A Note About Orientation the Divergence Theorem

Total Page:16

File Type:pdf, Size:1020Kb

A Note About Orientation the Divergence Theorem Jim Lambers MAT 280 Spring Semester 2009-10 Lecture 24 Notes These notes correspond to Section 13.9 in Stewart and Section 8.4 in Marsden and Tromba. A Note About Orientation Recall Stokes' Theorem, Z ZZ F ⋅ dr = curl F ⋅ dS; C S where C is a simple, closed, positively oriented, piecewise smooth curve and S is a oriented surface enclosed by C. If C is parameterized by a function r(t), where a ≤ t ≤ b, and S is parameterized by a function g(u; v), where (u; v) 2 D, then Stokes' Theorem becomes Z b ZZ 0 F(r(t)) ⋅ r (t) dt = curl F(g(u; v)) ⋅ (gu × gv) du dv: a D It is important that the parameterizations r and g have the proper orientation for Stokes' Theorem to apply. This is why it is required that C have positive orientation. It means, informally, that if one were to \walk" along C, in such a way that n, the unit normal vector of S, can be viewed, then S should always be \on the left" relative to the path traced along C. It follows that the parameterizations of C and S must be consistent with one another, to ensure that they are oriented properly. Otherwise, one of the parameterizations must be reversed, so that the sign of the corresponding integral is corrected. The orientation of a curve can be reversed by changing the parameter to s = a + b − t. The orientation of a surface can be reversed by interchanging the variables u and v. The Divergence Theorem Let F be a vector field with continuous first partial derivatives. Recall a statement of Green's Theorem, Z ZZ F ⋅ n ds = div F dA; C D where n is the outward unit normal vector of D. Now, let E be a three-dimensional solid whose boundary, denoted by @E, is a closed surface S with positive orientation. Then, if we consider two- dimensional slices of E, each one being parallel to the xy-plane, then each slice is a region D with positively oriented boundary C, to which Green's Theorem applies. If we multiply the integrals on 1 both sides of Green's Theorem, as applied to each slice, by dz, the infinitesimal \thickness" of each slice, then we obtain ZZ ZZZ F ⋅ n dS = div F dV; S E or, equivalently, ZZ ZZZ F ⋅ dS = r ⋅ F dV: S E This result is known as the Gauss Divergence Theorem, or simply the Divergence Theorem. As the Divergence Theorem relates the surface integral of a vector field, known as the flux of the vector field through the surface, to an integral of its divergence over a solid, it is quite useful for converting potentially difficult double integrals into triple integrals that may be much easier to evaluate, as the following example demonstrates. Example (Stewart, Section 13.9, Exercise 6) Let S be the surface of the box with vertices (±1; ±2; ±3), and let F(x; y; z) = hx2z3; 2xyz3; xz4i. To compute the surface integral of F over S directly is quite tedious, because S has six faces that must be handled separately. Instead, we apply the Divergence Theorem to integrate div F over E, the interior of the box. We then have ZZ ZZZ F ⋅ dS = div F dV S E Z 1 Z 2 Z 3 2 3 3 4 = (x z )x + (2xyz )y + (xz )z dz dy dz −1 −2 −3 Z 1 Z 2 Z 3 = 2xz3 + 2xz3 + 4xz3 dz dy dx −1 −2 −3 Z 1 Z 2 Z 3 = 8xz3 dz dy dx −1 −2 −3 Z 1 Z 3 = 32 x z3 dz dx −1 −3 Z 1 " 4 3 # z = 32 x dx −1 4 −3 = 0: 2 The Divergence Theorem can also be used to convert a difficult surface integral into an easier one. 2 1 3 2 2 Example (Stewart, Section 13.9, Exercise 17) Let F(x; y; z) = hz x; 3 y + tan z; x z + y i. Let S be the top half of the sphere x2 + y2 + z2 = 1. To evaluate the surface integral of F over S, we note 2 2 that if we combine S with S1, the disk x + y ≤ 1, with downward orientation. We then obtain a 2 2 2 2 new surface S2 that is the boundary of the top half of the ball x + y + z ≤ 1, which we denote by E. By the Divergence Theorem, ZZ ZZ ZZZ F ⋅ dS + F ⋅ dS = div F dV: S S2 E We parameterize S2 by x = u sin v; y = u cos v; z = 0; 0 ≤ u ≤ 1; 0 ≤ v ≤ 2: This parameterization is used instead of the usual one arising from polar coordinates, due to the downward orientation. It follows from ru = hsin u; cos u; 0i; rv = hu cos v; −u sin v; 0i that 2 2 ru × rv = h0; 0; −u sin v − u cos vi = uh0; 0; −1i; which points downward, as desired. From 2 1 3 2 2 2 2 2 div F(x; y; z) = (z x)x + y + tan z + (x z + y )z = x + y + z ; 3 y which suggests the use of spherical coordinates for the integral over E, we obtain ZZ ZZZ ZZ F ⋅ dS = div F dV − F ⋅ dS S E S2 ZZZ Z 1 Z 2 = (x2 + y2 + z2) dV − F(x(u; v); y(u; v); z(u; v)) ⋅ uh0; 0; −1i dv du E 0 0 Z 1 Z 2 Z =2 Z 1 Z 2 = 22 sin d d d + u(u2 cos2 v) dv du 0 0 0 0 0 Z 1 Z =2 Z 1 Z 2 = 2 4 sin d d + u3 cos2 v dv du 0 0 0 0 Z 1 Z 1 Z 2 4 h =2i 3 1 + cos 2v = 2 − cos j0 d − u dv du 0 0 0 2 Z 1 Z 1 2 4 3 v sin 2v = 2 d + u + du 0 0 2 4 0 5 1 Z 1 3 = 2 + u du 5 0 0 4 1 2 u = + 5 4 0 3 2 = + 5 4 13 = : 20 2 Suppose that F is a vector field that, at any point, represents the flow rate of heat energy, which is the rate of change, with respect to time, of the amount of heat energy flowing through that point. By Fourier's Law, F = −KrT , where K is a constant called thermal conductivity, and T is a function that indicates temperature. Now, let E be a three-dimensional solid enclosed by a closed, positively oriented, surface S with outward unit normal vector n. Then, by the law of conservation of energy, the rate of change, with respect to time, of the amount of heat energy inside E is equal to the flow rate, or flux, or heat into E through S. That is, if (x; y; z) is the density of heat energy, then d ZZZ ZZ dV = F ⋅ (−n) dS; dt E S where we use −n because n is the outward unit normal vector, but we need to express the flux into E through S. From the definition of F, and the fact that = c0T , where c is the specific heat and 0 is the mass density, which, for simplicity, we assume to be constant, we have d ZZZ ZZ c0T dV = KrT ⋅ n dS: dt E S Next, we note that because c, 0, and E do not depend on time, we can write d ZZZ dT ZZ c0 dV = KrT ⋅ n dS: dt E dt S Now, we apply the Divergence Theorem, and obtain ZZZ ZZZ ZZZ d dT 2 c0 dV = Kr ⋅ (rT ) dV = Kr T dV: dt E dt E E That is, ZZZ dT 2 c0 − Kr T dV = 0: E dt Since the solid E is arbitrary, it follows that dT K = r2T: dt c0 This is known as the heat equation, which is one of the most important partial differential equations in all of applied mathematics. 4 Practice Problems Practice problems from the recommended textbooks are: ∙ Stewart: Section 13.9, Exercises 1-13 odd ∙ Marsden/Tromba: Section 8.4, Exercises 1-9 odd 5.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Surface Regularized Geometry Estimation from a Single Image
    SURGE: Surface Regularized Geometry Estimation from a Single Image Peng Wang1 Xiaohui Shen2 Bryan Russell2 Scott Cohen2 Brian Price2 Alan Yuille3 1University of California, Los Angeles 2Adobe Research 3Johns Hopkins University Abstract This paper introduces an approach to regularize 2.5D surface normal and depth predictions at each pixel given a single input image. The approach infers and reasons about the underlying 3D planar surfaces depicted in the image to snap predicted normals and depths to inferred planar surfaces, all while maintaining fine detail within objects. Our approach comprises two components: (i) a four- stream convolutional neural network (CNN) where depths, surface normals, and likelihoods of planar region and planar boundary are predicted at each pixel, followed by (ii) a dense conditional random field (DCRF) that integrates the four predictions such that the normals and depths are compatible with each other and regularized by the planar region and planar boundary information. The DCRF is formulated such that gradients can be passed to the surface normal and depth CNNs via backpropagation. In addition, we propose new planar-wise metrics to evaluate geometry consistency within planar surfaces, which are more tightly related to dependent 3D editing applications. We show that our regularization yields a 30% relative improvement in planar consistency on the NYU v2 dataset [24]. 1 Introduction Recent efforts to estimate the 2.5D layout of a depicted scene from a single image, such as per-pixel depths and surface normals, have yielded high-quality outputs respecting both the global scene layout and fine object detail [2, 6, 7, 29]. Upon closer inspection, however, the predicted depths and normals may fail to be consistent with the underlying surface geometry.
    [Show full text]
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • CS 468 (Spring 2013) — Discrete Differential Geometry 1 the Unit Normal Vector of a Surface. 2 Surface Area
    CS 468 (Spring 2013) | Discrete Differential Geometry Lecture 7 Student Notes: The Second Fundamental Form Lecturer: Adrian Butscher; Scribe: Soohark Chung 1 The unit normal vector of a surface. Figure 1: Normal vector of level set. • The normal line is a geometric feature. The normal direction is not (think of a non-orientable surfaces such as a mobius strip). If possible, you want to pick normal directions that are consistent globally. For example, for a manifold, you can pick normal directions pointing out. • Locally, you can find a normal direction using tangent vectors (though you can't extend this globally). • Normal vector of a parametrized surface: E1 × E2 If TpS = spanfE1;E2g then N := kE1 × E2k This is just the cross product of two tangent vectors normalized by it's length. Because you take the cross product of two vectors, it is orthogonal to the tangent plane. You can see that your choice of tangent vectors and their order determines the direction of the normal vector. • Normal vector of a level set: > [DFp] N := ? TpS kDFpk This is because the gradient at any point is perpendicular to the level set. This makes sense intuitively if you remember that the gradient is the "direction of the greatest increase" and that the value of the level set function stays constant along the surface. Of course, you also have to normalize it to be unit length. 2 Surface Area. • We want to be able to take the integral of the surface. One approach to the problem may be to inegrate a parametrized surface in the parameter domain.
    [Show full text]
  • Curl, Divergence and Laplacian
    Curl, Divergence and Laplacian What to know: 1. The definition of curl and it two properties, that is, theorem 1, and be able to predict qualitatively how the curl of a vector field behaves from a picture. 2. The definition of divergence and it two properties, that is, if div F~ 6= 0 then F~ can't be written as the curl of another field, and be able to tell a vector field of clearly nonzero,positive or negative divergence from the picture. 3. Know the definition of the Laplace operator 4. Know what kind of objects those operator take as input and what they give as output. The curl operator Let's look at two plots of vector fields: Figure 1: The vector field Figure 2: The vector field h−y; x; 0i: h1; 1; 0i We can observe that the second one looks like it is rotating around the z axis. We'd like to be able to predict this kind of behavior without having to look at a picture. We also promised to find a criterion that checks whether a vector field is conservative in R3. Both of those goals are accomplished using a tool called the curl operator, even though neither of those two properties is exactly obvious from the definition we'll give. Definition 1. Let F~ = hP; Q; Ri be a vector field in R3, where P , Q and R are continuously differentiable. We define the curl operator: @R @Q @P @R @Q @P curl F~ = − ~i + − ~j + − ~k: (1) @y @z @z @x @x @y Remarks: 1.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Part IA — Vector Calculus
    Part IA | Vector Calculus Based on lectures by B. Allanach Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine. 3 Curves in R 3 Parameterised curves and arc length, tangents and normals to curves in R , the radius of curvature. [1] 2 3 Integration in R and R Line integrals. Surface and volume integrals: definitions, examples using Cartesian, cylindrical and spherical coordinates; change of variables. [4] Vector operators Directional derivatives. The gradient of a real-valued function: definition; interpretation as normal to level surfaces; examples including the use of cylindrical, spherical *and general orthogonal curvilinear* coordinates. Divergence, curl and r2 in Cartesian coordinates, examples; formulae for these oper- ators (statement only) in cylindrical, spherical *and general orthogonal curvilinear* coordinates. Solenoidal fields, irrotational fields and conservative fields; scalar potentials. Vector derivative identities. [5] Integration theorems Divergence theorem, Green's theorem, Stokes's theorem, Green's second theorem: statements; informal proofs; examples; application to fluid dynamics, and to electro- magnetism including statement of Maxwell's equations. [5] Laplace's equation 2 3 Laplace's equation in R and R : uniqueness theorem and maximum principle. Solution of Poisson's equation by Gauss's method (for spherical and cylindrical symmetry) and as an integral. [4] 3 Cartesian tensors in R Tensor transformation laws, addition, multiplication, contraction, with emphasis on tensors of second rank. Isotropic second and third rank tensors.
    [Show full text]
  • AN INTRODUCTION to the CURVATURE of SURFACES by PHILIP ANTHONY BARILE a Thesis Submitted to the Graduate School-Camden Rutgers
    AN INTRODUCTION TO THE CURVATURE OF SURFACES By PHILIP ANTHONY BARILE A thesis submitted to the Graduate School-Camden Rutgers, The State University Of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Mathematics written under the direction of Haydee Herrera and approved by Camden, NJ January 2009 ABSTRACT OF THE THESIS An Introduction to the Curvature of Surfaces by PHILIP ANTHONY BARILE Thesis Director: Haydee Herrera Curvature is fundamental to the study of differential geometry. It describes different geometrical and topological properties of a surface in R3. Two types of curvature are discussed in this paper: intrinsic and extrinsic. Numerous examples are given which motivate definitions, properties and theorems concerning curvature. ii 1 1 Introduction For surfaces in R3, there are several different ways to measure curvature. Some curvature, like normal curvature, has the property such that it depends on how we embed the surface in R3. Normal curvature is extrinsic; that is, it could not be measured by being on the surface. On the other hand, another measurement of curvature, namely Gauss curvature, does not depend on how we embed the surface in R3. Gauss curvature is intrinsic; that is, it can be measured from on the surface. In order to engage in a discussion about curvature of surfaces, we must introduce some important concepts such as regular surfaces, the tangent plane, the first and second fundamental form, and the Gauss Map. Sections 2,3 and 4 introduce these preliminaries, however, their importance should not be understated as they lay the groundwork for more subtle and advanced topics in differential geometry.
    [Show full text]
  • Generalized Stokes' Theorem
    Chapter 4 Generalized Stokes’ Theorem “It is very difficult for us, placed as we have been from earliest childhood in a condition of training, to say what would have been our feelings had such training never taken place.” Sir George Stokes, 1st Baronet 4.1. Manifolds with Boundary We have seen in the Chapter 3 that Green’s, Stokes’ and Divergence Theorem in Multivariable Calculus can be unified together using the language of differential forms. In this chapter, we will generalize Stokes’ Theorem to higher dimensional and abstract manifolds. These classic theorems and their generalizations concern about an integral over a manifold with an integral over its boundary. In this section, we will first rigorously define the notion of a boundary for abstract manifolds. Heuristically, an interior point of a manifold locally looks like a ball in Euclidean space, whereas a boundary point locally looks like an upper-half space. n 4.1.1. Smooth Functions on Upper-Half Spaces. From now on, we denote R+ := n n f(u1, ... , un) 2 R : un ≥ 0g which is the upper-half space of R . Under the subspace n n n topology, we say a subset V ⊂ R+ is open in R+ if there exists a set Ve ⊂ R open in n n n R such that V = Ve \ R+. It is intuitively clear that if V ⊂ R+ is disjoint from the n n n subspace fun = 0g of R , then V is open in R+ if and only if V is open in R . n n Now consider a set V ⊂ R+ which is open in R+ and that V \ fun = 0g 6= Æ.
    [Show full text]
  • LECTURE 27: the LAPLAST ONE Monday, November 25, 2019 5:23 PM
    LECTURE 27: THE LAPLAST ONE Monday, November 25, 2019 5:23 PM Today: Three little remaining topics related to Laplace I- 3 DIMENSIONS Previously: Solved Laplace's equation in 2 dimensions by converting it into polar coordinates. The same idea works in 3 dimensions if you use spherical coordinates. 3 Suppose u = u(x,y,z) solves u xx + u yy + u zz = 0 in R Using spherical coordinates, you eventually get urr + 2 ur + JUNK = 0 r (where r = x 2 + y 2 + z 2 and JUNK doesn't depend on r) If we're looking for radial solutions, we set JUNK = 0 Get u rr + 2 u r = 0 which you can solve to get r u(x,y,z) = -C + C' solves u xx + u yy + u zz = 0 r Finally, setting C = -1/(4π) and C' = 0, you get Fundamental solution of Laplace for n = 3 S(x,y,z) = 1 = 4πr 4π x 2 + y 2 + z 2 Note: In n dimensions, get u rr + n-1 ur = 0 r => u( r ) = -C + C' rn-2 => S(x) = Blah (for some complicated Blah) rn-1 Why fundamental? Because can build up other solutions from this! Fun Fact: A solution of -Δ u = f (Poisson's equation) in R n is u(x) = S(x) * f(x) = S(x -y) f(y) dy (Basically the constant is chosen such that -ΔS = d0 <- Dirac at 0) II - DERIVATION OF LAPLACE Two goals: Derive Laplace's equation, and also highlight an important structure of Δu = 0 A) SETTING n Definition: If F = (F 1, …, F n) is a vector field in R , then div(F) = (F 1)x1 + … + (F n)xn Notice : If u = u(x 1, …, x n), then u = (u x1 , …, u xn ) => div( u) = (u x1 )x1 + … + (u xn )xn = u x1 x1 + … + u xn xn = Δu Fact: Δu = div( u) "divergence structure" In particular, Laplace's equation works very well with the divergence theorem Divergence Theorem: F n dS = div(F) dx bdy D D B) DERIVATION Suppose you have a fluid F that is in equilibrium (think F = temperature or chemical concentration) Equilibrium means that for any region D, the net flux of F is 0.
    [Show full text]
  • Green Gauss Theorem Yesterday, We Continued Discussions on Index Notations That Can Be Used to Represent Tensors
    15/02/2017 LECTURE – 15 Green Gauss Theorem Yesterday, we continued discussions on index notations that can be used to represent tensors. In index notations we saw the Gradient of a scalar Divergence of a vector Cross product of vector etc. We also saw that a second rank tensor can be written as a sum of a symmetric & asymmetric tensor. 11 i.e, BBBBB[][] ij22 ij ji ij ji First part is symmetric & second part is asymmetric Today we will briefly discuss about Green Gauss Theorem etc. Green Gauss Theorem relates the volume & surface integrals. The most common form of Gauss’s theorem is the Gauss divergence theorem which you have studied in previous courses. 푛 푣 ds If you have a volume U formed by surface S, the Gauss divergence theorem for a vector v suggest that v.. ndSˆ vdU SU where, S = bounding surface on closed surface U = volumetric domain nˆ = the unit outward normal vector of the elementary surface area ds This Gauss Divergence theorem can also be represented using index notations. v v n dS i dU ii SUxi For any scalar multiple or factor for vector v , say v , the Green Gauss can be represented as (v . nˆ ) dS .( v ) dU SU i.e. (v . nˆ ) dS ( . v ) dU ( v . ) dU SUU v or v n dSi dU v dU i i i SUUxxii Gauss’s theorem is applicable not only to a vector . It can be applied to any tensor B (say) B B n dSij dU B dU ij i ij SUUxxii Stoke’s Theorem Stoke’s theorem relates the integral over an open surface S, to line integral around the surface’s bounding curve (say C) You need to appropriately choose the unit outward normal vector to the surface 푛 푡 dr v.
    [Show full text]
  • Surface Normals and Tangent Planes
    Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, …nding the equation of a tangent plane to a surface at a given point requires the calculation of a surface normal vector. In this section, we explore the concept of a normal vector to a surface and its use in …nding equations of tangent planes. To begin with, a level surface U (x; y; z) = k is said to be smooth if the gradient U = Ux;Uy;Uz is continuous and non-zero at any point on the surface. Equivalently,r h we ofteni write U = Uxex + Uyey + Uzez r where ex = 1; 0; 0 ; ey = 0; 1; 0 ; and ez = 0; 0; 1 : Supposeh now thati r (t) =h x (ti) ; y (t) ; z (t) hlies oni a smooth surface U (x; y; z) = k: Applying the derivative withh respect to t toi both sides of the equation of the level surface yields dU d = k dt dt Since k is a constant, the chain rule implies that U v = 0 r where v = x0 (t) ; y0 (t) ; z0 (t) . However, v is tangent to the surface because it is tangenth to a curve on thei surface, which implies that U is orthogonal to each tangent vector v at a given point on the surface. r That is, U (p; q; r) at a given point (p; q; r) is normal to the tangent plane to r 1 the surface U(x; y; z) = k at the point (p; q; r).
    [Show full text]