727) iii Contents Agraïments xiii Abstract xv 1 Introduction 1 1.1 Motivations ................................... 1 1.2 Contributions .................................. 3 1.3 StructureoftheDocument . 4 2 Preliminaries 7 2.1 AggregationFunctions . 7 2.2 TimeSeries.................................... 12 2.3 Re-identification Methods . 17 2.4 Microdata Protection Methods . 21 2.5 Information Loss and Disclosure Risk . 33 2.6 DataSetsDescription ............................. 38 3 Microaggregation Analysis 45 3.1 Attribute Selection in Multivariate Microaggregation ........... 45 3.2 Modeling Projections in Microaggregation . ...... 58 3.3 Improving Microaggregation for Complex Record Anonymization . 62 v 4 Specific Disclosure Risk Measures 77 4.1 Rank Swapping Record Linkage . 77 4.2 AlignmentRecordLinkage. 93 4.3 ProjectedRecordLinkage . 98 5 Record Linkage using Fuzzy Integrals 109 5.1 An Alternative Disclosure Risk Scenario . 109 5.2 Experiments ................................... 117 6 Time Series Protection 125 6.1 TimeSeriesProtection .. .. .. .. .. .. 125 6.2 Time Series Information Loss Measures . 127 6.3 Time Series Disclosure Risk Measures . 130 6.4 Final Trade-off Evaluation . 135 6.5 Experiments ................................... 136 7 Conclusions and Future Directions 141 7.1 Summary of Contributions .
    [Show full text]
  • Neural Networks for Entity Matching: a Survey
    Neural Networks for Entity Matching: A Survey NILS BARLAUG, Cognite, Norway and NTNU, Norway JON ATLE GULLA, NTNU, Norway Entity matching is the problem of identifying which records refer to the same real-world entity. It has been actively researched for decades, and a variety of different approaches have been developed. Even today, it remains a challenging problem, and there is still generous room for improvement. In recent years we have seen new methods based upon deep learning techniques for natural language processing emerge. In this survey, we present how neural networks have been used for entity matching. Specifically, we identify which steps of the entity matching process existing work have targeted using neural networks, and provide an overview of the different techniques used at each step. We also discuss contributions from deep learning in entity matching compared to traditional methods, and propose a taxonomy of deep neural networks for entity matching. CCS Concepts: • Computing methodologies → Neural networks; Natural language processing; • Infor- mation systems → Entity resolution. Additional Key Words and Phrases: deep learning, entity matching, entity resolution, record linkage, data matching ACM Reference Format: Nils Barlaug and Jon Atle Gulla. 2021. Neural Networks for Entity Matching: A Survey. ACM Trans. Knowl. Discov. Data. 15, 3 (April 2021), 36 pages. https://doi.org/10.1145/3442200 1 INTRODUCTION Our world is becoming increasingly digitalized. While this opens up a number of new, exciting opportunities, it also introduces challenges along the way. A substantial amount of the value to be harvested from increased digitalization depends on integrating different data sources. Unfortunately, many of the existing data sources one wishes to integrate do not share a common frame of reference.
    [Show full text]
  • Introduction to Data Science Rest of Today’S Lecture
    INTRODUCTION TO DATA SCIENCE REST OF TODAY’S LECTURE Exploratory Analysis, Insight & Data Data hypothesis analysis Policy collection processing & testing, & Data viz ML Decision Continue with the general topic of data wrangling and cleaning Many slides from Amol Deshpande (UMD) ! 2 OVERVIEW Goal: get data into a structured form suitable for analysis • Variously called: data preparation, data munging, data curation • Also often called ETL (Extract-Transform-Load) process Often the step where majority of time (80-90%) is spent Key steps: • Scraping: extracting information from sources, e.g., webpages, spreadsheets • Data transformation: to get it into the right structure • Data integration: combine information from multiple sources • Information extraction: extracting structured information from unstructured/text sources • Data cleaning: remove inconsistencies/errors ! 3 OVERVIEW Goal: get data into a structured form suitable for analysis • Variously called: data preparation, data munging, data curation • Also often called ETL (Extract-Transform-Load) process Often the step where majority of time (80-90%) is spent Key steps: Already • Scraping: extracting information from sources, e.g., webpages,covered spreadsheets • Data transformation: to get it into the right structure • Information extraction: extracting structured information from unstructured/text sources In a few • Data integration: combine information from multiple sourcesclasses • Data cleaning: remove inconsistencies/errors ! 4 OVERVIEW !5 OVERVIEW Many of the problems are not
    [Show full text]
  • Learning Blocking Schemes for Record Linkage∗
    Learning Blocking Schemes for Record Linkage∗ Matthew Michelson and Craig A. Knoblock University of Southern California Information Sciences Institute, 4676 Admiralty Way Marina del Rey, CA 90292 USA {michelso,knoblock}@isi.edu Abstract Record linkage is the process of matching records across data sets that refer to the same entity. One issue within record linkage is determining which record pairs to consider, since a detailed comparison between all of the records is imprac- tical. Blocking addresses this issue by generating candidate matches as a preprocessing step for record linkage. For ex- ample, in a person matching problem, blocking might return all people with the same last name as candidate matches. Two main problems in blocking are the selection of attributes for generating the candidate matches and deciding which meth- ods to use to compare the selected attributes. These attribute and method choices constitute a blocking scheme. Previ- ous approaches to record linkage address the blocking issue in a largely ad-hoc fashion. This paper presents a machine learning approach to automatically learn effective blocking Figure 1: Record linkage example schemes. We validate our approach with experiments that show our learned blocking schemes outperform the ad-hoc blocking schemes of non-experts and perform comparably to or cluster the data sets by the attribute. Then we apply the those manually built by a domain expert. comparison method to only a single member of a block. Af- ter blocking, the candidate matches are examined in detail Introduction to discover true matches. This paper focuses on blocking. Record linkage is the process of matching records between There are two main goals of blocking.
    [Show full text]
  • A Hierarchical Graphical Model for Record Linkage
    A Hierarchical Graphical Model for Record Linkage Pradeep Ravikumar William W. Cohen Center for Automated Center for Automated Learning and Discovery, Learning and Discovery, School of Computer Science, School of Computer Science, Carnegie Mellon University Carnegie Mellon University [email protected] [email protected] Abstract edit distances as a general-purpose record matching scheme was proposed by Monge and Elkan [10, 9], and The task of matching co-referent records is in previous work [2, 3], we developed a toolkit of vari- known among other names as record link- ous string-distance based methods for matching entity- age. For large record-linkage problems, of- names. The AI community has focused on applying ten there is little or no labeled data available, supervised learning to the record-linkage task | for but unlabeled data shows a reasonably clear learning the parameters of string-edit distance metrics structure. For such problems, unsupervised [14, 1] and combining the results of di®erent distance or semi-supervised methods are preferable to functions [15, 4, 1]. More recently, probabilistic object supervised methods. In this paper, we de- identi¯cation methods have been adapted to matching scribe a hierarchical graphical model frame- tasks [12]. In statistics, a long line of research has been work for the record-linkage problem in an un- conducted in probabilistic record linkage, largely based supervised setting. In addition to propos- on the seminal paper by Fellegi and Sunter [5]. ing new methods, we also cast existing un- In this paper, we follow the Fellegi-Sunter approach of supervised probabilistic record-linkage meth- treating the record-linkage problem as a classi¯cation ods in this framework.
    [Show full text]
  • An Introduction to Probabilistic Record Linkage with a Focus on Linkage Processing for WTC Registries
    International Journal of Environmental Research and Public Health Review An Introduction to Probabilistic Record Linkage with a Focus on Linkage Processing for WTC Registries Jana Asher 1,* , Dean Resnick 2, Jennifer Brite 3, Robert Brackbill 3 and James Cone 3 1 Department of Mathematics and Statistics, Slippery Rock University, Slippery Rock, PA 16057, USA 2 National Opinion Research Center, Boston, MA 02114, USA; [email protected] 3 Division of Epidemiology, New York City Department of Health and Mental Hygiene, World Trade Center Health Registry, New York, NY 11101, USA; [email protected] (J.B.); [email protected] (R.B.); [email protected] (J.C.) * Correspondence: [email protected]; Tel.: +1-724-738-2508 Received: 3 August 2020; Accepted: 17 September 2020; Published: 22 September 2020 Abstract: Since its post-World War II inception, the science of record linkage has grown exponentially and is used across industrial, governmental, and academic agencies. The academic fields that rely on record linkage are diverse, ranging from history to public health to demography. In this paper, we introduce the different types of data linkage and give a historical context to their development. We then introduce the three types of underlying models for probabilistic record linkage: Fellegi-Sunter-based methods, machine learning methods, and Bayesian methods. Practical considerations, such as data standardization and privacy concerns, are then discussed. Finally, recommendations are given for organizations developing or maintaining record linkage programs, with an emphasis on organizations measuring long-term complications of disasters, such as 9/11. Keywords: epidemiology; disaster epidemiology; data matching; record linkage; probabilistic record linkage; interagency cooperation; 9/11 health 1.
    [Show full text]