Fluid Dynamics I - Fall 2017 Tensor Algebra and Calculus for Fluid Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Fluid Dynamics I - Fall 2017 Tensor Algebra and Calculus for Fluid Dynamics Fluid Dynamics I - Fall 2017 Tensor Algebra and Calculus for Fluid Dynamics Fluid dynamics quantities and equations are naturally described in terms of tensors. We'll make precise later what makes something a tensor, but for now, it suffices that scalars are zeroth order tensors (rank 0 tensors), vectors are first order tensors (rank 1 tensors), and square matrices may be thought of as second-order tensors (rank two tensors). The notes that follow consider concepts and operations with tensors expressed in terms of Cartesian coordinates (x; y; z) = (x1; x2; x3). T The standard Cartesian basic vectors are ei, i = 1; 2; 3 where for example, e1 = (1; 0; 0) .A vector v may be represented in terms of this basis as the linear combination v = v1e1 + v2e2 + v3e3: (1) The scalars v1, v2, v3 are the coordinates of v with respect to the standard Cartesian basis. The expression for v above can also be written 3 X v = vjej = vjej (2) j=1 The second term in this equation uses Σ to indicate summation over the indicated range of the index j. The third term uses the summation convention (or Einstein convention) that when an index is repeated in a term, summation over that index is implied and the range of the index has to be inferred from context. Summation convention is concise, but if you are ever confused, just resort to the use of explicit Σ symbols. In an equation, e.g., 3 X ai = bi + cij j=1 j is a dummy index used for the summation, while i is a free index. The same free indices must occur in every term of an equation. Definition: The Kronecker delta is: 1; if i = j δ = i; j = 1; 2; 3: ij 0; if i 6= j Definition:A permutation of a list of integers is a listing of these integers in another order, e.g. 312 instead of 123. A transposition is a permutation in which two adjacent integers are interchanged, e.g. 312 ! 132. An even permutation is a permutation that can be achieved in an even number of transpositions. An odd permutation is a permutation that can be achieved in an odd number of transpositions. Definition: The Permutation Symbol is: 8 < 0; if and two of i, j, k are equal ijk = 1; when ijk is an even permutation of 123 : −1; when ijk is an odd permutation of 123 1 Remark: Note that transposing two indices in ijk just changes its sign, e.g., jik = −ijk. Proposition: δii = 3, δijδij = 3, ijkijk = 6. If x is a vector with coordinates xi, then @xi = δij: @xj An important relationship between the Kronecker delta and the permutation symbol is Proposition: ijkpqk = δip δjq − δjp δiq : |{z} |{z} |{z} |{z} first second inner outer Vector operations such as dot product and cross product are defined in terms of the basis vectors ei · ej = δij ei × ej = ijkek: Using these definitions we find that u · v = uiei · vjej = uivjδij = uivi and u × v = ijkuivjek: A second order tensor T represents a linear function that takes a vector as input and gives a vector as output. It can be represented as a linear combination of the nine second order tensors: T eiej (outer product) i = 1; 2; 3, j = 1; 2; 3. The same quantity is sometimes written in dyadic form T eiej = eiej = ei ⊗ ej: Note that, for example, 011 00 0 11 e1e3 = @0A 0 0 1 = @0 0 0A 0 0 0 0 Expressed in terms of this basis, T = Tijeiej = Tijei ⊗ ej. The numbers Tij are the components of the tensor T with respect to the Cartesian basis eiej, i = 1; 2; 3, j = 1; 2; 3. There are three basic operations on 1st amd 2nd order tensors. The inner or double inner products (·, :) are contractions and reduce the rank of tensors while the tensor product or outer product (⊗) increases the rank of tensors. Let u, v be vectors and S, T be second order tensors. Then we have u · v = uiei · vjej = uivjδij = uivi (rank 0) u · T = uiei · Tjkejek = uiTjkei · ejek = uiTjkδijek = uiTikek (rank 1) T · u = Tjkejek · uiei = uiTjkejek · ei = uiTjkδikej = uiTjiej (rank 1) S · T = Tijeiej · Sklekel = TijSkleiδjkel = TijSjleiel (rank 2) u ⊗ v = uivjeiej (rank 2) u ⊗ T = uiei ⊗ Tjkejek = uiTjkeiejek (rank 3) T : S = TijSij (rank 0) 2 Remark: The tensors e = e ⊗ e form a unit basis for second rank tensors with respect to the ij i j inner product :. 01 0 01 00 0 01 00 0 01 @0 0 0A ; @1 0 0A ; :::; @0 0 0A : 0 0 0 0 0 0 0 0 1 The set of 3 × 3 second rank tensors is a nine-dimensional vector space. Remark: There is no analog of the cross product for tensors other than two first rank ones. Definition: A tensor T is symmetric if Tij = Tji and anti-symmetric (or skew-symmetric) if Tij = −Tji. Definition: A tensor is isotropic if its components do not change for any rotation of the coordinate system. Remark: All rank 0 tensors are isotropic. No rank 1 tensors are isotropic. Proposition: The only isotropic tensors of rank 2 and 4 are of the form αδij rank 2 αδijδpq + β(δipδjq + δiqδjp) + γ(δipδjq − δiqδjp) rank 4: The permutation symbol ijk is useful for expressing the determinant of a 3 × 3 matrix A: det(A) = ijka1ia2ja3k = (a1 · (a2 × a3)) th where ai is the i column of A. Derivatives of Tensors: For tensors which are functions of spatial location x and/or time t, we can define derivatives. For now, we restrict ourselves to Cartesian coordinate systems. Definition: The del or nabla operator is @ r = ei = ei@xi = ei@i: @xi Definition: The gradient of a tensor field A of any rank is rA = r ⊗ A: Note that rA is one rank higher than A. For example, if φ(x) is a scalar field, @ rφ = ek φ = (@kφ)ek: @xk @φ It is sometimes convenient to write this as @x. If u(x) is a vector field, then ru(x) = (ei@i)(ujej) = (@iuj)eiej: 3 Definition: The divergence of a tensor field A of any rank is divA = r · A: Note that divA is one rank lower than A. For example, if u(x) is a vector field and T (x) is a second-order tensor field, then div(u) = (ei@i) · (ujej) = (@iuj)ei · ej = (@iuj)δij = @iui and @Tik div(T ) = (ei@i) · Tjkejek = (@iTjk)δijek = (@iTik)ek = ek: @xi Definition: The curl of a vector field u(x) is curl(u) = ∇×u = @mem×unen = @munem×en = @munijk(em)i(en)jek = @munijkδmiδnjek = @iujijkek: Definition: A vector field u(x) is irrotational if r × u(x) = 0 for all x. Definition: The Laplacian operator is the composition of the divergence and the gradient operators ∆ = r2 = r · r: For a scalar field φ(x), ∆φ = r · rφ = (ei@i) · (@jφej) = (@i@jφ)ei · ej = @i@iφ = @iiφ. For a vector field u(x), ∆u = (@iei) · (@jej)(ukek) = (@i)(@j)δij(ukek) = @i@iukek: th 2 T It is the vector with k component equal to @i uk, the Laplacian of uk. ∆u = (∆u1; ∆u2; ∆u3) . Proposition: Let φ be a scalar field and u be a vector field. Then r · (φu) = rφ · u + φr · u; r × (rφ) = 0; r · (r × u) = 0; r × (r × u) = r(r · u) − ∆u: The standard divergence theorem from calculus applies to vector fields. The theorem is Theorem: The divergence theorem states that if n is the outward unit normal vector to the surface S enclosing the volume V , and u is a vector (that is, a first rank tensor), then Z Z n · udS = r · udV: S V This theorem can be extended to second rank tensor fields: Theorem: The (general) divergence theorem states that if n is the outward unit normal vector to the surface S enclosing the volume V , and T is a second rank tensor, then Z Z n · T dS = r · T dV: S V Note that the order matters in the general divergence theorem. 4.
Recommended publications
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • Part IA — Vector Calculus
    Part IA | Vector Calculus Based on lectures by B. Allanach Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine. 3 Curves in R 3 Parameterised curves and arc length, tangents and normals to curves in R , the radius of curvature. [1] 2 3 Integration in R and R Line integrals. Surface and volume integrals: definitions, examples using Cartesian, cylindrical and spherical coordinates; change of variables. [4] Vector operators Directional derivatives. The gradient of a real-valued function: definition; interpretation as normal to level surfaces; examples including the use of cylindrical, spherical *and general orthogonal curvilinear* coordinates. Divergence, curl and r2 in Cartesian coordinates, examples; formulae for these oper- ators (statement only) in cylindrical, spherical *and general orthogonal curvilinear* coordinates. Solenoidal fields, irrotational fields and conservative fields; scalar potentials. Vector derivative identities. [5] Integration theorems Divergence theorem, Green's theorem, Stokes's theorem, Green's second theorem: statements; informal proofs; examples; application to fluid dynamics, and to electro- magnetism including statement of Maxwell's equations. [5] Laplace's equation 2 3 Laplace's equation in R and R : uniqueness theorem and maximum principle. Solution of Poisson's equation by Gauss's method (for spherical and cylindrical symmetry) and as an integral. [4] 3 Cartesian tensors in R Tensor transformation laws, addition, multiplication, contraction, with emphasis on tensors of second rank. Isotropic second and third rank tensors.
    [Show full text]
  • Generalized Stokes' Theorem
    Chapter 4 Generalized Stokes’ Theorem “It is very difficult for us, placed as we have been from earliest childhood in a condition of training, to say what would have been our feelings had such training never taken place.” Sir George Stokes, 1st Baronet 4.1. Manifolds with Boundary We have seen in the Chapter 3 that Green’s, Stokes’ and Divergence Theorem in Multivariable Calculus can be unified together using the language of differential forms. In this chapter, we will generalize Stokes’ Theorem to higher dimensional and abstract manifolds. These classic theorems and their generalizations concern about an integral over a manifold with an integral over its boundary. In this section, we will first rigorously define the notion of a boundary for abstract manifolds. Heuristically, an interior point of a manifold locally looks like a ball in Euclidean space, whereas a boundary point locally looks like an upper-half space. n 4.1.1. Smooth Functions on Upper-Half Spaces. From now on, we denote R+ := n n f(u1, ... , un) 2 R : un ≥ 0g which is the upper-half space of R . Under the subspace n n n topology, we say a subset V ⊂ R+ is open in R+ if there exists a set Ve ⊂ R open in n n n R such that V = Ve \ R+. It is intuitively clear that if V ⊂ R+ is disjoint from the n n n subspace fun = 0g of R , then V is open in R+ if and only if V is open in R . n n Now consider a set V ⊂ R+ which is open in R+ and that V \ fun = 0g 6= Æ.
    [Show full text]
  • LECTURE 27: the LAPLAST ONE Monday, November 25, 2019 5:23 PM
    LECTURE 27: THE LAPLAST ONE Monday, November 25, 2019 5:23 PM Today: Three little remaining topics related to Laplace I- 3 DIMENSIONS Previously: Solved Laplace's equation in 2 dimensions by converting it into polar coordinates. The same idea works in 3 dimensions if you use spherical coordinates. 3 Suppose u = u(x,y,z) solves u xx + u yy + u zz = 0 in R Using spherical coordinates, you eventually get urr + 2 ur + JUNK = 0 r (where r = x 2 + y 2 + z 2 and JUNK doesn't depend on r) If we're looking for radial solutions, we set JUNK = 0 Get u rr + 2 u r = 0 which you can solve to get r u(x,y,z) = -C + C' solves u xx + u yy + u zz = 0 r Finally, setting C = -1/(4π) and C' = 0, you get Fundamental solution of Laplace for n = 3 S(x,y,z) = 1 = 4πr 4π x 2 + y 2 + z 2 Note: In n dimensions, get u rr + n-1 ur = 0 r => u( r ) = -C + C' rn-2 => S(x) = Blah (for some complicated Blah) rn-1 Why fundamental? Because can build up other solutions from this! Fun Fact: A solution of -Δ u = f (Poisson's equation) in R n is u(x) = S(x) * f(x) = S(x -y) f(y) dy (Basically the constant is chosen such that -ΔS = d0 <- Dirac at 0) II - DERIVATION OF LAPLACE Two goals: Derive Laplace's equation, and also highlight an important structure of Δu = 0 A) SETTING n Definition: If F = (F 1, …, F n) is a vector field in R , then div(F) = (F 1)x1 + … + (F n)xn Notice : If u = u(x 1, …, x n), then u = (u x1 , …, u xn ) => div( u) = (u x1 )x1 + … + (u xn )xn = u x1 x1 + … + u xn xn = Δu Fact: Δu = div( u) "divergence structure" In particular, Laplace's equation works very well with the divergence theorem Divergence Theorem: F n dS = div(F) dx bdy D D B) DERIVATION Suppose you have a fluid F that is in equilibrium (think F = temperature or chemical concentration) Equilibrium means that for any region D, the net flux of F is 0.
    [Show full text]
  • Green Gauss Theorem Yesterday, We Continued Discussions on Index Notations That Can Be Used to Represent Tensors
    15/02/2017 LECTURE – 15 Green Gauss Theorem Yesterday, we continued discussions on index notations that can be used to represent tensors. In index notations we saw the Gradient of a scalar Divergence of a vector Cross product of vector etc. We also saw that a second rank tensor can be written as a sum of a symmetric & asymmetric tensor. 11 i.e, BBBBB[][] ij22 ij ji ij ji First part is symmetric & second part is asymmetric Today we will briefly discuss about Green Gauss Theorem etc. Green Gauss Theorem relates the volume & surface integrals. The most common form of Gauss’s theorem is the Gauss divergence theorem which you have studied in previous courses. 푛 푣 ds If you have a volume U formed by surface S, the Gauss divergence theorem for a vector v suggest that v.. ndSˆ vdU SU where, S = bounding surface on closed surface U = volumetric domain nˆ = the unit outward normal vector of the elementary surface area ds This Gauss Divergence theorem can also be represented using index notations. v v n dS i dU ii SUxi For any scalar multiple or factor for vector v , say v , the Green Gauss can be represented as (v . nˆ ) dS .( v ) dU SU i.e. (v . nˆ ) dS ( . v ) dU ( v . ) dU SUU v or v n dSi dU v dU i i i SUUxxii Gauss’s theorem is applicable not only to a vector . It can be applied to any tensor B (say) B B n dSij dU B dU ij i ij SUUxxii Stoke’s Theorem Stoke’s theorem relates the integral over an open surface S, to line integral around the surface’s bounding curve (say C) You need to appropriately choose the unit outward normal vector to the surface 푛 푡 dr v.
    [Show full text]
  • Vector Calculus Applicationsž 1. Introduction 2. the Heat Equation
    Vector Calculus Applications 1. Introduction The divergence and Stokes’ theorems (and their related results) supply fundamental tools which can be used to derive equations which can be used to model a number of physical situations. Essentially, these theorems provide a mathematical language with which to express physical laws such as conservation of mass, momentum and energy. The resulting equations are some of the most fundamental and useful in engineering and applied science. In the following sections the derivation of some of these equations will be outlined. The goal is to show how vector calculus is used in applications. Generally speaking, the equations are derived by first using a conservation law in integral form, and then converting the integral form to a differential equation form using the divergence theorem, Stokes’ theorem, and vector identities. The differential equation forms tend to be easier to work with, particularly if one is interested in solving such equations, either analytically or numerically. 2. The Heat Equation Consider a solid material occupying a region of space V . The region has a boundary surface, which we shall designate as S. Suppose the solid has a density and a heat capacity c. If the temperature of the solid at any point in V is T.r; t/, where r x{ y| zkO is the position vector (so that T depends upon x, y, z and t), then theE total heatE eergyD O containedC O C in the solid is • cT dV : V Heat energy can get in or out of the region V by flowing across the boundary S, or it can be generated inside V .
    [Show full text]
  • The Divergence Theorem.Doc 1/2
    9/16/2005 The Divergence Theorem.doc 1/2 The Divergence Theorem Recall we studied volume integrals of the form: ∫∫∫ g (rdv) V It turns out that any and every scalar field can be written as the divergence of some vector field, i.e.: g (rr) = ∇⋅A( ) Therefore we can equivalently write any volume integral as: ∫∫∫ ∇⋅A (r )dv V The divergence theorem states that this integral is equal to: ∫∫∫∇⋅AA(rr)dv =w ∫∫ ( ) ⋅ ds VS where S is the closed surface that completely surrounds volume V, and vector ds points outward from the closed surface. For example, if volume V is a sphere, then S is the surface of that sphere. The divergence theorem states that the volume integral of a scalar field can be likewise evaluated as a surface integral of a vector field! Jim Stiles The Univ. of Kansas Dept. of EECS 9/16/2005 The Divergence Theorem.doc 2/2 What the divergence theorem indicates is that the total “divergence” of a vector field through the surface of any volume is equal to the sum (i.e., integration) of the divergence at all points within the volume. 4 2 0 -2 -4 -4 - 2 0 2 4 In other words, if the vector field is diverging from some point in the volume, it must simultaneously be converging to another adjacent point within the volume—the net effect is therefore zero! Thus, the only values that make any difference in the volume integral are the divergence or convergence of the vector field across the surface surrounding the volume—vectors that will be converging or diverging to adjacent points outside the volume (across the surface) from points inside the volume.
    [Show full text]
  • Differential Forms: Unifying the Theorems of Vector Calculus
    Differential Forms: Unifying the Theorems of Vector Calculus In class we have discussed the important vector calculus theorems known as Green's Theorem, Divergence Theorem, and Stokes's Theorem. Interestingly enough, all of these results, as well as the fundamental theorem for line integrals (so in particular the fundamental theorem of calculus), are merely special cases of one and the same theorem named after George Gabriel Stokes (1819-1903). This all-including theorem is stated in terms of differential forms. Without giving exact definitions, let us use the language of differential forms to unify the theorems we have learned. A striking pattern will emerge. 0-forms. A scalar field (i.e. a real-valued function) is also called a 0-form. 1-forms. Recall the following notation for line integrals (in 3-space, say): Z Z b Z F(r) · dr = P x0(t)dt +Q y0(t)dt +R z0(t)dt = P dx + Qdy + Rdz; C a | {z } | {z } | {z } C dx dy dz where F = P i + Qj + Rk. The expression P (x; y; z)dx + Q(x; y; z)dy + R(x; y; z)dz is called a 1-form. 2-forms. In evaluating surface integrals we can introduce similar notation: ZZ F · n dS S ZZ @r × @r @r @r @u @v = F · × dudv Γ @r @r @u @v @u × @v ZZ @y @y ZZ @x @x ZZ @x @x @u @v @u @v @u @v = P @z @z dudv − Q @z @z dudv + R @y @y dudv Γ @u @v Γ @u @v Γ @u @v | {z } | {z } | {z } dy^dz dx^dz dx^dy ZZ = P dy ^ dz − Qdx ^ dz + Rdx ^ dy: S We call P (x; y; z)dy ^ dz − Q(x; y; z)dx ^ dz + R(x; y; z)dx ^ dy a 2-form.
    [Show full text]
  • 1.14 Tensor Calculus I: Tensor Fields
    Section 1.14 1.14 Tensor Calculus I: Tensor Fields In this section, the concepts from the calculus of vectors are generalised to the calculus of higher-order tensors. 1.14.1 Tensor-valued Functions Tensor-valued functions of a scalar The most basic type of calculus is that of tensor-valued functions of a scalar, for example the time-dependent stress at a point, S S(t) . If a tensor T depends on a scalar t, then the derivative is defined in the usual way, dT T(t t) T(t) lim , dt t0 t which turns out to be dT dT ij e e (1.14.1) dt dt i j The derivative is also a tensor and the usual rules of differentiation apply, d dT dB T B dt dt dt d dT d (t)T T dt dt dt d da dT Ta T a dt dt dt d dB dT TB T B dt dt dt T d dT TT dt dt For example, consider the time derivative of QQ T , where Q is orthogonal. By the product rule, using QQ T I , T d dQ dQ T dQ dQ QQ T Q T Q Q T Q 0 dt dt dt dt dt Thus, using Eqn. 1.10.3e T Q QT QQ T Q QT (1.14.2) Solid Mechanics Part III 115 Kelly Section 1.14 which shows that Q Q T is a skew-symmetric tensor. 1.14.2 Vector Fields The gradient of a scalar field and the divergence and curl of vector fields have been seen in §1.6.
    [Show full text]
  • EXTERIOR CALCULUS in Rn
    DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858B • Fall 2017 LECTURE 5: EXTERIOR CALCULUS IN Rn DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858B • Fall 2017 Exterior Calculus—Overview • Previously: • Today: exterior calculus •1-form—linear measurement of a vector •how do k-forms change? •k-form—multilinear measurement of volume •how do we integrate k-forms? •differential k-form—k-form at each point u a a(u) 1-form 3-form differential 2-form Integration and Differentiation •Two big ideas in calculus: •differentiation •integration •linked by fundamental theorem of calculus •Exterior calculus generalizes these ideas •differentiation of k-forms (exterior derivative) •integration of k-forms (measure volume) •linked by Stokes’ theorem •Goal: integrate differential forms over meshes to get discrete exterior calculus (DEC) Exterior Derivative Derivative—Many Interpretations… “best linear approximation” “slope of the graph”/ “rise over run” “difference in the limit” “pushforward” Vector Derivatives—Visualized f X Y grad f div X curl Y Review—Vector Derivatives in Coordinates How do we express grad, div, and curl in coordinates? grad div curl Exterior Derivative differential product rule exactness Where do these rules come from? (What’s the geometric motivation?) Exterior Derivative—Differential Review: Directional Derivative •The directional derivative of a scalar function at a point p with respect to a vector X is the rate at which that function X increases as we walk away from p with velocity X. •More precisely: p •Alternatively, suppose that X is a vector field, rather than just a vector at a single point.
    [Show full text]
  • Divergence Theorems and the Supersphere
    Divergence Theorems and the Supersphere Josua Groeger1 Humboldt-Universit¨at zu Berlin, Institut f¨ur Mathematik, Rudower Chaussee 25, 12489 Berlin, Germany [email protected] Abstract The transformation formula of the Berezin integral holds, in the non-compact case, only up to boundary integrals, which have recently been quantified by Alldridge- Hilgert-Palzer. We establish divergence theorems in semi-Riemannian supergeom- etry by means of the flow of vector fields and these boundary integrals, and show how superharmonic functions are related to conserved quantities. An integration over the supersphere was introduced by Coulembier-De Bie-Sommen as a generali- sation of the Pizzetti integral. In this context, a mean value theorem for harmonic superfunctions was established. We formulate this integration along the lines of the general theory and give a superior proof of two mean value theorems based on our divergence theorem. 1 Introduction The analogon of the classical integral transformation formula in supergeometry holds for compactly supported quantities only. The nature of the additional boundary terms occurring in the non-compact case was only recently studied in [AHP12], where it was observed that a global Berezin integral can be defined by introducing a retraction as an additional datum. In the present article, we establish divergence theorems in semi-Riemannian superge- ometry by means of the flow of vector fields as studied in [MSV93] together with the main result of [AHP12] concerning the change of retractions. We focus on the non-degenerate case, but also yield a divergence theorem for a degenerate boundary, thus generalising a result in [Una95].¨ While the lack of boundary compatibility conditions in general leads to the aforementioned boundary terms, we show, moreover, that divergence-free vector arXiv:1309.1341v1 [math-ph] 5 Sep 2013 fields are conserved quantities in a very natural sense for any boundary supermanifold.
    [Show full text]
  • Global Divergence Theorems in Nonlinear Pdes and Geometry
    SOCIEDADE BRASILEIRA DE MATEMATICA´ ENSAIOS MATEMATICOS´ 2014, Volume 26, 1{77 Global divergence theorems in nonlinear PDEs and geometry Stefano Pigola Alberto G. Setti Abstract. These lecture notes contain, in a slightly expanded form, the material presented at the Summer School in Differential Geometry held in January 2012 in the Universidade Federal do Cear´a-UFC, Fortaleza. The course aims at giving an overview of some Lp-extensions of the classical divergence theorem to non-compact Riemannian manifolds without boundary. The red wire connecting all these extensions is represented by the notion of parabolicity with respect to the p-Laplace operator. It is a non-linear differential operator which is naturally related to the p-energy of maps and, therefore, to Lp-integrability properties of vector fields. To show the usefulness of these tools, a certain number of applications both to (systems of) PDEs and to the global geometry of the underlying manifold are presented. 2010 Mathematics Subject Classification: 31C12, 31C15, 31C45, 53C20, 53C21, 58E20. Acknowledgments The authors are grateful to the Department of Mathematics of the Universidade Federal do Cear´a-UFC for the invitation to participate in the Summer School and for the very warm hospitality. A special thank goes to G. Pacelli Bessa, Luqu´esioJorge and Jorge H. de Lira. The first author is also grateful to Giona Veronelli for suggestions and helpful discussions related to the topics of the paper. Contents 1 The divergence theorem in the compact setting: introduc- tory examples7 1.1 Introduction.............................7 1.2 Basic notation...........................8 1.2.1 Manifold and curvature tensors.............8 1.2.2 Metric objects and their measures...........9 1.2.3 Differential operators...................9 1.2.4 Function spaces.....................
    [Show full text]