Diuronotus Aspetos (Paucitubulatina) Yields Insights Into the Evolution of Organs Systems in Gastrotricha
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Curious and Neglected Soft-Bodied Meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes)
Hydrobiologia (2020) 847:2613–2644 https://doi.org/10.1007/s10750-020-04287-x (0123456789().,-volV)( 0123456789().,-volV) MEIOFAUNA IN FRESHWATER ECOSYSTEMS Review Paper The curious and neglected soft-bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes) Maria Balsamo . Tom Artois . Julian P. S. Smith III . M. Antonio Todaro . Loretta Guidi . Brian S. Leander . Niels W. L. Van Steenkiste Received: 1 August 2019 / Revised: 25 April 2020 / Accepted: 4 May 2020 / Published online: 26 May 2020 Ó Springer Nature Switzerland AG 2020 Abstract Gastrotricha and Platyhelminthes form a meiofauna. As a result, rouphozoans are usually clade called Rouphozoa. Representatives of both taxa underestimated in conventional biodiversity surveys are main components of meiofaunal communities, but and ecological studies. Here, we give an updated their role in the trophic ecology of marine and outline of their diversity and taxonomy, with some freshwater communities is not sufficiently studied. phylogenetic considerations. We describe success- Traditional collection methods for meiofauna are fully tested techniques for their recovery and study, optimized for Ecdysozoa, and include the use of and emphasize current knowledge on the ecology, fixatives or flotation techniques that are unsuitable for distribution, and dispersal of freshwater gastrotrichs the preservation and identification of soft-bodied and microturbellarians. We also discuss the opportu- nities and pitfalls of (meta)barcoding studies as a means of overcoming the taxonomic impediment. Guest -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Meiofauna of the Koster-Area, Results from a Workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden)
1 Meiofauna Marina, Vol. 17, pp. 1-34, 16 tabs., March 2009 © 2009 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 1611-7557 Meiofauna of the Koster-area, results from a workshop at the Sven Lovén Centre for Marine Sciences (Tjärnö, Sweden) W. R. Willems 1, 2, *, M. Curini-Galletti3, T. J. Ferrero 4, D. Fontaneto 5, I. Heiner 6, R. Huys 4, V. N. Ivanenko7, R. M. Kristensen6, T. Kånneby 1, M. O. MacNaughton6, P. Martínez Arbizu 8, M. A. Todaro 9, W. Sterrer 10 and U. Jondelius 1 Abstract During a two-week workshop held at the Sven Lovén Centre for Marine Sciences on Tjärnö, an island on the Swedish west-coast, meiofauna was studied in a large variety of habitats using a wide range of sampling tech- niques. Almost 100 samples coming from littoral beaches, rock pools and different types of sublittoral sand- and mudflats yielded a total of 430 species, a conservative estimate. The main focus was on acoels, proseriate and rhabdocoel flatworms, rotifers, nematodes, gastrotrichs, copepods and some smaller taxa, like nemertodermatids, gnathostomulids, cycliophorans, dorvilleid polychaetes, priapulids, kinorhynchs, tardigrades and some other flatworms. As this is a preliminary report, some species still have to be positively identified and/or described, as 157 species were new for the Swedish fauna and 27 are possibly new to science. Each taxon is discussed separately and accompanied by a detailed species list. Keywords: biodiversity, species list, biogeography, faunistics 1 Department of Invertebrate Zoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Sweden; e-mail: [email protected], [email protected] 2 Research Group Biodiversity, Phylogeny and Population Studies, Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan, Building D, B-3590 Diepenbeek, Belgium; e-mail: [email protected] 3 Department of Zoology and Evolutionary Genetics, University of Sassari, Via F. -
New Reports of Gastrotricha for the North-Eastern Ukraine
Zoodiversity, 54(5): 349–356, 2020 Fauna and Systematics DOI 10.15407/zoo2020.05.349 UDC 595.132(47.52/.54) NEW REPORTS OF GASTROTRICHA FOR THE NORTH-EASTERN UKRAINE R. R. Trokhymchuk V. N. Karazin National University, Svobody Sq., 4, Kharkiv, 61002 Ukraine E-mail: [email protected] R. R. Trokhymchuk (https://orcid.org/0000-0001-9570-0226) New Reports of Gastrotricha for the North-Eastern Ukraine. Trokhymchuk, R. R. — Gastrotricha is poor known phylum of small metazoans. Information about Ukrainian gastrotrichs’ fauna is outdated. Althogether nine species are reported in this paper. Seven taxa are new to the fauna of Ukraine: Chaetonotus (Hystricochaetonotus) hystrix, Chaetonotus (Primochaetus) heideri, Chaetonotus (Zonochaeta) bisacer, Lepidodermella minor minor, Lepidodermella squamata, Ichthydium maximum and Haltidytes festinans. This investigation gives an additional morphological information on Chaetonotus (Chaetonotus) maximus and Chaetonotus (Hystricochaetonotus) macrochaetus, which have been earlier reported to the Ukraine fauna but currently they recorded in Kharkiv Region for the first time. We provide short morphological description of all species and give some ecological notes. Key words: Gastrotricha, meiofauna, Ukraine, biodiversity. Introduction Gastrotricha Metschnikoff, 1865 are minute vermiform, acoelomate invertebrates. Metschnikoff classified these organisms as a Phylum (Metschnikoff, 1865) but some present investigations defined this group as a clade of Lophotrochozoa (Hejnol, 2015). Gastrotrichs are cosmopolitic species and can be found in all aquatic environments (Balsamo et al., 2008). However, we receive information about new species for science every year. In the sea gastrotrichs can rank third in abundance after nematodes and harpacticoid and in freshwater habitats they are among the top five most common taxa encountered. -
Gastrotricha, Chaetonotida) from Obodska Cave (Montenegro) Based on Morphological and Molecular Characters
European Journal of Taxonomy 354: 1–30 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.354 www.europeanjournaloftaxonomy.eu 2017 · Kolicka M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:51C2BE54-B99B-4464-8FC1-28A5CC6B9586 A new species of freshwater Chaetonotidae (Gastrotricha, Chaetonotida) from Obodska Cave (Montenegro) based on morphological and molecular characters Małgorzata KOLICKA 1,*, Piotr GADAWSKI 2 & Miroslawa DABERT 3 1 Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Adam Mickiewicz University Poznan, Umultowska 89, 61–614 Poznan, Poland. 2 Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Banacha 12/16, 90–237 Łódź, Poland. 3 Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University Poznan, Umultowska 89, 61–614 Poznan, Poland. * Corresponding author: [email protected] 2 E-mail: [email protected] 3 E-mail: [email protected] 1 urn:lsid:zoobank.org:author:550BCAA1-FB2B-47CC-A657-0340113C2D83 2 urn:lsid:zoobank.org:author:BCA3F37A-28BD-484C-A3B3-C2169D695A82 3 urn:lsid:zoobank.org:author:8F04FE81-3BC7-44C5-AFAB-6236607130F9 Abstract. Gastrotricha is a cosmopolitan phylum of aquatic and semi-aquatic invertebrates that comprises about 820 described species. Current knowledge regarding freshwater gastrotrichs inhabiting caves is extremely poor and there are no extant data regarding Gastrotricha from Montenegro. We describe a new species from Obodska Cave, which is also the fi rst record of a gastrotrich from this region. Due to its unusual habitat and morphological characteristics, this species may be important when considering the evolution and dispersion routes of Chaetonotidae Gosse, 1864 (sensu Leasi & Todaro 2008). -
Freshwater Gastrotricha By: Tobias Kånneby, Department of Zoology, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden, and Mitchell J
October 2016 U.S. Freshwater Gastrotricha By: Tobias Kånneby, Department of Zoology, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden, and Mitchell J. Weiss, 51-B Phelps Avenue, New Brunswick, NJ 08901, U.S.A. This list is based on the following works: Amato & Weiss 1982; Anderson & Robbins 1980; Bovee & Cordell 1971; Brunson 1948, 1949a, 1949b, 1950; Bryce 1924; Colinvaux 1964; Davison 1938; Dolley 1933; Dougherty 1960; Emberton 1981; Evans 1993; Fernald 1883; Goldberg 1949; Green 1986; Hatch 1939; Horlick 1975; Kånneby & Todaro 2015; Krivanek & Krivanek 1958a, 1958b, 1959; Lindeman 1941; Packard 1936, 1956, 1956-58, 1958a, 1958b, 1959, 1962, 1970; Pfaltzgraff 1967; Robbins 1964, 1965, 1966, 1973; Sacks 1955, 1964; Schwank 1990; Seibel et al. 1973; Shelford & Boesel 1942; Stokes 1887a, 1887b, 1896; Strayer 1985, 1994; Weiss 2001; Welch 1936a, 1936b, 1938; Young 1924; Zelinka 1889. Full references at end of document. Phylum Gastrotricha Metchnikoff, 1865 Order Chaetonotida Remane, 1925 Suborder Paucitubulatina d’Hondt, 1971 Family Chaetonotidae Gosse, 1864 [sensu Leasi & Todaro, 2008] Subfamily Chaetonotinae Gosse, 1864 Genus Aspidiophorus Voigt, 1903 1. Aspidiophorus paradoxus (Voigt, 1902) New Jersey [see also Schwank 1990] Genus Chaetonotus Ehrenberg, 1830 Subgenus Chaetonotus (Captochaetus) Kisielewski, 1997 2. Chaetonotus (Captochaetus) gastrocyaneus Brunson, 1950 Indiana, Michigan 3. Chaetonotus (Captochaetus) robustus Davison, 1938 New Jersey, New York Subgenus Chaetonotus (Chaetonotus) Ehrenberg, 1830 4. Chaetonotus (Chaetonotus) aculeatus Robbins, 1965 Illinois 5. Chaetonotus (Chaetonotus) brevispinosus Zelinka, 1889 New Hampshire, Ohio 1 October 2016 6. Chaetonotus (Chaetonotus) formosus Stokes, 1887 Alaska (?), Michigan, New Jersey 7. Chaetonotus (Chaetonotus) larus (Müller in Hermann, 1784) Maine (?), New Jersey (?) [see Zelinka 1889; see also Schwank 1990] 8. -
Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID -
Three New Gastrotrich Species of the Genus Tetranchyroderma (Macrodasyida: Thaumastodermatidae) from Korea*
Zootaxa 3368: 245–255 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Three new gastrotrich species of the genus Tetranchyroderma (Macrodasyida: Thaumastodermatidae) from Korea* JIMIN LEE & CHEON YOUNG CHANG1 Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology, Ansan 426-744, Korea 1 Corresponding author, E-mail: [email protected] *In: Karanovic, T. & Lee, W. (Eds) (2012) Biodiversity of Invertebrates in Korea. Zootaxa, 3368, 1–304. Abstract Three new gastrotrich species of the genus Tetranchyroderma are described sublittoral sandy bottoms of the Yellow Sea and Jeju Island in South Korea. Tetranchyroderma aethesbregmum sp. nov., which has a dorsal cuticular armature with pentancres only, is characterized by the peculiar shape of the head with a median trapezoidal lobe flanking three pairs of papillae. Tetranchyroderma megabitubulatum sp. nov. is clearly differentiated from other pentancrous species by the character combination of three pairs of cephalic tentacles, a pair of long dorsolateral adhesive tubes, and paired ‘foot’ ventral adhesive tubes. Tetranchyroderma insolitum sp. nov. is the only species possessing cuticular armature with tetrancres and triancres mixed, and also characteristic in having an earlobeprotrusion at the posterolateral corners of head. Key words: Description, Gastrotricha, marine, South Korea, taxonomy Introduction The serial faunal studies on macrodasyidan gastrotrichs have been carried out in Korea, since Chang et al. (1998a) first recorded two Thaumastoderm species, T. copiophorum and T. appendiculatum. A total of 16 species from six genera in two families, Planodasyidae Rao & Clausen, 1970 and Thaumastodermatidae Remane, 1926 have been recorded from the Korean coast so far (Chang et al. -
Ichthydium Hummoni N. Sp. a New Marine Chaetonotid Gastrotrich with a Male Reproductive System (I)
ICHTHYDIUM HUMMONI N. SP. A NEW MARINE CHAETONOTID GASTROTRICH WITH A MALE REPRODUCTIVE SYSTEM (I). by Edward E. Ruppert Department of Zoology, University of North Carolina, Chapel Hill, North Carolina 27514, U.S.A. (2) Résumé Une espèce marine hermaphrodite du genre Ichthydium est décrite de la Caroline du Nord (U.S.A.) et d'Arcachon (France). Cette espèce cosmopolite a été rencontrée dans les parties les plus élevées des zones intercotidales de deux plages sableuses. Elle est caractérisée par sa petite taille, sa baguette cuticulaire de maintien rappelant une colonne vertébrale, la disposition des cils de type Stylo- chaeta et son hermaphrodisme successif. Sa position systématique doit être aussi proche que possible de la famille dulcaquicole des Dasydytidae. Materials and Methods One Holotype (female phase), AMNH 83; Paratype (male phase), AMNH 84; and Paratype (female phase, "winter" eggs), AMNH 85 are deposited as formalin fixed wholemounts in the Department of Living Invertebrates of the American Museum of Natural History in New York. Measurements were made of 21 indivi- duals for this description (only the North Carolina material). Collection, extrac- tion and handling procedures are given in Ruppert (1967a). This species is dedi- cated to Dr. William D. Hummon of Ohio University. Introduction and Description A comparative investigation was undertaken in 1971-1972 of the gastrotrich fauna of 3 high energy beaches, one in North Carolina and two on the west coast of France. The purpose of this investiga- tion was to study the morphology and ecology of marine gastrotrich species over a geographic range. The results are published for the Xenotrichulidae (Ruppert, 1976a) and some general conclusions have been reported recently (Ruppert, 1976b). -
Freshwater Gastrotricha 2015
Polish freshwater Gastrotricha 2015 By: Małgorzata Kolicka, Department of Animal Taxonomy and Ecology, Institute of Environmental Biology, Adam Mickiewicz University, Umultowska 89, 61–614 Poznań, Poland. This list is based on the following works: Lucks (1909), Jakubski (1919), Steinecke (1916, 1924), Roszczak (1936, 1969), Kisielewski (1974, 1979, 1981, 1984, 1986, 1997), Kisielewska (1981a, b, 1982, 1986), Pawłowski (1980), Kisielewska et Kisielewski (1986a, b, c), Kisielewski et Kisielewska (1986), Nesteruk (1986, 1991, 1996a, b, 1998, 2000, 2004, 2007a, b, 2008, 2010, 2011), Szkutnik (1996), Kolicka et al. (2013), Kolicka (2015, unpublished data) and present all nominal species found in Poland. Full references at end of document. Phylum Gastrotricha Mečnikow, 1865 Order Chaetonotida Remane, 1925 [Rao & Clausen, 1970] Suborder Paucitubulatina d'Hondt, 1971 Family Chaetonotidae Gosse, 1864 (sensu Leasi & Todaro, 2008) Subfamily Chaetonotinae Gosse, 1864 (senus Kisielewski 1991) Genus Aspidiophorus Voigt 1903 1. Aspidiophorus bibulbosus Kisielewski, 1979 Wide distributed in entire country with except mountains 2. Aspidiophorus longichaetus Kisieleski 1986 Białowieża National Park 3. Aspidiophorus microsquamatus Saito, 1937 Hałublia near Siedlce 4. Aspidiophorus oculifer Kisielewski, 1981 Wide distributed in entire country 5. Aspidiophorus ophidermus Balsamo, 1983 Wide distributed in entire country 6. Aspidiophorus paradoxus (Voigt, 1902) 1 Polish freshwater Gastrotricha 2015 Poznań, near Międzychód, Okoninek near Bydgoszcz, Białki near Siedlce, Koszewnica near Siedlce, Siedlce, Kotuń 7. Aspidiophorus polonicus Kisielewski, 1981 Poznań, Białowieża National Park, Tatra Mountains 8. Aspidiophorus slovinensis Kisielewski, 1986 Słowiński National Park, Biebrzański National Park, Gugny near Łomża, Olszowa droga, Kotuń 9. Aspidiophorus squamulosus Roszczak, 1936 Wide distributed in entire country with except mountains 10. Aspidiophorus tatraensis Kisielewski, 1986 Tatra Mountains 11. -
Unit 6: Nemathelminthes General Characteristic and Classificationup
TDC FIRST SEM MAJOR: PAPER :1 UNIT 6: NEMATHELMINTHES GENERAL CHARACTERISTIC AND CLASSIFICATIONUP TO CLASSES LIFE CYCLE, PATHOGENICITY OF ASCARIS LUMBRICOIDES AND WUCHHERIA BANCROFTI PARASITIC ADAPTATION IN HELMINTHES BY: DR. LUNA PHUKAN Nemathelminthes/Aschelminthes general characteristic and classificationup to classes • The phylum ‘Nemathelminthes’ (Gr; nematos = thread ; helminths = worm) or Nematoda comprises the roundworms. • Triploblastic, bilaterally symmetrical, vermiform, unsegmented cylindrical true worms with pseudocoel (i.e pseudocoelomate or blastocoelomate) • Pseudocoelom / False coelom derived from embryonic blastocoel. • Tube within a tube body plan, organ-system grade of body organization. • Body round in cross section and covered with transparent cuticle composed of scleroprotein. • A syncytial epidermis generally without cilia. • Body wall has only longitudinal muscles. • No distinct head, digestive tract complete usually surrounded by lips bearing sense organs. • Alimentary canal of roundworms have both mouth and anus. • Both respiratory and circulatory system are absent. • Excretory system comprised of one or two renette cells or protonephridia. • Nervous system consists of circumpharyngeal nerve ring and six longitudinal nerve cords. • Presence of sensory papillae. (Amphids : in mouth, Phasmids : in anus) • All are dioecious ; i.e. sexes are separate with sexual dimorphism. [1st unisexual phylum] • Eggs with chitinous shell, cleavage determinate and spiral. • Larval forms are : Rhabditiform, Filariform, Microfilariae -
Phylum Gastrotricha*
Zootaxa 3703 (1): 079–082 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3703.1.16 http://zoobank.org/urn:lsid:zoobank.org:pub:7BE7A282-44CC-48DF-BEBF-2F7EC084FB21 Phylum Gastrotricha* MARIA BALSAMO1, LORETTA GUIDI1 & JEAN-LOUP D’HONDT2 1 Department of Earth, Life, and Environmental Sciences, University of Urbino ‘Carlo Bo’, Via Ca’ Le Suore 2, 61029, Urbino, Italy; e-mail: [email protected], [email protected]. 2 Muséum National d’Histoire Naturelle, 92 rue Jeanne d’Arc, 75013 Paris, France; e-mail: [email protected] * In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa, 3703, 1–82. Abstract An updated classification of the two orders of the phylum is provided up to family level, and numbers of genera and species described so far are specified. The phylum is composed of two orders: Macrodasyida, with, 9 families, 33 genera (+1 genus incertae sedis) and 338 species (+1 species incertae sedis), and Chaetonotida, with 8 families, 30 genera and 454 species. Current taxonomy is relatively stable for the order Macrodasyida, except for the presence of a monotypic genus which cannot yet be assigned with certainty to any of the existing families. On the contrary, the taxonomy of the order Chaetonotida has been repeatedly revised in the last decades and is still unstable. An integrate taxonomical approach on morphological and molecular bases appears necessary in order to revise the current classification according to phylogenetic relationships.