Polydesmida, Diplopoda)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Subterranean Biodiversity and Depth Distribution of Myriapods in Forested Scree Slopes of Central Europe
A peer-reviewed open-access journal ZooKeys Subterranean930: 117–137 (2020) biodiversity and depth distribution of myriapods in forested scree slopes of... 117 doi: 10.3897/zookeys.930.48914 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Subterranean biodiversity and depth distribution of myriapods in forested scree slopes of Central Europe Beáta Haľková1, Ivan Hadrián Tuf 2, Karel Tajovský3, Andrej Mock1 1 Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia 2 De- partment of Ecology and Environmental Sciences, Faculty of Science, Palacky University, Olomouc, Czech Republic 3 Institute of Soil Biology, Biology Centre CAS, České Budějovice, Czech Republic Corresponding author: Beáta Haľková ([email protected]) Academic editor: L. Dányi | Received 28 November 2019 | Accepted 10 February 2020 | Published 28 April 2020 http://zoobank.org/84BEFD1B-D8FA-4B05-8481-C0735ADF2A3C Citation: Haľková B, Tuf IH, Tajovský K, Mock A (2020) Subterranean biodiversity and depth distribution of myriapods in forested scree slopes of Central Europe. In: Korsós Z, Dányi L (Eds) Proceedings of the 18th International Congress of Myriapodology, Budapest, Hungary. ZooKeys 930: 117–137. https://doi.org/10.3897/zookeys.930.48914 The paper is dedicated to Christian Juberthie (12 Mar 1931–7 Nov 2019), the author of the concept of MSS (milieu souterrain superficiel) and the doyen of modern biospeleology Abstract The shallow underground of rock debris is a unique animal refuge. Nevertheless, the research of this habitat lags far behind the study of caves and soil, due to technical and time-consuming demands. Data on Myriapoda in scree habitat from eleven localities in seven different geomorphological units of the Czech and Slovak Republics were processed. -
Lehman Caves Management Plan
National Park Service U.S. Department of the Interior Great Basin National Park Lehman Caves Management Plan June 2019 ON THE COVER Photograph of visitors on tour of Lehman Caves NPS Photo ON THIS PAGE Photograph of cave shields, Grand Palace, Lehman Caves NPS Photo Shields in the Grand Palace, Lehman Caves. Lehman Caves Management Plan Great Basin National Park Baker, Nevada June 2019 Approved by: James Woolsey, Superintendent Date Executive Summary The Lehman Caves Management Plan (LCMP) guides management for Lehman Caves, located within Great Basin National Park (GRBA). The primary goal of the Lehman Caves Management Plan is to manage the cave in a manner that will preserve and protect cave resources and processes while allowing for respectful recreation and scientific use. More specifically, the intent of this plan is to manage Lehman Caves to maintain its geological, scenic, educational, cultural, biological, hydrological, paleontological, and recreational resources in accordance with applicable laws, regulations, and current guidelines such as the Federal Cave Resource Protection Act and National Park Service Management Policies. Section 1.0 provides an introduction and background to the park and pertinent laws and regulations. Section 2.0 goes into detail of the natural and cultural history of Lehman Caves. This history includes how infrastructure was built up in the cave to allow visitors to enter and tour, as well as visitation numbers from the 1920s to present. Section 3.0 states the management direction and objectives for Lehman Caves. Section 4.0 covers how the Management Plan will meet each of the objectives in Section 3.0. -
New Zealand's Genetic Diversity
1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses). -
Diversity of Millipedes Along the Northern Western Ghats
Journal of Entomology and Zoology Studies 2014; 2 (4): 254-257 ISSN 2320-7078 Diversity of millipedes along the Northern JEZS 2014; 2 (4): 254-257 © 2014 JEZS Western Ghats, Rajgurunagar (MS), India Received: 14-07-2014 Accepted: 28-07-2014 (Arthropod: Diplopod) C. R. Choudhari C. R. Choudhari, Y.K. Dumbare and S.V. Theurkar Department of Zoology, Hutatma Rajguru Mahavidyalaya, ABSTRACT Rajgurunagar, University of Pune, The different vegetation type was used to identify the oligarchy among millipede species and establish India P.O. Box 410505 that millipedes in different vegetation types are dominated by limited set of species. In the present Y.K. Dumbare research elucidates the diversity of millipede rich in part of Northern Western Ghats of Rajgurunagar Department of Zoology, Hutatma (MS), India. A total four millipedes, Harpaphe haydeniana, Narceus americanus, Oxidus gracilis, Rajguru Mahavidyalaya, Trigoniulus corallines taxa belonging to order Polydesmida and Spirobolida; 4 families belongs to Rajgurunagar, University of Pune, Xystodesmidae, Spirobolidae, Paradoxosomatidae and Trigoniulidae and also of 4 genera were India P.O. Box 410505 recorded from the tropical or agricultural landscape of Northern Western Ghats. There was Harpaphe haydeniana correlated to the each species of millipede which were found in Northern Western Ghats S.V. Theurkar region of Rajgurunagar. At the time of diversity study, Trigoniulus corallines were observed more than Senior Research Fellowship, other millipede species, which supports the environmental determinism condition. Narceus americanus Department of Zoology, Hutatma was single time occurred in the agricultural vegetation landscape due to the geographical location and Rajguru Mahavidyalaya, habitat differences. Rajgurunagar, University of Pune, India Keywords: Diplopod, Northern Western Ghats, millipede diversity, Narceus americanus, Trigoniulus corallines 1. -
Diplopoda: Polydesmida: Dalodesmidae)
Zootaxa 2571: 53–61 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Two new millipede genera from northwest Tasmania, Australia (Diplopoda: Polydesmida: Dalodesmidae) ROBERT MESIBOV Queen Victoria Museum and Art Gallery, Launceston, Tasmania, Australia 7250. E-mail: [email protected] Abstract Setoisenoton pallidus n. gen., n. sp. and Dysmicodesmus jeekeli n. gen., n. sp. occupy small ranges (<5000 km2) in the forests of northwest Tasmania. Both have a head+19 rings, metatergites lacking posterior corner extensions, and long, rigid gonopod telopodites reaching at least to legpair 4 when retracted. S. pallidus resembles Notonesiotes aucklandensis Johns, 1970 from the subantarctic Auckland Islands, but differs in gonopod details. D. jeekeli is unusual in the Tasmanian dalodesmid fauna in having basally fused telopodites. Key words: Diplopoda, Polydesmida, Dalodesmidae, Australia, Tasmania Introduction In five species of small dalodesmid Polydesmida from northwest Tasmania with a head+19 body rings (H+19), males have unusually long gonopod telopodites, reaching at least to legpair 4 when retracted. Three of these species, in the genus Ginglymodesmus Mesibov, 2005, have a midlength pseudo-articulation in the telopodite which allows the distal portion to flex anteriorly (Mesibov 2005). The fourth and fifth species both have rigid, straight telopodites and are here described and placed in new genera. One of the new species superficially resembles Notonesiotes aucklandensis Johns, 1970, a dalodesmid from the subantarctic Auckland Islands. The second new species superficially resembles species in the dalodesmid genus Tasmaniosoma Verhoeff, 1936. Methods 'Male' and 'female' in the text refer to stadium 7 adults. -
Scientific Opinion Addressing the State of The
Durham Research Online Deposited in DRO: 24 May 2017 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Ockleford, Colin and Adriaanse, Paulien and Berny, Philippe and Brock, Theodorus and Duquesne, Sabine and Grilli, Sandro and HernandezJerez, Antonio F. and Bennekou, Susanne Hougaard and Klein, Michael and Kuhl, Thomas and Laskowski, Ryszard and Machera, Kyriaki and Pelkonen, Olavi and Pieper, Silvia and Stemmer, Michael and Sundh, Ingvar and Teodorovic, Ivana and Tiktak, Aaldrik and Topping, Chris J. and Wolterink, Gerrit and Craig, Peter and de Jong, Frank and Manachini, Barbara and Sousa, Paulo and Swarowsky, Klaus and Auteri, Domenica and Arena, Maria and Rob, Smith (2017) 'Scientic Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms.', EFSA journal., 15 (2). e04690. Further information on publisher's website: https://doi.org/10.2903/j.efsa.2017.4690 Publisher's copyright statement: c 2017 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority. This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modications or adaptations are made. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. -
J. Judson Wynne, Ph.D. PROFESSIONAL PREPARATION
J. Judson Wynne, Ph.D. CURRICULUM VITAE The SETI Institute, Carl Sagan Center 189 Bernardo Ave., Mountain View, CA 94043 Phone: 928.863.8628 (cell), Email: [email protected], Web: http://www.jutwynne.com PROFESSIONAL PREPARATION Northern Arizona University (2014) Ph.D. Biological Sciences; emphasis ecology Title: On Sampling, Habitat and Relict Species of Cave-dwelling Arthropods of the American Southwest and Easter Island Northern Arizona University (2003) M.S. EnvironMental Science and Policy; eMphasis wildlife ecology and reMote sensing Title: Landscape-scale Modeling of Vegetation Land Cover and Songbird Habitat, Pinaleños Mountains, Arizona Vrije Universiteit Brussel, BelGium (1998) Certificate in Ecotechnie (Distinction: Magna cum laude) UNESCO-Cousteau European Postgraduate PrograMMe of Ecotechnie GeorGia Southern University (1993) B.S. Major: CoMMunications, Minor: Anthropology PUBLICATIONS Peer-Reviewed Publications (16) Harvey, M.S. and J.J. Wynne. In Press. Cave-dwelling Pseudoscorpions (Arachnida, Pseudoscorpiones) of Arizona, with descriptions of two short-range endeMic species froM North RiM Grand Canyon. Journal of Arachnology. Wynne, J.J., E.C. Bernard, F.G. Howarth, S. SoMMer, F.N. Soto-AdaMes, S. Taiti, E.L. Mockford, M. Horrocks, L. Pakarati, and V. Pakarati-Hotus. 2014. Disturbance relicts in a rapidly changing world: the Rapa Nui (Easter Island) factor. BioScience 64: 711–718. Wynne, J.J. and K.D. Voyles. 2014. Cave-dwelling arthropods and vertebrates of North RiM Grand Canyon, with notes on ecology and Management. Western North American Naturalist 74: 1–17. Wynne, J.J. 2014. Reign of the Red Queen: The future of bats hangs in the balance. The Explorers Journal 92: 40–45. -
Download Download
INSECTA MUNDI A Journal of World Insect Systematics 0238 Snoqualmia, a new polydesmid milliped genus from the northwestern United States, with a description of two new species (Diplopoda, Polydesmida, Polydesmidae) William A. Shear Department of Biology Hampden-Sydney College Hampden-Sydney, VA 23943-0096 U.S.A. Date of Issue: June 15, 2012 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL William A. Shear Snoqualmia, a new polydesmid milliped genus from the northwestern United States, with a description of two new species (Diplopoda, Polydesmida, Polydesmidae) Insecta Mundi 0238: 1-13 Published in 2012 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 USA http://www.centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomencla- ture, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book re- views or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manu- scripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manu- script must be a current member of the Center for Systematic Entomology. -
The First Record of Polydesmus Inconstans Latzel, 1884 (Diplopoda: Polydesmida: Polydesmidae) in the Asian Part of Russia
Arthropoda Selecta 25(1): 19–21 © ARTHROPODA SELECTA, 2016 The first record of Polydesmus inconstans Latzel, 1884 (Diplopoda: Polydesmida: Polydesmidae) in the Asian part of Russia Ïåðâàÿ íàõîäêà Polydesmus inconstans Latzel, 1884 (Diplopoda: Polydesmida: Polydesmidae) â àçèàòñêîé ÷àñòè Ðîññèè Pavel S. Nefediev1, Pavel Kocourek2, Julia S. Nefedieva3 Ï.Ñ. Íåôåäüåâ1, Ï. Êîöîóðåê2, Þ.Ñ. Íåôåäüåâà3 1 Altai State University, Lenina Avenue, 61, Barnaul 656049 Russia. E-mail: [email protected] 2 Chyňava 27, Chyňava 267 07 Czech Republic. 3 Barnaul Branch of OJSC “GIPRODORNII”, Papanintsev Str., 105, Barnaul 656000 Russia. 1 Алтайский государственный университет, просп. Ленина, 61, Барнаул 656049 Россия. 3 Барнаульское отделение «ГИПРОДОРНИИ», ул. Папанинцев, 105, Барнаул 656000 Россия. KEY WORDS: Polydesmus, inconstans, anthropochore, faunistics, introduction, Siberia. КЛЮЧЕВЫЕ СЛОВА: Polydesmus, inconstans, антропохор, фаунистика, интродуцент, Сибирь. ABSTRACT. Based on the latest review of the very recently from hothouses of the South Siberian anthropochore millipede fauna of Asian Russia, 9 spe- Botanical Garden and from open hand-made grounds cies from 7 genera, 5 families and two orders of in the environs of the city of Barnaul, Altai Province, Diplopoda are known to occur there as anthropochore southwestern Siberia [Nefediev et al., 2014]. There- introductions [Nefediev et al., 2014]. The present record fore, before the beginning of the present study two of the polydesmid millipede, Polydesmus inconstans anthropochore millipede species of the family Poly- Latzel, 1884, which is new to the millipede fauna of the desmidae had been recorded in Asian Russia, both Asian part of Russia, increases the number of invasive found in habitats associated with human activity. Dur- diplopod species in the territory to ten. -
Threatened Myriapoda Species in Brazil with Implications for Their Conservation
A peer-reviewed open-access journal ZooKeys 741: 255–269 (2018)Why be red listed? Threatened Myriapoda species in Brazil... 255 doi: 10.3897/zookeys.741.21971 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Why be red listed? Threatened Myriapoda species in Brazil with implications for their conservation Manoela Karam-Gemael1, Thiago Junqueira Izzo2, Amazonas Chagas-Jr3 1 Programa de Pós Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Avenida Fernando Corrêa da Costa, s/n, CEP: 78060-900, Cuiabá, Mato Grosso, Brasil 2 Departa- mento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Avenida Fernando Corrêa da Costa, s/n, CEP: 78060-900, Cuiabá, Mato Grosso, Brasil 3 Departamento de Biologia e Zoologia, Universidade Federal de Mato Grosso, Avenida Fernando Corrêa da Costa, s/n, CEP: 78060-900, Cuiabá, Mato Grosso, Brasil Corresponding author: Manoela Karam-Gemael ([email protected]) Academic editor: P. Stoev | Received 31 October 2017 | Accepted 14 December 2017 | Published 7 March 2018 http://zoobank.org/C5E704DD-A333-4EBD-955D-AF21B05BD12A Citation: Karam-Gemael M, Izzo TJ, Chagas-Jr A (2018) Why be red listed? Threatened Myriapoda species in Brazil with implications for their conservation. In: Stoev P, Edgecombe GD (Eds) Proceedings of the 17th International Congress of Myriapodology, Krabi, Thailand. ZooKeys 741: 255–269.https://doi.org/10.3897/zookeys.741.21971 Abstract The biodiversity crisis we live in, marked by high extinction rates, requires well-planned conservation ef- forts. To overcome this issue, red lists of threatened species are recognized as the main objective approach for evaluating the conservation status of species and therefore guiding conservation priorities. -
Ordinal-Level Phylogenomics of the Arthropod Class
Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next- Generation Sequence Analyses Michael S. Brewer1,2*, Jason E. Bond3 1 Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 3 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America Abstract Background: The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods: Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered. -
Zootaxa, Arthropoda: Diplopoda, Field Museum
ZOOTAXA 1005 The millipede type specimens in the Collections of the Field Museum of Natural History (Arthropoda: Diplopoda) PETRA SIERWALD, JASON E. BOND & GRZEGORZ T. GURDA Magnolia Press Auckland, New Zealand PETRA SIERWALD, JASON E. BOND & GRZEGORZ T. GURDA The millipede type specimens in the Collections of the Field Museum of Natural History (Arthro- poda: Diplopoda) (Zootaxa 1005) 64 pp.; 30 cm. 10 June 2005 ISBN 1-877407-04-6 (paperback) ISBN 1-877407-05-4 (Online edition) FIRST PUBLISHED IN 2005 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2005 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 1005: 1–64 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1005 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) The millipede type specimens in the Collections of the Field Museum of Natural History (Arthropoda: Diplopoda) PETRA SIERWALD1, JASON E. BOND2 & GRZEGORZ T. GURDA3 1Zoology, Insects, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, Illinois 60605 2East Carolina University, Department of Biology, Howell Science complex-N211, Greenville, North Carolina 27858, USA 3 University of Michigan, Department of Molecular & Integrative Physiology 1150 W.