<<

593

* WHY IS A STRING THEORY FINITE?

Chung-I Tan Department Brown University Providence, Rhode Island 02912, USA

Abstract

String theories have recently been regarded as candidates for the fundamental theory of nature. In this short review, an elementary exposition is presented on the key ingredients involved for having an ultraviolet finite quantum theory.

* This work was supported in part through funds provided by the S. u. Dept. of under Contract No. DE-AC0 2-76 ER03130 .A013 - Task A. 594

I. INTRODUCTION:

String theories, developed in the late sixties and early seventies, have enjoyed a great recent comeback, after having remained dormant for more than a ) decetde They have been widely regarded as candidates for the ultimate unified � theory of Nature, chiefly because they are capable of leading to finite theories of quantum gravity. Although they were originally formulated in an S-msctrix framework, they may yet be transformed into some kind of "generalized" quantum field theories. Whatever the outcome, they certainly differ greatly from the conventional quantum field theories (QFT) whkh we have grown acc�.stomed to in recent years. For physicists not working on the subj ect, particularly the experimentalists, the field seems mysterious. In this short

review, I will present an elementary exposition on the key ingredients involved for having an ultraviolet finite quantum theory. The ultraviolet behavior of a Feynman integral with loops can always be D characterized by d p.p-q, where D is the number of space-time dimensions and q f is an integer depending on the number of propagators i1wolved. Since one

cannot avoid having diagrams with D > q, QFT is meaningless without a certain amount of massaging. Making sense out of nonsensical mathematical expressions has been the preoccupation of field theorists for the past half century . In each case, one always manages to find a "taming operator" such that when it is applied to a Feynman integral, a finite number is obtained. Indeed, the history of QFT can be loosely described as that of taming the ultraviolet divergences. Finding the correct taming operator requires the understanding of quantum physics. First of all, a procedure muut be adopted. To proceed further, one finds that symmetry plays a crucial role. Starting with the gauge invariance of QED, next the non-abelian gaug" theories, either for QCD or the standard electroweak theory, and more recently and supergravity, it has always been the symmetry which is chiefly responsible for the divergence cancellation. Identifying the relevant symmetry is therefore the key step involved in the construction of a taming operator.

'The question remains whether this scenario can go cm indefinitely within the context of the conventional QFT. The problem becomes particularly acute in regards to gravity--it appears that the usual procedurE! cannot render the theory finite; loop divergence cannot be removed. It c:ould happen that a more clev1er introduction of new symmetries, hitherfore unreC'.ognized, would again lead to a finite quantum gravity within the conventional field theory fram«1work, it is equally plausible that a new avenue of approach should be adopted. Indeed, string theory is the most likely candidate. 595

II. LOOP DIVERGENCE IN A PARTICLE FIELD THEORY :

To illustrate the problem, let us consider the simplest situa�ion of a 2 2 -1 -D D bosonic propagator, G(O,x) = J dp (p +m ) exp (ipx) , where dp = (271") d p. Graphically, we normally represent this propagator by a line segment, from the point O to the point x. This symbolic line segment certainly does not

correspond to the actual traj ectory of the particle; being a probability

amplitude, it can be reexpressed as a sum over all allowed paths from 0 to x.

This "world-line" representation becomes particularly useful for our present 2 2 -1 purpose if we consider the "loop" diagram, G(0,0) = fdp (p +m ) , which is alway s ultraviolet divergent . -l Using the identity a = .fds exp (-as) for the integrand and next performing the momentum integration, the propagator can be written as

G(0,0) (1/2) D(s) W(s) P(s) f (1)

where D(s) is the ordinary integration measure, ds, with the integration -D/2 2 domain O�s

interpreted as a sum over closed paths according to their path lengths, s.

For a fixed length s, the probability amp litude is P(s) and the density of

paths is W(s) . The divergence of the original Feynman loop integral has UV now been translated into the divergence of the world-line sum, (2) , at s=O.

That is , the divergence in this sum comes from the small loop UV contribution, as is expected intuitively . More interestingly, the

zero-point (vacuum) energy of a point particle can also be expressed in 2 terms of the propagator: V(m ) = - Tr ln G, which is again a divergent 2 one-loop integral . In the world-line representation, V(m ) is again given

by ( 1) if one substitutes the measure by D(s) -ds/s. Again, the = UV divergence can be associated with the divergent contribution from small

loops in the world-line representation.

Although these examples are of no imme diate physical consequence, other

divergences must be regulated in order to provide a meaningful quantum

field theory. Using the vacuum energy as a typical examp le of a

potentially divergent loop integral , we shall see next that in a string

theory, due to the presence of a new symmetry, ultraviolet divergences are

removed automatically. 596

III. MODULAR INVARIANCE AND ULTRAVIOLET-FINITENESS :

Whereas a particle corresponds to a point, a string can be

parametrized by a line segment, (a circle in the case of a closed string) ,

a closed string evolves, it traces out a cylindrical surface in the As space-time continuum. Therefore, the vacuum energy for a closed string, in

constrast to a closed path in the csse of a particle, is charac terized by s

two dimensional torus. Instead of a world-line sum, a ''world-sheet" sum

over sll distinct tori can be used to represent its vacuum energy. Is the

ultraviolet divergence present doe to "short" tori?

One must first learn how to label a torus. Given a parallelogram, a

torus can be constructed by identifying the opposite sides. Since a

parallelogram can be specified by two independent basis vectors w ' w in a l 2 plane, any function f over the torus can in turn be thought of as a

periodic function on a two-dimensional Euclidean space such that f(r)

f(r+n w +n w ) with n , n arbitrary integers . Furthermore, since a 1 1 2 2 1 2 two-vector can equally well be represented by a complex number, we will

treat r, w and w as complex numbers in what follows . It is slso clear 1 2 that only the length ratio and the relative phase between w and w are 1 2 relevant, which can be characterized by the ratio i: = w /w , with the 2 1 convention Im(T)>O. We therefore tentatively arrive at a conclusion that

distinct tori can be specified by points in the upper-half complex plane.

The vacuum energy for a free closed string can next be obtained, e.g. , 2 by summing V(m ) over its particle spectrum. In particular, we can

identify the parameter s, up to a factor, with Im(-r ). Writing T as T +iT , l 2 2) one arrives at an exp ression similar to (1)

V(string) -(1/2) D(torus) W(T ) P(T) (2) .{ 2

where P(T) can be expressed in terms of known func tions. The integration

measure for the torus can be chosen as dT dT /T • What remains to be 1 2 2 specified is the domain of integration.

The association of tori with points of the upper-half complex plane is

not one-to-one. For instance, it is not difficult to convince oneself that

changing the pair of vectors (w ,w ) to (w ,w +w ) yields the same torus. 1 2 1 2 1 Therefore, there is a redundancy , described by the transformation T: T+T+l.

Provided that the integrand in (2) also remains in'•ariant under T, we can

immediately restrict the integration domain to the strip T >0 and -1/2� T 2 l �1/2. In this parametrization for the world-sheet sum, T is analogous to 2 the parameter s of (1) , so that it characterizes the "length" of a torus. 597

l A similar analysis shows that we also have s symmetry S: T+-T- , which

can be understood as changing the pair (w ,w ) into (w -W ,w ). This 1 2 1 2 2 allows us to further restrict I T l>l. Together with our earlier restriction, we arrive at the fundamental domain of integration for (2l: T >l, -l/2�T I l l �1/2, 0�T

The totality of transformations generated by S and T forms the "modular

group". It is a symmetry group of any function defined over distinct tori.

At a classical level, a string theory obviously possesses this property .

However, this symmetry may not be preserved at a quantum level, a phenomenon we have grown accustomed to, generically referred to as an

"". One of the most far-reaching findings of the string studies is

the fact that this symmetry can be preserved at certain critical space-time

dimension, e.g. , for a bosonic string, D =26. Therefore, at our critical current level of understanding, for a finite string theory, one must force

oneself to work at a space-time dimension different from four . Of course,

to make contact with our more familiar four-dimensional world, additional step such as spatial compactification must be performed. This , however, will not alter the picture for UV finiteness which is our main concern

here.

IV REMARKS:

More than a half century has passed since its invention, the divergence

difficulty of QFT remains the central problem facing our attempt to

understand the interactions of fundamental particles. Unlike previous efforts where UV finiteness was invariably achieved by discovering new

symmetry in the context of conventional QFT, one finds a much more

economical route by adopting a string picture. In this approach, a new

kind of symmetry emerges naturally, which provides an automatic UV-cutoff in a self-consistent fashion.

It should be pointed out that have painted too simplistic a picture I for the ove rall finiteness of a string theory. First of all, even at the level of the vacuum energy for free strings, (2) in general remains

ill-defined because of the presence of a tachyon, which leads to a

divergence at the upper-limit of T -integration. 2 This can of course be turned around and used in further restricting the acceptable string models.

For a realistic_ __unified theory, we must also bring in chiral fermions, which then leads to superstrings. This in turn forces one to be concerned

with the chiral anomaly. This then takes us right back to the exciting 598

story of superstrings of last few years , which hss just been reviewed by

the previous speaker.

Shortly before the recent outburst in superstring activities, S.

Weirtberg, in his contribution, entitled "The Ultimate Structure of Matter", 3) to volume in honoring G. F. Chew 's sixtieth birthday, addressed the old El ques:tion in physics: What are the fundamental entities of which we regard our universe as being composed--particle or fields? A:Eter briefly clarifying the history of since iu inception in years

1929' and 1930 by Heisenberg and Pauli, Weinberg carefully reviewed several swings back and forth between quantum field theory and the S-matrix approach, before finally arriving at the recent renaissance of QFT in the seventies. However, in spite of the impressive successes of modern QFT,

Weinberg pointed out that the question what the ultimate form the

fundamental theory would take remained unanswered. Weinberg concluded by stating "If our quantum field theories of which we 're "o proud are just the debris of some really fundamental theory which describes all of physics including gravity, it may be that the really fundamental theory will have nothing to do with fields; it may not look like a quantum field theory at all. I think we have to leave it as an open possibility that maybe, it will be something like an S-matrix theory. " Could thes:e prophetic words be

ful filled with supers trings?

References: -----

J. H. Schwartz, Phys. Reports 89, 223 (1982) ; "Superstrings" by J. l.) H. Schwarz, World Scientific (1985) , and references therein. See

also the contribution by Schwartz in Ref. 3.

Polchinski, Texas preprint, UTTG-13 85 . l:) J. - "A Passion for Physics", edited by C. DeTar, J. Finkelstein and C-I 3:) Tan, World Scientific (1985) .