Global List of Validated Bioanalytical Assays
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lifestyle Drugs” for Men and Women
Development of “Lifestyle Drugs” for Men and Women Armin Schultz CRS - Clinical Research Services Mannheim GmbH AGAH Annual Meeting 2012, Leipzig, March 01 - 02 Lifestyle drugs Smart drugs, Quality-of-life drugs, Vanity drugs etc. Lifestyle? Lifestyle-Drugs? Active development? Discovery by chance? AGAH Annual Meeting 2012, Leipzig, March 01 - 02 Lifestyle A lifestyle is a characteristic bundle of behaviors that makes sense to both others and oneself in a given time and place, including social relations, consumption, entertainment, and dress. The behaviors and practices within lifestyles are a mixture of habits, conventional ways of doing things, and reasoned actions „Ein Lebensstil ist [...] der regelmäßig wiederkehrende Gesamtzusammenhang der Verhaltensweisen, Interaktionen, Meinungen, Wissensbestände und bewertenden Einstellungen eines Menschen“ (Hradil 2005: 46) Different definitions in social sciences, philosophy, psychology or medicine AGAH Annual Meeting 2012, Leipzig, March 01 - 02 Lifestyle Many “subdivisions” LOHAS: “Lifestyles of Health and Sustainability“ LOVOS: “Lifestyles of Voluntary Simplicity“ SLOHAS: “Slow Lifestyles of Happiness and Sustainability” PARKOS: “Partizipative Konsumenten“ ……. ……. ……. AGAH Annual Meeting 2012, Leipzig, March 01 - 02 Lifestyle drugs Lifestyle drug is an imprecise term commonly applied to medications which treat non-life threatening and non-painful conditions such as baldness, impotence, wrinkles, or acne, without any medical relevance at all or only minor medical relevance relative to others. Desire for increase of personal well-being and quality of life It is sometimes intended as a pejorative, bearing the implication that the scarce medical research resources allocated to develop such drugs were spent frivolously when they could have been better spent researching cures for more serious medical conditions. -
2.0 Synopsis
Hydrocodone/Acetaminophen Extended Release Tablets M12-807 Abbreviated Clinical Study Report R&D/11/661 2.0 Synopsis Abbott Laboratories Individual Study Table Referring (For National Authority to Part of Dossier: Use Only) Name of Study Drug: Volume: Hydrocodone/Acetaminophen Extended Release Page: Name of Active Ingredient: Hydrocodone 10 mg/ Acetaminophen 650 mg Extended Release Title of Study: A Phase 2, Randomized Withdrawal Study of the Analgesic Efficacy and Safety of Hydrocodone/Acetaminophen Extended Release Compared to Placebo in Subjects with Chronic Low Back Pain Coordinating Investigator: Study Sites: Seventeen investigative sites in the United States Publications: None Studied Period (Years): Phase of Development: 2 First Subject First Visit: 22 June 2011 Last Subject Last Visit: 28 October 2011 Objectives: The primary objective of this study was to compare the analgesic efficacy and safety of 1 tablet of hydrocodone/acetaminophen extended release 10 mg/650 mg administered twice daily over 2 weeks to placebo in subjects with moderate to moderately severe chronic low back pain (CLBP). A secondary objective of this study was to explore the population pharmacokinetics of hydrocodone and acetaminophen resulting from administration of hydrocodone/acetaminophen extended release 10 mg/650 mg tablets. Methodology: This Phase 2, multicenter, double-blind (DB), placebo-controlled, randomized withdrawal study compared the analgesic efficacy and safety of 1 tablet hydrocodone/acetaminophen extended release 10 mg/650 mg to placebo in subjects with moderate to moderately severe CLBP. Subjects met pre-defined criteria at the conclusion of the Open-Label (OL) Titration Period to proceed to randomization into the DB Maintenance Period of the study. -
Information to Users
The direct and modulatory antinociceptive actions of endogenous and exogenous opioid delta agonists Item Type text; Dissertation-Reproduction (electronic) Authors Vanderah, Todd William. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 00:14:57 Link to Item http://hdl.handle.net/10150/187190 INFORMATION TO USERS This ~uscript }las been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely. event that the author did not send UMI a complete mannscript and there are missing pages, these will be noted Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginnjng at the upper left-hand comer and contimJing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. -
Cleveland Clinic Laboratories
Cleveland Clinic Laboratories Quantitative Urine Pain Management Drug Measurement with HPLC-MS/MS Background Information enzymatic hydrolysis is much milder, but needs longer incubation time to achieve sufficient (>80%) hydrolysis Pain management drugs are among the most prescribed efficiency.7 medications, and they are also the most abused class of prescription drugs.1-2 Therefore, many states including Ohio Cleveland Clinic Laboratories offer an HPLC-MS/MS method have enacted laws governing the prescription of pain for quantitative screening of 11 pain management drugs and management drugs. Patients enrolled in pain management five other commonly abused drugs in urine.8 In this method, programs need to be monitored for compliance, which total drug concentration is measured after enzymatic hydroly- means appropriate use of prescribed drugs and abstinence sis. This assay also includes an adulteration test using urine from non-prescribed drugs. test strips to ensure specimen quality. In addition to pain management, this test can also be used for monitoring Urine is the most commonly used specimen in monitoring patient compliance in rehabilitation programs. pain management and illicit drug use. A single urine specimen can be tested for a number of drugs. Immunoassay (IA) can The high sensitivity of this method is capable of detecting be used as a screening method, but it lacks specificity and drug manufacturing impurities. As an example, codeine is a sensitivity. For example, most immunoassay tests cannot known manufacturing impurity in morphine (~0.04%) and distinguish various opiate drugs and cannot detect oxymor- can be detected by this method.9 3-4 phone at all. -
(12) United States Patent (10) Patent No.: US 8.492,564 B2 Beguin Et Al
USOO8492.564B2 (12) United States Patent (10) Patent No.: US 8.492,564 B2 Beguin et al. (45) Date of Patent: Jul. 23, 2013 (54) SALVINORIN DERIVATIVES AND USES Béguin et al., “Differential signaling properties at the kappa opioid THEREOF receptor of 12-epi-Salvinorin A and its analogues. Bioorg Med Chem Lett. 22: 1023-1026, 2012. (75) Inventors: Cecile Beguin, Lexington, MA (US); Béguin et al., “Modification of the furan ring of salvinorin A: iden Justin Stephen Potuzak, Millis, MA tification of a selective partial agonist at the kappa opioid receptor.” 17: 1370-1380, Epub Dec. 14, 2008. (US); Thomas Anthony Munro, Béguinet al., "N-Methylacetamide Analog of Salvinorin A: A Highly Cambridge, MA (US); Katharine K. Potent and Selective K-Opioid Receptor Agonist with Oral Efficacy.” Duncan, San Diego, CA (US); William J. Pharmacol. Exp. Ther, 324; 188-195 (2008). A. Carlezon, Lincoln, MA (US); Bruce Béguin et al., “Synthesis and In Vitro Evaluation of Salvinorin A M. Cohen, Lexington, MA (US); Analogues: Effect of Configuration at C(2) and Substitution at Lee-yuan Liu-Chen, Media, PA (US) C(18).” Bioorg. Med. Chem. Lett. 16:4679-4685 (2006). Béguin et al., “Synthesis and InVitro Pharmacological Evaluation of (73) Assignees: The McLean Hospital Corporation, Salvinorin A Analogues Modified at C(2).” Bioorg. Med. Chem. Lett. Belmont, MA (US); Temple University 15:2761-2765 (2005). School of Medicine, Philadelphia, PA Bigham et al., “Divinatorins A-C, New Neoclerodane Diterpenoids from the Controlled SageSalvia divinorum,'.J. Nat. Prod 66: 1242 (US) 1244 (2003). Bikbulatov et al., “Short synthesis of a novel class of salvinorin A (*) Notice: Subject to any disclaimer, the term of this analogs with hemiacetalic structure.” Tetrahedron Lett. -
Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and Other Transcription Factors
CARBOXYLESTERASES: PHARMACOLOGICAL INHIBITION REGULATED EXPRESSION AND TRANSCRIPTIONAL INVOLVEMENT OF NUCLEAR RECEPTORS AND OTHER TRANSCRIPTION FACTORS Yuanjun Shen1, Zhanquan Shi2 and Bingfang Yan2,3 Division of Pharmaceutical Sciences James L. Winkle College of Pharmacy University of Cincinnati Cincinnati, OH 45229 USA. Address Correspondence to: Dr. Bingfang Yan Division of Pharmaceutical Sciences James L. Winkle College of Pharmacy University of Cincinnati Cincinnati, OH 45229 Phone: (513) 558-6297 Fax: (513) 558-3233 E-mail: [email protected] Running Title: Regulated expression and inhibited activity of carboxylesterases FOOTNOTES 1 Current address: Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh Department of Medicine, Pittsburgh, PA 15261, USA. 2 Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA 3 To whom correspondence should be addressed. 4 This work was supported by National Institutes of Health Grants R01GM61988 and R01EB018748. 5 Abbreviation used: CAR, Constitutive androstane receptor; CES1, carboxylesterase-1; DEC1, Differentiated embryo chondrocyte-1; 5-FU: Fluorouracil; GR, Glucocorticoid receptor; IL-6, Interlekin- 6; LPS, Lipopolysaccharides; Nrf2, Nuclear factor (erythroid-derived 2)-like 2; p53, Tumor protein p53; PXR, Pregnane X receptor Carboxylesterases (CESs, E.C.3.1.1.1) constitute a large class of enzymes that determine the therapeutic efficacy and toxicity of ester/amide drugs. Without exceptions, all mammalian species studied express multiple forms of carboxylesterases. Two human carboxylesterases, CES1 and CES2, are major contributors to hydrolytic biotransformation. Recent studies have identified therapeutic agents that potently inhibit carboxylesterases-based catalysis. Some of them are reversible whereas others irreversible. The adrenergic antagonist carvedilol, for example, reversibly inhibits CES2 but this carboxylesterase is irreversibly inhibited by orlistat, a popular anti-obesity medicine. -
NINDS Custom Collection II
ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC -
Prescription Drug Management
Check out our new site: www.acllaboratories.com Prescription Drug Management Non Adherence, Drug Misuse, Increased Healthcare Costs Reports from the Centers for DiseasePrescription Control and Prevention (CDC) say Drug deaths from Managementmedication overdose have risen for 11 straight years. In 2008 more than 36,000 people died from drug overdoses, and most of these deaths were caused by prescription Nondrugs. Adherence,1 Drug Misuse, Increased Healthcare Costs The CDC analysis found that nearly 40,000 drug overdose deaths were reported in 2010. Prescribed medication accounted for almost 60 percent of the fatalities—far more than deaths from illegal street drugs. Abuse of painkillers like ReportsOxyContin from and the VicodinCenters forwere Disease linked Control to the and majority Prevention of the (CDC) deaths, say deaths from according to the report.1 medication overdose have risen for 11 straight years. In 2008 more than 36,000 people died from drug overdoses, and most of these deaths were caused by prescription drugs. 1 A health economics study analyzed managed care claims of more than 18 million patients, finding that patients undergoing opioid therapyThe CDCfor chronic analysis pain found who that may nearly not 40,000 be following drug overdose their prescription deaths were regimenreported in 2010. Prescribed medication accounted for almost 60 percent of the fatalities—far more than deaths have significantly higher overall healthcare costs. from illegal street drugs. Abuse of painkillers like OxyContin and Vicodin were linked to the majority of the deaths, according to the report.1 ACL offers drug management testing to provide information that can aid clinicians in therapy and monitoring to help improve patientA health outcomes. -
Opioid Receptorsreceptors
OPIOIDOPIOID RECEPTORSRECEPTORS defined or “classical” types of opioid receptor µ,dk and . Alistair Corbett, Sandy McKnight and Graeme Genes encoding for these receptors have been cloned.5, Henderson 6,7,8 More recently, cDNA encoding an “orphan” receptor Dr Alistair Corbett is Lecturer in the School of was identified which has a high degree of homology to Biological and Biomedical Sciences, Glasgow the “classical” opioid receptors; on structural grounds Caledonian University, Cowcaddens Road, this receptor is an opioid receptor and has been named Glasgow G4 0BA, UK. ORL (opioid receptor-like).9 As would be predicted from 1 Dr Sandy McKnight is Associate Director, Parke- their known abilities to couple through pertussis toxin- Davis Neuroscience Research Centre, sensitive G-proteins, all of the cloned opioid receptors Cambridge University Forvie Site, Robinson possess the same general structure of an extracellular Way, Cambridge CB2 2QB, UK. N-terminal region, seven transmembrane domains and Professor Graeme Henderson is Professor of intracellular C-terminal tail structure. There is Pharmacology and Head of Department, pharmacological evidence for subtypes of each Department of Pharmacology, School of Medical receptor and other types of novel, less well- Sciences, University of Bristol, University Walk, characterised opioid receptors,eliz , , , , have also been Bristol BS8 1TD, UK. postulated. Thes -receptor, however, is no longer regarded as an opioid receptor. Introduction Receptor Subtypes Preparations of the opium poppy papaver somniferum m-Receptor subtypes have been used for many hundreds of years to relieve The MOR-1 gene, encoding for one form of them - pain. In 1803, Sertürner isolated a crystalline sample of receptor, shows approximately 50-70% homology to the main constituent alkaloid, morphine, which was later shown to be almost entirely responsible for the the genes encoding for thedk -(DOR-1), -(KOR-1) and orphan (ORL ) receptors. -
Cyproterone Acetate in the Management of Polycystic Ovary Syndrome
CORE Metadata, citation and similar papers at core.ac.uk Provided by Journal of Rawalpindi Medical College Journal of Rawalpindi Medical College (JRMC); 2018;22(3): 262-265 Original Article Comparison of Metformin and Ethinyl Estradiol- Cyproterone Acetate in the Management of Polycystic Ovary Syndrome Sadaf Ajaib, Maimoona Ali Department of Gyanecology and Obstetrics, Military Hospital, Rawalpindi Abstract predisposition. The rudimentary quandary is in the hypothalamic pituitary axis leading to incremented Background: To compare ethinyl estradiol- LH/FSH ratio1. The cumulation of anovulation and cyproterone acetate and metformin for polycystic hyperandrogenism denotes the classic form of PCOS ovarian syndrome in terms of mean hirsutism score which exhibits the adverse metabolic phenotype of the and waist hip ratio (WHR). syndrome. Clinical and biochemical features of these Methods: A total of 120 patients (60 patients in patients may vary well-according to race, ethnicity and each group) were included in the study. Group-A the diagnostic criteria used. 2 Hyper-androgenism received metformin 500mg and group-B was given may result in acne and hirsutism. Hirsutism afflicts 5- ethinyl estradiol 35 mg as treatment of polycystic 15% of females and is a paramount denouement of ovary disease (PCOD), mean hirsuitism and waist to background hyper-androgenemia. The manifestations hip ratio was measured at 6months. Hirsuitism was of polycystic ovary syndrome depends largely on measured according to Ferriman Gallway score. obesity, which exacerbates the reproductive and Circumferences were measured with an metabolic aberrations in women tormented by PCOs. anthropometric tape over light clothing. Waist girth Further studies conclude that obesity might promote was measured at the minimum circumference the phenotypic expression of PCOS in a population at between the iliac crest and the rib cage and hip girth risk of this disease.1,2 at the maximum width and their ratio was calculated Well known risk determinants for cardiovascular as baseline and after 6 months of treatment. -
Recommended Methods for the Identification and Analysis of Fentanyl and Its Analogues in Biological Specimens
Recommended methods for the Identification and Analysis of Fentanyl and its Analogues in Biological Specimens MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Recommended Methods for the Identification and Analysis of Fentanyl and its Analogues in Biological Specimens MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES UNITED NATIONS Vienna, 2017 Note Operating and experimental conditions are reproduced from the original reference materials, including unpublished methods, validated and used in selected national laboratories as per the list of references. A number of alternative conditions and substitution of named commercial products may provide comparable results in many cases. However, any modification has to be validated before it is integrated into laboratory routines. ST/NAR/53 Original language: English © United Nations, November 2017. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of names of firms and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Acknowledgements The Laboratory and Scientific Section of the UNODC (LSS, headed by Dr. Justice Tettey) wishes to express its appreciation and thanks to Dr. Barry Logan, Center for Forensic Science Research and Education, at the Fredric Rieders Family Founda- tion and NMS Labs, United States; Amanda L.A. -
ASAM National Practice Guideline for the Treatment of Opioid Use Disorder: 2020 Focused Update
The ASAM NATIONAL The ASAM National Practice Guideline 2020 Focused Update Guideline 2020 Focused National Practice The ASAM PRACTICE GUIDELINE For the Treatment of Opioid Use Disorder 2020 Focused Update Adopted by the ASAM Board of Directors December 18, 2019. © Copyright 2020. American Society of Addiction Medicine, Inc. All rights reserved. Permission to make digital or hard copies of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial, advertising or promotional purposes, and that copies bear this notice and the full citation on the fi rst page. Republication, systematic reproduction, posting in electronic form on servers, redistribution to lists, or other uses of this material, require prior specifi c written permission or license from the Society. American Society of Addiction Medicine 11400 Rockville Pike, Suite 200 Rockville, MD 20852 Phone: (301) 656-3920 Fax (301) 656-3815 E-mail: [email protected] www.asam.org CLINICAL PRACTICE GUIDELINE The ASAM National Practice Guideline for the Treatment of Opioid Use Disorder: 2020 Focused Update 2020 Focused Update Guideline Committee members Kyle Kampman, MD, Chair (alpha order): Daniel Langleben, MD Chinazo Cunningham, MD, MS, FASAM Ben Nordstrom, MD, PhD Mark J. Edlund, MD, PhD David Oslin, MD Marc Fishman, MD, DFASAM George Woody, MD Adam J. Gordon, MD, MPH, FACP, DFASAM Tricia Wright, MD, MS Hendre´e E. Jones, PhD Stephen Wyatt, DO Kyle M. Kampman, MD, FASAM, Chair 2015 ASAM Quality Improvement Council (alpha order): Daniel Langleben, MD John Femino, MD, FASAM Marjorie Meyer, MD Margaret Jarvis, MD, FASAM, Chair Sandra Springer, MD, FASAM Margaret Kotz, DO, FASAM George Woody, MD Sandrine Pirard, MD, MPH, PhD Tricia E.