Product of Random Stochastic Matrices and Distributed Averaging
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Random Matrix Theory and Covariance Estimation
Introduction Random matrix theory Estimating correlations Comparison with Barra Conclusion Appendix Random Matrix Theory and Covariance Estimation Jim Gatheral New York, October 3, 2008 Introduction Random matrix theory Estimating correlations Comparison with Barra Conclusion Appendix Motivation Sophisticated optimal liquidation portfolio algorithms that balance risk against impact cost involve inverting the covariance matrix. Eigenvalues of the covariance matrix that are small (or even zero) correspond to portfolios of stocks that have nonzero returns but extremely low or vanishing risk; such portfolios are invariably related to estimation errors resulting from insuffient data. One of the approaches used to eliminate the problem of small eigenvalues in the estimated covariance matrix is the so-called random matrix technique. We would like to understand: the basis of random matrix theory. (RMT) how to apply RMT to the estimation of covariance matrices. whether the resulting covariance matrix performs better than (for example) the Barra covariance matrix. Introduction Random matrix theory Estimating correlations Comparison with Barra Conclusion Appendix Outline 1 Random matrix theory Random matrix examples Wigner’s semicircle law The Marˇcenko-Pastur density The Tracy-Widom law Impact of fat tails 2 Estimating correlations Uncertainty in correlation estimates. Example with SPX stocks A recipe for filtering the sample correlation matrix 3 Comparison with Barra Comparison of eigenvectors The minimum variance portfolio Comparison of weights In-sample and out-of-sample performance 4 Conclusions 5 Appendix with a sketch of Wigner’s original proof Introduction Random matrix theory Estimating correlations Comparison with Barra Conclusion Appendix Example 1: Normal random symmetric matrix Generate a 5,000 x 5,000 random symmetric matrix with entries aij N(0, 1). -
Eigenvalues of Euclidean Distance Matrices and Rs-Majorization on R2
Archive of SID 46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University 2 Talk Eigenvalues of Euclidean distance matrices and rs-majorization on R pp.: 1{4 Eigenvalues of Euclidean Distance Matrices and rs-majorization on R2 Asma Ilkhanizadeh Manesh∗ Department of Pure Mathematics, Vali-e-Asr University of Rafsanjan Alemeh Sheikh Hoseini Department of Pure Mathematics, Shahid Bahonar University of Kerman Abstract Let D1 and D2 be two Euclidean distance matrices (EDMs) with correspond- ing positive semidefinite matrices B1 and B2 respectively. Suppose that λ(A) = ((λ(A)) )n is the vector of eigenvalues of a matrix A such that (λ(A)) ... i i=1 1 ≥ ≥ (λ(A))n. In this paper, the relation between the eigenvalues of EDMs and those of the 2 corresponding positive semidefinite matrices respect to rs, on R will be investigated. ≺ Keywords: Euclidean distance matrices, Rs-majorization. Mathematics Subject Classification [2010]: 34B15, 76A10 1 Introduction An n n nonnegative and symmetric matrix D = (d2 ) with zero diagonal elements is × ij called a predistance matrix. A predistance matrix D is called Euclidean or a Euclidean distance matrix (EDM) if there exist a positive integer r and a set of n points p1, . , pn r 2 2 { } such that p1, . , pn R and d = pi pj (i, j = 1, . , n), where . denotes the ∈ ij k − k k k usual Euclidean norm. The smallest value of r that satisfies the above condition is called the embedding dimension. As is well known, a predistance matrix D is Euclidean if and 1 1 t only if the matrix B = − P DP with P = I ee , where I is the n n identity matrix, 2 n − n n × and e is the vector of all ones, is positive semidefinite matrix. -
Rotation Matrix Sampling Scheme for Multidimensional Probability Distribution Transfer
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-7, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic ROTATION MATRIX SAMPLING SCHEME FOR MULTIDIMENSIONAL PROBABILITY DISTRIBUTION TRANSFER P. Srestasathiern ∗, S. Lawawirojwong, R. Suwantong, and P. Phuthong Geo-Informatics and Space Technology Development Agency (GISTDA), Laksi, Bangkok, Thailand (panu,siam,rata,pattrawuth)@gistda.or.th Commission VII,WG VII/4 KEY WORDS: Histogram specification, Distribution transfer, Color transfer, Data Gaussianization ABSTRACT: This paper address the problem of rotation matrix sampling used for multidimensional probability distribution transfer. The distri- bution transfer has many applications in remote sensing and image processing such as color adjustment for image mosaicing, image classification, and change detection. The sampling begins with generating a set of random orthogonal matrix samples by Householder transformation technique. The advantage of using the Householder transformation for generating the set of orthogonal matrices is the uniform distribution of the orthogonal matrix samples. The obtained orthogonal matrices are then converted to proper rotation matrices. The performance of using the proposed rotation matrix sampling scheme was tested against the uniform rotation angle sampling. The applications of the proposed method were also demonstrated using two applications i.e., image to image probability distribution transfer and data Gaussianization. 1. INTRODUCTION is based on the Monge’s transport problem which is to find mini- mal displacement for mass transportation. The solution from this In remote sensing, the analysis of multi-temporal data is widely linear approach can be used as initial solution for non-linear prob- used in many applications such as urban expansion monitoring, ability distribution transfer methods. -
Clustering by Left-Stochastic Matrix Factorization
Clustering by Left-Stochastic Matrix Factorization Raman Arora [email protected] Maya R. Gupta [email protected] Amol Kapila [email protected] Maryam Fazel [email protected] University of Washington, Seattle, WA 98103, USA Abstract 1.1. Related Work in Matrix Factorization Some clustering objective functions can be written as We propose clustering samples given their matrix factorization objectives. Let n feature vectors d×n pairwise similarities by factorizing the sim- be gathered into a feature-vector matrix X 2 R . T d×k ilarity matrix into the product of a clus- Consider the model X ≈ FG , where F 2 R can ter probability matrix and its transpose. be interpreted as a matrix with k cluster prototypes n×k We propose a rotation-based algorithm to as its columns, and G 2 R is all zeros except for compute this left-stochastic decomposition one (appropriately scaled) positive entry per row that (LSD). Theoretical results link the LSD clus- indicates the nearest cluster prototype. The k-means tering method to a soft kernel k-means clus- clustering objective follows this model with squared tering, give conditions for when the factor- error, and can be expressed as (Ding et al., 2005): ization and clustering are unique, and pro- T 2 arg min kX − FG kF ; (1) vide error bounds. Experimental results on F;GT G=I simulated and real similarity datasets show G≥0 that the proposed method reliably provides accurate clusterings. where k · kF is the Frobenius norm, and inequality G ≥ 0 is component-wise. This follows because the combined constraints G ≥ 0 and GT G = I force each row of G to have only one positive element. -
The Distribution of Eigenvalues of Randomized Permutation Matrices Tome 63, No 3 (2013), P
R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Joseph NAJNUDEL & Ashkan NIKEGHBALI The distribution of eigenvalues of randomized permutation matrices Tome 63, no 3 (2013), p. 773-838. <http://aif.cedram.org/item?id=AIF_2013__63_3_773_0> © Association des Annales de l’institut Fourier, 2013, tous droits réservés. L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute re- production en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement per- sonnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 63, 3 (2013) 773-838 THE DISTRIBUTION OF EIGENVALUES OF RANDOMIZED PERMUTATION MATRICES by Joseph NAJNUDEL & Ashkan NIKEGHBALI Abstract. — In this article we study in detail a family of random matrix ensembles which are obtained from random permutations matrices (chosen at ran- dom according to the Ewens measure of parameter θ > 0) by replacing the entries equal to one by more general non-vanishing complex random variables. For these ensembles, in contrast with more classical models as the Gaussian Unitary En- semble, or the Circular Unitary Ensemble, the eigenvalues can be very explicitly computed by using the cycle structure of the permutations. -
Similarity-Based Clustering by Left-Stochastic Matrix Factorization
JournalofMachineLearningResearch14(2013)1715-1746 Submitted 1/12; Revised 11/12; Published 7/13 Similarity-based Clustering by Left-Stochastic Matrix Factorization Raman Arora [email protected] Toyota Technological Institute 6045 S. Kenwood Ave Chicago, IL 60637, USA Maya R. Gupta [email protected] Google 1225 Charleston Rd Mountain View, CA 94301, USA Amol Kapila [email protected] Maryam Fazel [email protected] Department of Electrical Engineering University of Washington Seattle, WA 98195, USA Editor: Inderjit Dhillon Abstract For similarity-based clustering, we propose modeling the entries of a given similarity matrix as the inner products of the unknown cluster probabilities. To estimate the cluster probabilities from the given similarity matrix, we introduce a left-stochastic non-negative matrix factorization problem. A rotation-based algorithm is proposed for the matrix factorization. Conditions for unique matrix factorizations and clusterings are given, and an error bound is provided. The algorithm is partic- ularly efficient for the case of two clusters, which motivates a hierarchical variant for cases where the number of desired clusters is large. Experiments show that the proposed left-stochastic decom- position clustering model produces relatively high within-cluster similarity on most data sets and can match given class labels, and that the efficient hierarchical variant performs surprisingly well. Keywords: clustering, non-negative matrix factorization, rotation, indefinite kernel, similarity, completely positive 1. Introduction Clustering is important in a broad range of applications, from segmenting customers for more ef- fective advertising, to building codebooks for data compression. Many clustering methods can be interpreted in terms of a matrix factorization problem. -
Alternating Sign Matrices and Polynomiography
Alternating Sign Matrices and Polynomiography Bahman Kalantari Department of Computer Science Rutgers University, USA [email protected] Submitted: Apr 10, 2011; Accepted: Oct 15, 2011; Published: Oct 31, 2011 Mathematics Subject Classifications: 00A66, 15B35, 15B51, 30C15 Dedicated to Doron Zeilberger on the occasion of his sixtieth birthday Abstract To each permutation matrix we associate a complex permutation polynomial with roots at lattice points corresponding to the position of the ones. More generally, to an alternating sign matrix (ASM) we associate a complex alternating sign polynomial. On the one hand visualization of these polynomials through polynomiography, in a combinatorial fashion, provides for a rich source of algo- rithmic art-making, interdisciplinary teaching, and even leads to games. On the other hand, this combines a variety of concepts such as symmetry, counting and combinatorics, iteration functions and dynamical systems, giving rise to a source of research topics. More generally, we assign classes of polynomials to matrices in the Birkhoff and ASM polytopes. From the characterization of vertices of these polytopes, and by proving a symmetry-preserving property, we argue that polynomiography of ASMs form building blocks for approximate polynomiography for polynomials corresponding to any given member of these polytopes. To this end we offer an algorithm to express any member of the ASM polytope as a convex of combination of ASMs. In particular, we can give exact or approximate polynomiography for any Latin Square or Sudoku solution. We exhibit some images. Keywords: Alternating Sign Matrices, Polynomial Roots, Newton’s Method, Voronoi Diagram, Doubly Stochastic Matrices, Latin Squares, Linear Programming, Polynomiography 1 Introduction Polynomials are undoubtedly one of the most significant objects in all of mathematics and the sciences, particularly in combinatorics. -
Two-State Systems
1 TWO-STATE SYSTEMS Introduction. Relative to some/any discretely indexed orthonormal basis |n) | ∂ | the abstract Schr¨odinger equation H ψ)=i ∂t ψ) can be represented | | | ∂ | (m H n)(n ψ)=i ∂t(m ψ) n ∂ which can be notated Hmnψn = i ∂tψm n H | ∂ | or again ψ = i ∂t ψ We found it to be the fundamental commutation relation [x, p]=i I which forced the matrices/vectors thus encountered to be ∞-dimensional. If we are willing • to live without continuous spectra (therefore without x) • to live without analogs/implications of the fundamental commutator then it becomes possible to contemplate “toy quantum theories” in which all matrices/vectors are finite-dimensional. One loses some physics, it need hardly be said, but surprisingly much of genuine physical interest does survive. And one gains the advantage of sharpened analytical power: “finite-dimensional quantum mechanics” provides a methodological laboratory in which, not infrequently, the essentials of complicated computational procedures can be exposed with closed-form transparency. Finally, the toy theory serves to identify some unanticipated formal links—permitting ideas to flow back and forth— between quantum mechanics and other branches of physics. Here we will carry the technique to the limit: we will look to “2-dimensional quantum mechanics.” The theory preserves the linearity that dominates the full-blown theory, and is of the least-possible size in which it is possible for the effects of non-commutivity to become manifest. 2 Quantum theory of 2-state systems We have seen that quantum mechanics can be portrayed as a theory in which • states are represented by self-adjoint linear operators ρ ; • motion is generated by self-adjoint linear operators H; • measurement devices are represented by self-adjoint linear operators A. -
Representations of Stochastic Matrices
Rotational (and Other) Representations of Stochastic Matrices Steve Alpern1 and V. S. Prasad2 1Department of Mathematics, London School of Economics, London WC2A 2AE, United Kingdom. email: [email protected] 2Department of Mathematics, University of Massachusetts Lowell, Lowell, MA. email: [email protected] May 27, 2005 Abstract Joel E. Cohen (1981) conjectured that any stochastic matrix P = pi;j could be represented by some circle rotation f in the following sense: Forf someg par- tition Si of the circle into sets consisting of …nite unions of arcs, we have (*) f g pi;j = (f (Si) Sj) = (Si), where denotes arc length. In this paper we show how cycle decomposition\ techniques originally used (Alpern, 1983) to establish Cohen’sconjecture can be extended to give a short simple proof of the Coding Theorem, that any mixing (that is, P N > 0 for some N) stochastic matrix P can be represented (in the sense of * but with Si merely measurable) by any aperiodic measure preserving bijection (automorphism) of a Lesbesgue proba- bility space. Representations by pointwise and setwise periodic automorphisms are also established. While this paper is largely expository, all the proofs, and some of the results, are new. Keywords: rotational representation, stochastic matrix, cycle decomposition MSC 2000 subject classi…cations. Primary: 60J10. Secondary: 15A51 1 Introduction An automorphism of a Lebesgue probability space (X; ; ) is a bimeasurable n bijection f : X X which preserves the measure : If S = Si is a non- ! f gi=1 trivial (all (Si) > 0) measurable partition of X; we can generate a stochastic n matrix P = pi;j by the de…nition f gi;j=1 (f (Si) Sj) pi;j = \ ; i; j = 1; : : : ; n: (1) (Si) Since the partition S is non-trivial, the matrix P has a positive invariant (stationary) distribution v = (v1; : : : ; vn) = ( (S1) ; : : : ; (Sn)) ; and hence (by de…nition) is recurrent. -
New Results on the Spectral Density of Random Matrices
New Results on the Spectral Density of Random Matrices Timothy Rogers Department of Mathematics, King’s College London, July 2010 A thesis submitted for the degree of Doctor of Philosophy: Applied Mathematics Abstract This thesis presents some new results and novel techniques in the studyof thespectral density of random matrices. Spectral density is a central object of interest in random matrix theory, capturing the large-scale statistical behaviour of eigenvalues of random matrices. For certain ran- dom matrix ensembles the spectral density will converge, as the matrix dimension grows, to a well-known limit. Examples of this include Wigner’s famous semi-circle law and Girko’s elliptic law. Apart from these, and a few other cases, little else is known. Two factors in particular can complicate the analysis enormously - the intro- duction of sparsity (that is, many entries being zero) and the breaking of Hermitian symmetry. The results presented in this thesis extend the class of random matrix en- sembles for which the limiting spectral density can be computed to include various sparse and non-Hermitian ensembles. Sparse random matrices are studied through a mathematical analogy with statistical mechanics. Employing the cavity method, a technique from the field of disordered systems, a system of equations is derived which characterises the spectral density of a given sparse matrix. Analytical and numerical solutions to these equations are ex- plored, as well as the ensemble average for various sparse random matrix ensembles. For the case of non-Hermitian random matrices, a result is presented giving a method 1 for exactly calculating the spectral density of matrices under a particular type of per- turbation. -
Random Rotation Ensembles
Journal of Machine Learning Research 2 (2015) 1-15 Submitted 03/15; Published ??/15 Random Rotation Ensembles Rico Blaser ([email protected]) Piotr Fryzlewicz ([email protected]) Department of Statistics London School of Economics Houghton Street London, WC2A 2AE, UK Editor: TBD Abstract In machine learning, ensemble methods combine the predictions of multiple base learners to construct more accurate aggregate predictions. Established supervised learning algo- rithms inject randomness into the construction of the individual base learners in an effort to promote diversity within the resulting ensembles. An undesirable side effect of this ap- proach is that it generally also reduces the accuracy of the base learners. In this paper, we introduce a method that is simple to implement yet general and effective in improv- ing ensemble diversity with only modest impact on the accuracy of the individual base learners. By randomly rotating the feature space prior to inducing the base learners, we achieve favorable aggregate predictions on standard data sets compared to state of the art ensemble methods, most notably for tree-based ensembles, which are particularly sensitive to rotation. Keywords: Feature Rotation, Ensemble Diversity, Smooth Decision Boundary 1. Introduction Modern statistical learning algorithms combine the predictions of multiple base learners to form ensembles, which typically achieve better aggregate predictive performance than the individual base learners (Rokach, 2010). This approach has proven to be effective in practice and some ensemble methods rank among the most accurate general-purpose supervised learning algorithms currently available. For example, a large-scale empirical study (Caruana and Niculescu-Mizil, 2006) of supervised learning algorithms found that decision tree ensembles consistently outperformed traditional single-predictor models on a representative set of binary classification tasks. -
Left Eigenvector of a Stochastic Matrix
Advances in Pure Mathematics, 2011, 1, 105-117 doi:10.4236/apm.2011.14023 Published Online July 2011 (http://www.SciRP.org/journal/apm) Left Eigenvector of a Stochastic Matrix Sylvain Lavalle´e Departement de mathematiques, Universite du Quebec a Montreal, Montreal, Canada E-mail: [email protected] Received January 7, 2011; revised June 7, 2011; accepted June 15, 2011 Abstract We determine the left eigenvector of a stochastic matrix M associated to the eigenvalue 1 in the commu- tative and the noncommutative cases. In the commutative case, we see that the eigenvector associated to the eigenvalue 0 is (,,NN1 n ), where Ni is the ith principal minor of NMI= n , where In is the 11 identity matrix of dimension n . In the noncommutative case, this eigenvector is (,P1 ,Pn ), where Pi is the sum in aij of the corresponding labels of nonempty paths starting from i and not passing through i in the complete directed graph associated to M . Keywords: Generic Stochastic Noncommutative Matrix, Commutative Matrix, Left Eigenvector Associated To The Eigenvalue 1, Skew Field, Automata 1. Introduction stochastic free field and that the vector 11 (,,PP1 n ) is fixed by our matrix; moreover, the sum 1 It is well known that 1 is one of the eigenvalue of a of the Pi is equal to 1, hence they form a kind of stochastic matrix (i.e. the sum of the elements of each noncommutative limiting probability. row is equal to 1) and its associated right eigenvector is These results have been proved in [1] but the proof the vector (1,1, ,1)T .