Notes on Plücker's Relations in Geometric Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Plücker's Relations in Geometric Algebra Notes on Pl¨ucker's Relations in Geometric Algebra Garret Sobczyk Universidad de las Am´ericas-Puebla Departamento de F´ısico-Matem´aticas 72820 Puebla, Pue., M´exico Email: [email protected] January 21, 2019 Abstract Grassmannians are of fundamental importance in projective geometry, algebraic geometry, and representation theory. A vast literature has grown up utilizing using many different languages of higher mathematics, such as multilinear and tensor algebra, matroid theory, and Lie groups and Lie algebras. Here we explore the basic idea of the Pl¨ucker relations in Clifford’s geometric algebra. We discover that the Pl¨ucker relations can be fully characterized in terms of the geometric product, without the need for a confusing hodgepodge of many different formalisms and mathematical traditions found in the literature. AMS Subject Classification: 14M15, 14A25, 15A66, 15A75 Keywords: Clifford geometric algebras, Grassmannians, matroids, Pauli matrices, Pl¨uckerrelations 0 Introduction The standard treatments of the Pl¨ucker relations rely heavily on the concept of a vector space, its dual vector space, and generalizations. More elementary treatments express the basic ideas in terms of familiar matrices and determi- nants. Here we exploit a powerful formalism that was invented 140 years ago by William Kingdon Clifford. Clifford himself dubbed this formalism, a gener- alization of the works of H. Grassmann and W. Hamilton, \geometric algebra", but it is often referred to today as “Clifford algebra". It is well known that Clifford’s geometric algebras are algebraically isomor- phic to matrix algebras over the real or complex numbers. However, what is lacking is the recognition that whereas geometric algebras give a comprehensive geometrical interpretation to matrices, they also provide a way of unifying vec- tors and their duals into a rich algebraic structure that is missed in the standard 1 treatment of vector spaces and their dual spaces as separate objects. Our study of the famous Pl¨ucker relations utilizes the powerful higher dimensional vector analysis of geometric algebra. When the Pl¨ucker relations are satisfied, an ex- plicit factorization of an r-vector into the outer product of r vectors is found. Also, a new characterization of the Pl¨ucker relations is given. Let a and b be two non-zero null vector generators of a real or complex associative algebra, R(a; b) or C(a; b), respectively, with the identity 1, and satisfying the rules 1) a2 = 0 = b2; and 2) ab + ba = 1: (1) From these rules, a multiplication table for these elements is easily constructed, given in Table 1. Table 1: Multiplication Table. a b ab ba a 0 ab 0 a b ba 0 b 0 ab a 0 ab 0 ba 0 b 0 ba The null vectors a and b are dual to one another in the sense that the symmetric inner product of a and b, defined by 1 1 a · b := (ab + ba) = : 2 2 In addition, the outer product of a and b, gives the bivector 1 a ^ b := (ab − ba); 2 with the property 1 1 1 1 (a ^ b)2 = (ab − ba)2 = (ab + ba) = so ja ^ bj := : 4 4 4 2 Taking the sum of the above inner and outer products shows that the geomet- ric (Clifford) product of the reciprocal null vectors a and b is the primitive idempotent ab = a · b + a ^ b; already identified in Table 1. More details for the interested reader of the construction of basic geometric algebras, obtained from R(a; b) and C(a; b), and by taking the Kronecker products of such algebras, is deferred to the Appendix. Geometric algebras are considered here to be the natural geometrization of the real and complex number sytems; an overview is provided in [9]. We use exclusively the language of geometric algebra, developed in the books [6, 12]. 2 Pl¨ucker's coordinates are briefly touched upon on page 30 of [6], but Pl¨ucker's relations are not discussed. These relations characterize when an r-vector B in n n the geometric algebra Gn := G(R ), or Gn(C) := G(C ), of an n-dimensional (real or complex) Euclidean vector space Rn, or Cn, respectively, can be ex- pressed as an outer product of r-vectors. Several references to the relevant literature, and its more advanced applications, are [1, 2], [3, pp.227-231], [5], [7, pp.144-148], and [13]. 1 Pl¨ucker's relations in geometric algebra A general geometric number g 2 Gn is the sum of its k-vector parts, n X g = hgik; k=0 k k where the k-vector hgik 2 Gn is in the linear subspace Gn of k-vectors in Gn, 0 r and the 0-vector part hgi0 2 Gn ≡ R. A nonzero r-vector B 2 Gn is said to be 1 an r-blade if B = v1 ^ · · · ^ vr for vectors v1; : : : ; vr 2 Gn, Let B = P B e be an r-vector expanded in the standard orthonormal Jm Jm Jm basis of r-vector blades r eJm := ej1 ej2 ··· ejr 2 Gn; ordered lexicographically, with Jm = fj1; ··· ; jrg for 1 ≤ j1 < ··· < jr ≤ n, and let #(Jp \ Jm) be the number of integers that the sequences Jp and Jm have in common. For example, if Jp = f12345g and Jm = f45678g, then #(Jp\Jm) = 2. y The reverse g of a geometric number g 2 Gn is obtained by reversing the order of all of the geometric products of the vectors which define g. n Lemma 1 In the standard orthonormal basis feigi=1 of Gn, an r-vector B 2 r Gn, expanded in this basis, is given by X B = BJm eJm ; (2) m where B = B · ey . Jk Jk r Proof: In the orthonormal r-vector basis feJm g, the r-vector B 2 Gn is given by n ! r X B = BJk eJk k=1 Dotting both sides of this equations with ey , the reverse of e , shows that Jm Jm B = B · ey , since e · ey = δ . Jm Jm Jk Jm k;m 3 r Definition 1 A non-zero r-vector B 2 Gn is said to be divisible by a non-zero k k-blade K 2 Gn, where k ≤ r, if KB = hKBir−k. If k = r, B is said to be totally decomposable by K. If B is divisible by the k-blade L, then L(LB) L · B B = = L : (3) L2 L2 L·B If B is totally decomposable by L, then B = βL for β = L2 2 R. Clearly, a totally decomposable r-vector is an r-blade. P r A classical result is that an r-vector B = m BJm eJm 2 Gn is an r-blade iff B satisfies the Pl¨uckerrelations. The Pl¨ucker relations, [4, Thm1(1)], are (A · B) ^ B = 0 (4) r−1 for all (r − 1)-vectors A 2 Gn . In particular, for all coordinate (r − 1)-vectors r−1 eKp 2 Gn , (eKp · B) ^ B = 0: Since an r-blade trivially satisfies the Pl¨ucker relations, it follows that if there is a coordinate (r − 1)-blade eK , such that (eK · B) ^ B 6= 0, then B is not an r-blade. For every coordinate (r − 1)-blade eKp , there is a coordinate r-blade eJp , generally not unique, and a coordinate vector ejp , satisfying eJp = ±ejp eKp () ejp eJp = ±eKp : (5) Indeed, when eKp ·B 6= 0, we always pick the coordinate vector ejp , and rearrange the order of K = ±K , in such a way that B = (e ^ e )y · B 6= 0. It p jp Jjp jp Kjp follows that the Pl¨ucker relations (4) are equivalent to h i h i e · e · B ^ B = B B − e · B ^ e · B = 0; jp Kjp Jjp Kjp jp or equivalently, −1 h i B = B eK · B ^ ej · B ; (6) Jjp jp p r−1 for all coordinate (r − 1)-blades eKp 2 Gn for which eKp · B 6= 0. It follows that when the Pl¨ucker relation (4) is satisfied, then the vector eKp · B divides B. P r For a given non-zero r-vector B = m BJm eJm 2 Gn, let #maxS be the maximal number of linearly independent vectors in the set r−1 SB = feKj · Bj eKj 2 Gn g: (7) Lemma 2 Given an r-vector B 6= 0, and the set SB defined in (7). Then r ≤ #maxS ≤ n, and #max = r only if B is an r-blade. 4 Proof: Since B 6= 0, it follows that BJm 6= 0 for some n 1 ≤ m ≤ : r For each such eJm , there are r possible choices for eKj obtained by picking Kj ⊂ Jm, and the subset of SB generated by them are linearly independent. It follows that r ≤ #maxSB ≤ n. Suppose now that r < #maxSB. To complete the proof of the Lemma, we show that there is a Pl¨ucker relation that is not satisfied for B, so it cannot be an r-blade. Let L = (eK1 · B) ^ · · · ^ (eKk · B) 6= 0; be the outer product of the maximal number of linearly independent vectors from SB. Then k > r and LB = L · B 6= 0. Letting 1 w = (eK1 · B) ^ · · · ^ (eKr+1 · B) · B 2 Gn; it follows that w 6= 0, and 2 w = (eK1 · B) ^ · · · ^ (eKr+1 · B) · (B ^ w) 6= 0: Since w2 6= 0, it follows that w ^ B 6= 0. Using the identity w = (eK1 · B) ^ · · · ^ (eKr+1 · B) · B = (eK1 · B) (eK2 · B) ^ · · · ^ (eKr+1 · B) · B 2 −(eK2 · B) (eK1 · B) ^ · · · _ · · · ^ (eKr+1 · B) · B r + ··· + (−1) (eKr+1 · B) (eK1 · B) ^ · · · ^ (eKr · B) · B; i where _ means we are omitting the term eKi · B in the exterior product.
Recommended publications
  • Quaternions and Cli Ord Geometric Algebras
    Quaternions and Cliord Geometric Algebras Robert Benjamin Easter First Draft Edition (v1) (c) copyright 2015, Robert Benjamin Easter, all rights reserved. Preface As a rst rough draft that has been put together very quickly, this book is likely to contain errata and disorganization. The references list and inline citations are very incompete, so the reader should search around for more references. I do not claim to be the inventor of any of the mathematics found here. However, some parts of this book may be considered new in some sense and were in small parts my own original research. Much of the contents was originally written by me as contributions to a web encyclopedia project just for fun, but for various reasons was inappropriate in an encyclopedic volume. I did not originally intend to write this book. This is not a dissertation, nor did its development receive any funding or proper peer review. I oer this free book to the public, such as it is, in the hope it could be helpful to an interested reader. June 19, 2015 - Robert B. Easter. (v1) [email protected] 3 Table of contents Preface . 3 List of gures . 9 1 Quaternion Algebra . 11 1.1 The Quaternion Formula . 11 1.2 The Scalar and Vector Parts . 15 1.3 The Quaternion Product . 16 1.4 The Dot Product . 16 1.5 The Cross Product . 17 1.6 Conjugates . 18 1.7 Tensor or Magnitude . 20 1.8 Versors . 20 1.9 Biradials . 22 1.10 Quaternion Identities . 23 1.11 The Biradial b/a .
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Università Degli Studi Di Trieste a Gentle Introduction to Clifford Algebra
    Università degli Studi di Trieste Dipartimento di Fisica Corso di Studi in Fisica Tesi di Laurea Triennale A Gentle Introduction to Clifford Algebra Laureando: Relatore: Daniele Ceravolo prof. Marco Budinich ANNO ACCADEMICO 2015–2016 Contents 1 Introduction 3 1.1 Brief Historical Sketch . 4 2 Heuristic Development of Clifford Algebra 9 2.1 Geometric Product . 9 2.2 Bivectors . 10 2.3 Grading and Blade . 11 2.4 Multivector Algebra . 13 2.4.1 Pseudoscalar and Hodge Duality . 14 2.4.2 Basis and Reciprocal Frames . 14 2.5 Clifford Algebra of the Plane . 15 2.5.1 Relation with Complex Numbers . 16 2.6 Clifford Algebra of Space . 17 2.6.1 Pauli algebra . 18 2.6.2 Relation with Quaternions . 19 2.7 Reflections . 19 2.7.1 Cross Product . 21 2.8 Rotations . 21 2.9 Differentiation . 23 2.9.1 Multivectorial Derivative . 24 2.9.2 Spacetime Derivative . 25 3 Spacetime Algebra 27 3.1 Spacetime Bivectors and Pseudoscalar . 28 3.2 Spacetime Frames . 28 3.3 Relative Vectors . 29 3.4 Even Subalgebra . 29 3.5 Relative Velocity . 30 3.6 Momentum and Wave Vectors . 31 3.7 Lorentz Transformations . 32 3.7.1 Addition of Velocities . 34 1 2 CONTENTS 3.7.2 The Lorentz Group . 34 3.8 Relativistic Visualization . 36 4 Electromagnetism in Clifford Algebra 39 4.1 The Vector Potential . 40 4.2 Electromagnetic Field Strength . 41 4.3 Free Fields . 44 5 Conclusions 47 5.1 Acknowledgements . 48 Chapter 1 Introduction The aim of this thesis is to show how an approach to classical and relativistic physics based on Clifford algebras can shed light on some hidden geometric meanings in our models.
    [Show full text]
  • Coordinatization
    MATH 355 Supplemental Notes Coordinatization Coordinatization In R3, we have the standard basis i, j and k. When we write a vector in coordinate form, say 3 v 2 , (1) “ »´ fi 5 — ffi – fl it is understood as v 3i 2j 5k. “ ´ ` The numbers 3, 2 and 5 are the coordinates of v relative to the standard basis ⇠ i, j, k . It has p´ q “p q always been understood that a coordinate representation such as that in (1) is with respect to the ordered basis ⇠. A little thought reveals that it need not be so. One could have chosen the same basis elements in a di↵erent order, as in the basis ⇠ i, k, j . We employ notation indicating the 1 “p q coordinates are with respect to the di↵erent basis ⇠1: 3 v 5 , to mean that v 3i 5k 2j, r s⇠1 “ » fi “ ` ´ 2 —´ ffi – fl reflecting the order in which the basis elements fall in ⇠1. Of course, one could employ similar notation even when the coordinates are expressed in terms of the standard basis, writing v for r s⇠ (1), but whenever we have coordinatization with respect to the standard basis of Rn in mind, we will consider the wrapper to be optional. r¨s⇠ Of course, there are many non-standard bases of Rn. In fact, any linearly independent collection of n vectors in Rn provides a basis. Say we take 1 1 1 4 ´ ´ » 0fi » 1fi » 1fi » 1fi u , u u u ´ . 1 “ 2 “ 3 “ 4 “ — 3ffi — 1ffi — 0ffi — 2ffi — ffi —´ ffi — ffi — ffi — 0ffi — 4ffi — 2ffi — 1ffi — ffi — ffi — ffi —´ ffi – fl – fl – fl – fl As per the discussion above, these vectors are being expressed relative to the standard basis of R4.
    [Show full text]
  • MATH 304 Linear Algebra Lecture 14: Basis and Coordinates. Change of Basis
    MATH 304 Linear Algebra Lecture 14: Basis and coordinates. Change of basis. Linear transformations. Basis and dimension Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis. Theorem Any vector space V has a basis. If V has a finite basis, then all bases for V are finite and have the same number of elements (called the dimension of V ). Example. Vectors e1 = (1, 0, 0,..., 0, 0), e2 = (0, 1, 0,..., 0, 0),. , en = (0, 0, 0,..., 0, 1) form a basis for Rn (called standard) since (x1, x2,..., xn) = x1e1 + x2e2 + ··· + xnen. Basis and coordinates If {v1, v2,..., vn} is a basis for a vector space V , then any vector v ∈ V has a unique representation v = x1v1 + x2v2 + ··· + xnvn, where xi ∈ R. The coefficients x1, x2,..., xn are called the coordinates of v with respect to the ordered basis v1, v2,..., vn. The mapping vector v 7→ its coordinates (x1, x2,..., xn) is a one-to-one correspondence between V and Rn. This correspondence respects linear operations in V and in Rn. Examples. • Coordinates of a vector n v = (x1, x2,..., xn) ∈ R relative to the standard basis e1 = (1, 0,..., 0, 0), e2 = (0, 1,..., 0, 0),. , en = (0, 0,..., 0, 1) are (x1, x2,..., xn). a b • Coordinates of a matrix ∈ M2,2(R) c d 1 0 0 0 0 1 relative to the basis , , , 0 0 1 0 0 0 0 0 are (a, c, b, d). 0 1 • Coordinates of a polynomial n−1 p(x) = a0 + a1x + ··· + an−1x ∈Pn relative to 2 n−1 the basis 1, x, x ,..., x are (a0, a1,..., an−1).
    [Show full text]
  • A Guided Tour to the Plane-Based Geometric Algebra PGA
    A Guided Tour to the Plane-Based Geometric Algebra PGA Leo Dorst University of Amsterdam Version 1.15{ July 6, 2020 Planes are the primitive elements for the constructions of objects and oper- ators in Euclidean geometry. Triangulated meshes are built from them, and reflections in multiple planes are a mathematically pure way to construct Euclidean motions. A geometric algebra based on planes is therefore a natural choice to unify objects and operators for Euclidean geometry. The usual claims of `com- pleteness' of the GA approach leads us to hope that it might contain, in a single framework, all representations ever designed for Euclidean geometry - including normal vectors, directions as points at infinity, Pl¨ucker coordinates for lines, quaternions as 3D rotations around the origin, and dual quaternions for rigid body motions; and even spinors. This text provides a guided tour to this algebra of planes PGA. It indeed shows how all such computationally efficient methods are incorporated and related. We will see how the PGA elements naturally group into blocks of four coordinates in an implementation, and how this more complete under- standing of the embedding suggests some handy choices to avoid extraneous computations. In the unified PGA framework, one never switches between efficient representations for subtasks, and this obviously saves any time spent on data conversions. Relative to other treatments of PGA, this text is rather light on the mathematics. Where you see careful derivations, they involve the aspects of orientation and magnitude. These features have been neglected by authors focussing on the mathematical beauty of the projective nature of the algebra.
    [Show full text]
  • Vectors, Change of Basis and Matrix Representation: Onto-Semiotic Approach in the Analysis of Creating Meaning
    International Journal of Mathematical Education in Science and Technology ISSN: 0020-739X (Print) 1464-5211 (Online) Journal homepage: http://www.tandfonline.com/loi/tmes20 Vectors, change of basis and matrix representation: onto-semiotic approach in the analysis of creating meaning Mariana Montiel , Miguel R. Wilhelmi , Draga Vidakovic & Iwan Elstak To cite this article: Mariana Montiel , Miguel R. Wilhelmi , Draga Vidakovic & Iwan Elstak (2012) Vectors, change of basis and matrix representation: onto-semiotic approach in the analysis of creating meaning, International Journal of Mathematical Education in Science and Technology, 43:1, 11-32, DOI: 10.1080/0020739X.2011.582173 To link to this article: http://dx.doi.org/10.1080/0020739X.2011.582173 Published online: 01 Aug 2011. Submit your article to this journal Article views: 174 View related articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmes20 Download by: [Universidad Pública de Navarra - Biblioteca] Date: 22 January 2017, At: 10:06 International Journal of Mathematical Education in Science and Technology, Vol. 43, No. 1, 15 January 2012, 11–32 Vectors, change of basis and matrix representation: onto-semiotic approach in the analysis of creating meaning Mariana Montiela*, Miguel R. Wilhelmib, Draga Vidakovica and Iwan Elstaka aDepartment of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA; bDepartment of Mathematics, Public University of Navarra, Pamplona 31006, Spain (Received 26 July 2010) In a previous study, the onto-semiotic approach was employed to analyse the mathematical notion of different coordinate systems, as well as some situations and university students’ actions related to these coordinate systems in the context of multivariate calculus.
    [Show full text]
  • Inverse and Determinant in 0 to 5 Dimensional Clifford Algebra
    Clifford Algebra Inverse and Determinant Inverse and Determinant in 0 to 5 Dimensional Clifford Algebra Peruzan Dadbeha) (Dated: March 15, 2011) This paper presents equations for the inverse of a Clifford number in Clifford algebras of up to five dimensions. In presenting these, there are also presented formulas for the determinant and adjugate of a general Clifford number of up to five dimensions, matching the determinant and adjugate of the matrix representations of the algebra. These equations are independent of the metric used. PACS numbers: 02.40.Gh, 02.10.-v, 02.10.De Keywords: clifford algebra, geometric algebra, inverse, determinant, adjugate, cofactor, adjoint I. INTRODUCTION the grade. The possible grades are from the grade-zero scalar and grade-1 vector elements, up to the grade-(d−1) Clifford algebra is one of the more useful math tools pseudovector and grade-d pseudoscalar, where d is the di- for modeling and analysis of geometric relations and ori- mension of Gd. entations. The algebra is structured as the sum of a Structurally, using the 1–dimensional ei’s, or 1-basis, scalar term plus terms of anticommuting products of vec- to represent Gd involves manipulating the products in tors. The algebra itself is independent of the basis used each term of a Clifford number by using the anticom- for computations, and only depends on the grades of muting part of the Clifford product to move the 1-basis the r-vector parts and their relative orientations. It is ei parts around in the product, as well as using the inner- this implementation (demonstrated via the standard or- product to eliminate the ei pairs with their metric equiv- thonormal representation) that will be used in the proofs.
    [Show full text]
  • Orthonormal Bases
    Math 108B Professor: Padraic Bartlett Lecture 3: Orthonormal Bases Week 3 UCSB 2014 In our last class, we introduced the concept of \changing bases," and talked about writ- ing vectors and linear transformations in other bases. In the homework and in class, we saw that in several situations this idea of \changing basis" could make a linear transformation much easier to work with; in several cases, we saw that linear transformations under a certain basis would become diagonal, which made tasks like raising them to large powers far easier than these problems would be in the standard basis. But how do we find these \nice" bases? What does it mean for a basis to be\nice?" In this set of lectures, we will study one potential answer to this question: the concept of an orthonormal basis. 1 Orthogonality To start, we should define the notion of orthogonality. First, recall/remember the defini- tion of the dot product: n Definition. Take two vectors (x1; : : : xn); (y1; : : : yn) 2 R . Their dot product is simply the sum x1y1 + x2y2 + : : : xnyn: Many of you have seen an alternate, geometric definition of the dot product: n Definition. Take two vectors (x1; : : : xn); (y1; : : : yn) 2 R . Their dot product is the product jj~xjj · jj~yjj cos(θ); where θ is the angle between ~x and ~y, and jj~xjj denotes the length of the vector ~x, i.e. the distance from (x1; : : : xn) to (0;::: 0). These two definitions are equivalent: 3 Theorem. Let ~x = (x1; x2; x3); ~y = (y1; y2; y3) be a pair of vectors in R .
    [Show full text]
  • Notes on Change of Bases Northwestern University, Summer 2014
    Notes on Change of Bases Northwestern University, Summer 2014 Let V be a finite-dimensional vector space over a field F, and let T be a linear operator on V . Given a basis (v1; : : : ; vn) of V , we've seen how we can define a matrix which encodes all the information about T as follows. For each i, we can write T vi = a1iv1 + ··· + anivn 2 for a unique choice of scalars a1i; : : : ; ani 2 F. In total, we then have n scalars aij which we put into an n × n matrix called the matrix of T relative to (v1; : : : ; vn): 0 1 a11 ··· a1n B . .. C M(T )v := @ . A 2 Mn;n(F): an1 ··· ann In the notation M(T )v, the v showing up in the subscript emphasizes that we're taking this matrix relative to the specific bases consisting of v's. Given any vector u 2 V , we can also write u = b1v1 + ··· + bnvn for a unique choice of scalars b1; : : : ; bn 2 F, and we define the coordinate vector of u relative to (v1; : : : ; vn) as 0 1 b1 B . C n M(u)v := @ . A 2 F : bn In particular, the columns of M(T )v are the coordinates vectors of the T vi. Then the point of the matrix M(T )v is that the coordinate vector of T u is given by M(T u)v = M(T )vM(u)v; so that from the matrix of T and the coordinate vectors of elements of V , we can in fact reconstruct T itself.
    [Show full text]
  • Eigenvalues and Eigenvectors MAT 67L, Laboratory III
    Eigenvalues and Eigenvectors MAT 67L, Laboratory III Contents Instructions (1) Read this document. (2) The questions labeled \Experiments" are not graded, and should not be turned in. They are designed for you to get more practice with MATLAB before you start working on the programming problems, and they reinforce mathematical ideas. (3) A subset of the questions labeled \Problems" are graded. You need to turn in MATLAB M-files for each problem via Smartsite. You must read the \Getting started guide" to learn what file names you must use. Incorrect naming of your files will result in zero credit. Every problem should be placed is its own M-file. (4) Don't forget to have fun! Eigenvalues One of the best ways to study a linear transformation f : V −! V is to find its eigenvalues and eigenvectors or in other words solve the equation f(v) = λv ; v 6= 0 : In this MATLAB exercise we will lead you through some of the neat things you can to with eigenvalues and eigenvectors. First however you need to teach MATLAB to compute eigenvectors and eigenvalues. Lets briefly recall the steps you would have to perform by hand: As an example lets take the matrix of a linear transformation f : R3 ! R3 to be (in the canonical basis) 01 2 31 M := @2 4 5A : 3 5 6 The steps to compute eigenvalues and eigenvectors are (1) Calculate the characteristic polynomial P (λ) = det(M − λI) : (2) Compute the roots λi of P (λ). These are the eigenvalues. (3) For each of the eigenvalues λi calculate ker(M − λiI) : The vectors of any basis for for ker(M − λiI) are the eigenvectors corresponding to λi.
    [Show full text]
  • Tutorial on Fourier and Wavelet Transformations in Geometric Algebra
    Geometric Calculus GA FTs Quaternion FT Spacetime FT GA Wavelets Conclusion Tutorial on Fourier and Wavelet Transformations in Geometric Algebra E. Hitzer Department of Applied Physics University of Fukui Japan 17. August 2008, AGACSE 3 Hotel Kloster Nimbschen, Grimma, Leipzig, Germany E. Hitzer Department of Applied Physics University of Fukui Japan GA Fourier & Wavelet Transformations Geometric Calculus GA FTs Quaternion FT Spacetime FT GA Wavelets Conclusion Acknowledgements I do believe in God’s creative power in having brought it all into being in the first place, I find that studying the natural world is an opportunity to observe the majesty, the elegance, the intricacy of God’s creation. Francis Collins, Director of the US National Human Genome Research Institute, in Time Magazine, 5 Nov. 2006. I thank my wife, my children, my parents. B. Mawardi, G. Sommer, D. Hildenbrand, H. Li, R. Ablamowicz Organizers of AGACSE 3, Leipzig 2008. E. Hitzer Department of Applied Physics University of Fukui Japan GA Fourier & Wavelet Transformations Geometric Calculus GA FTs Quaternion FT Spacetime FT GA Wavelets Conclusion CONTENTS 1 Geometric Calculus Multivector Functions 2 Clifford GA Fourier Transformations (FT) Definition and properties of GA FTs Applications of GA FTs, discrete and fast versions 3 Quaternion Fourier Transformations (QFT) Basic facts about Quaternions and definition of QFT Properties of QFT and applications 4 Spacetime Fourier Transformation (SFT) GA of spacetime and definition of SFT Applications of SFT 5 Clifford GA Wavelets GA wavelet basics and GA wavelet transformation GA wavelets and uncertainty limits, example of GA Gabor wavelets 6 Conclusion E. Hitzer Department of Applied Physics University of Fukui Japan GA Fourier & Wavelet Transformations Geometric Calculus GA FTs Quaternion FT Spacetime FT GA Wavelets Conclusion Multivector Functions Multivectors, blades, reverse, scalar product Multivector M 2 Gp;q = Clp;q; p + q = n; has k-vector parts (0 ≤ k ≤ n) scalar, vector, bi-vector, .
    [Show full text]