Cultural Resources of the Aleutian Region, Volume I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alaska Region Revised 2020
Smithsonian Institution, National Museum of Natural History Repatriation Office Case Report Summaries Alaska Region Revised 2020 Alaska Alutiiq, Koniag, 1991 LARSEN BAY, KODIAK ISLAND Yu'pik In September 1991, the NMNH repatriated the human remains of approximately 1000 individuals from the Uyak (KOD-145) archaeological site to the Alaska Native village of Larsen Bay, and 144 funerary objects were repatriated in January 1992. The museum had received a request to repatriate these remains and artifacts in 1987, and a series of communications between the village and the Smithsonian resulted in the decision to repatriate the remains as culturally affiliated with the present day people of Larsen Bay. The burials had been excavated by a Smithsonian curator, Ales Hrdlicka, during a series of excavations in the 1930s, and dated from around 1000 B.C. to post-contact times. No report is available, but information on the site and the repatriation may be found in the following book: Reckoning With the Dead: the Larsen Bay Repatriation and the Smithsonian Institution. Edited by Tamara L. Bray and Thomas W. Killion. Published in 1994 by the Smithsonian Institution Press, Washington, D.C. Alaska Inupiat, Yu'pik, 1994 INVENTORY AND ASSESSMENT OF HUMAN REMAINS AND NANA Regional ASSOCIATED FUNERARY OBJECTS FROM NORTHEAST NORTON Corporation SOUND, BERING STRAITS NATIVE CORPORATION, ALASKA IN THE NATIONAL MUSEUM OF NATURAL HISTORY This report provides a partial inventory and assessment of the cultural affiliation of the human remains and funerary objects in the National Museum of Natural History (NMNH) from within the territorial boundaries of the Bering Strait Native Corporation. -
Prehistoric Aleut Influence at Port Moller
12 'i1 Pribilof lis. "' Resale for so 100 150 200 ·o oO Miles .,• t? 0 Not Fig. 1. Map of the Alaska Peninsula and Adjacent Areas. The dotted line across the Peninsula represents the Aleut boundary as determined by Petroff. Some of the important archaeological sites are marked as follows: 1) Port Moller, 2) Amaknak Island-Unalaska Bay, 3) Fortress or Split Rock, 4) Chaluka, 5) Chirikof Island, 6) Uyak, 7) Kaflia, 8) Pavik-Naknek Drainage, 9) Togiak, 10) Chagvan Bay, 11) Platinum, 12) Hooper Bay. PREHISTORIC ALEUT INFLUENCES AT PORT MOLLER, ALASKA 1 by Allen P. McCartney Univ. of Wisconsin Introduction Recent mention has been made of the Aleut influences at the large prehistoric site at Port Moller, the only locality known archaeologically on the southwestern half of the Alaska Penin sula. Workman ( 1966a: 145) offers the following summary of the Port Moller cultural affinities: Although available published material from the Aleutians is scarce and the easternmost Aleutians in particular have been sadly neglected, it is my opinion that the strongest affinitiesResale of the Port Moller material lie in this direction. The prevalence of extended burial and burial association with ocher at Port Moller corresponds most closely with the burial practices at the Chaluka site on Umnak Island. Several of the more diagnostic projectile points have Aleutian affinities as do the tanged knives and, possibly,for the side-notched projectile point. Strong points of correspondence, particularly in the burial practices and the stone technology, lead me to believe that a definite Aleut component is represented at the site. Data currently available will not allow any definitive statement as to whether or not there are other components represented at the site as well. -
Resource Utilization in Unalaska, Aleutian Islands, Alaska
RESOURCE UTILIZATION IN UNALASKA, ALEUTIAN ISLANDS, ALASKA Douglas W. Veltre, Ph. D. Mary J. Veltre, B.A. Technical Paper Number 58 Alaska Department of Fish and Game Division of Subsistence October 23, 1982 Contract 824790 ACKNOWLEDGMENTS This report would not have been possible to produce without the generous support the authors received from many residents of Unalaska. Numerous individuals graciously shared their time and knowledge, and the Ounalashka Corporation,. in particular, deserves special thanks for assistance with housing and transportation. Thanks go too to Linda Ellanna, Deputy Director of the Division of Subsistence, who provided continuing support throughout this project, and to those individuals who offered valuable comments on an earlier draft of this report. ii TABLE OF CONTENTS ACKNOWLEDGMENTS. ii Chapter 1 INTRODUCTION . 1 Purpose ..................... 1 Research objectives ............... 4 Research methods 6 Discussion of rese~r~h'm~tho~oio~y' ........ ...... 8 Organization of the report ........... 10 2 BACKGROUNDON ALEUT RESOURCE UTILIZATION . 11 Introduction ............... 11 Aleut distribuiiin' ............... 11 Precontact resource is: ba;tgr;ls' . 12 The early postcontact period .......... 19 Conclusions ................... 19 3 HISTORICAL BACKGROUND. 23 Introduction ........................... 23 The precontact'plrioi . 23 The Russian period ............... 25 The American period ............... 30 Unalaska community profile. ........... 37 Conclusions ................... 38 4 THE NATURAL SETTING ............... -
Geologic Maps of the Eastern Alaska Range, Alaska, (44 Quadrangles, 1:63360 Scale)
Report of Investigations 2015-6 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units by Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner Southeastern Tanana Basin Southern Yukon–Tanana Upland and Terrane Delta River Granite Jarvis Mountain Aurora Peak Creek Terrane Hines Creek Fault Black Rapids Glacier Jarvis Creek Glacier Subterrane - Southern Yukon–Tanana Terrane Windy Terrane Denali Denali Fault Fault East Susitna Canwell Batholith Glacier Maclaren Glacier McCallum Creek- Metamorhic Belt Meteor Peak Slate Creek Thrust Broxson Gulch Fault Thrust Rainbow Mountain Slana River Subterrane, Wrangellia Terrane Phelan Delta Creek River Highway Slana River Subterrane, Wrangellia Terrane Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 2015 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner COVER: View toward the north across the eastern Alaska Range and into the southern Yukon–Tanana Upland highlighting geologic, structural, and geomorphic features. View is across the central Mount Hayes Quadrangle and is centered on the Delta River, Richardson Highway, and Trans-Alaska Pipeline System (TAPS). Major geologic features, from south to north, are: (1) the Slana River Subterrane, Wrangellia Terrane; (2) the Maclaren Terrane containing the Maclaren Glacier Metamorphic Belt to the south and the East Susitna Batholith to the north; (3) the Windy Terrane; (4) the Aurora Peak Terrane; and (5) the Jarvis Creek Glacier Subterrane of the Yukon–Tanana Terrane. -
History of Alaska Red King Crab, Paralithodes Camtschaticus, Bottom Trawl Surveys, 1940–61
History of Alaska Red King Crab, Paralithodes camtschaticus, Bottom Trawl Surveys, 1940–61 MARK ZIMMERMANN, C. BRAXTON DEW, and BEVERLY A. MALLEY Introduction As early as the 1930’s, the Alaska ≥135 mm) was recorded in 1980. Then, red king crab resource was a heav- in 1981, the Bristol Bay red king crab The U.S. government was integrally ily exploited species, with significant population abruptly collapsed in one involved with the development of Alas- foreign commercial harvests occurring of the more precipitous declines in the ka’s red king crab, Paralithodes camts- well before the first U.S. (1940–41) ex- history of U.S. fisheries management. chaticus, fishing industry (Blackford, ploratory bottom trawl survey (Schmitt, In the opinion of Alaska crab manag- 1979). In 1940 Congress appropriated 1940; FWS, 1942). During the 1930’s, ers and modelers (Otto, 1986; Zheng funds for surveys of Alaska’s fishery Japan and Russia together took 9–14 and Kruse, 2002; NPFMC1), the crash resources (Schmitt, 1940; FWS, 1942). million kg of king crab per year from of the Bristol Bay red king crab stock Based on the U.S. Fish and Wildlife the southeast Bering Sea, within the vast was a natural phenomenon unrelated to Service’s (FWS) exploratory work for area referred to as Bristol Bay. commercial fishing. red king crab during the 1940’s, skepti- In 1946, U.S. fishermen began com- Considering the history of the Bristol cal commercial trawlers expected the mercial king crab fishing in these same Bay red king crab commercial fishery bulk of their profits to come from bot- waters, and by 1963 the United States and the unresolved issues surrounding tomfish. -
Resource Utilization in Atka, Aleutian Islands, Alaska
RESOURCEUTILIZATION IN ATKA, ALEUTIAN ISLANDS, ALASKA Douglas W. Veltre, Ph.D. and Mary J. Veltre, B.A. Technical Paper Number 88 Prepared for State of Alaska Department of Fish and Game Division of Subsistence Contract 83-0496 December 1983 ACKNOWLEDGMENTS To the people of Atka, who have shared so much with us over the years, go our sincere thanks for making this report possible. A number of individuals gave generously of their time and knowledge, and the Atx^am Corporation and the Atka Village Council, who assisted us in many ways, deserve particular appreciation. Mr. Moses Dirks, an Aleut language specialist from Atka, kindly helped us with Atkan Aleut terminology and place names, and these contributions are noted throughout this report. Finally, thanks go to Dr. Linda Ellanna, Deputy Director of the Division of Subsistence, for her support for this project, and to her and other individuals who offered valuable comments on an earlier draft of this report. ii TABLE OF CONTENTS ACKNOWLEDGMENTS . e . a . ii Chapter 1 INTRODUCTION . e . 1 Purpose ........................ Research objectives .................. Research methods Discussion of rese~r~h*m~t~odoio~y .................... Organization of the report .............. 2 THE NATURAL SETTING . 10 Introduction ........... 10 Location, geog;aih;,' &d*&oio&’ ........... 10 Climate ........................ 16 Flora ......................... 22 Terrestrial fauna ................... 22 Marine fauna ..................... 23 Birds ......................... 31 Conclusions ...................... 32 3 LITERATURE REVIEW AND HISTORY OF RESEARCH ON ATKA . e . 37 Introduction ..................... 37 Netsvetov .............. ......... 37 Jochelson and HrdliEka ................ 38 Bank ....................... 39 Bergslind . 40 Veltre and'Vll;r;! .................................... 41 Taniisif. ....................... 41 Bilingual materials .................. 41 Conclusions ...................... 42 iii 4 OVERVIEW OF ALEUT RESOURCE UTILIZATION . 43 Introduction ............ -
Late-Quaternary Geomorphic Processes: Effects on the Ancient Aleuts of Umnak Island in the Aleutians
Late-Quaternary Geomorphic Processes: Effects on the Ancient Aleuts of Umnak Island in the Aleutians ROBERT F. BLACK1 ABSTRACT. Glaciation, volcanic activity, marine processes and wind action affected in various ways the lives of the ancient Aleuts of Umnak Island, who first settled at Anangula about 8,400 BP following deglaciation some 3,000 years earlier. Expanding alpine glaciers reached the sea in places about 3,000 BP without the nearby peoples being much affected. A catastrophic eruption of Okmok Volcano about 8,250 BP is suggested as the cause of the abandonment of the oldest known siteof Anangula, and subsequentmigration westward into thecentral Aleutians. Cutting of strandflats between 8,250 and 3,000 BP led to the development of a very large, accessible, year- round food resource, and an apparent proliferationof settlements. In marked contrast to other parts of Beringia, Umnak Island became the site most favourable for human settlement. RfiSUMe: Les processus géomorphologiques fini-quaternaires et leurs conséquencespour les anciens Aléoutes de Me d’Umnak dans les Aléoutiennes. La glaciation, l’activite vol- canique, les processus marins et l’actiondu vent ont affect6 de diverses façonsla vie des anciens Aleoutes de l’ile d‘Umnak, qui s’établirent B Anangula vers 8400 AP, soit environ 3000 ans après la deglaciation. Les glaciers alpins en expansion atteignirentla mer par endroit vers 3000 AP sans que les habitants du voisinage soient beaucoup affectes. On suppose qu’une eruption catastrophique du volcan Okmok vers 8250 AP a caud l’abandon du plus vieux site COMU d’Anangula et une migration vers l’ouest jusqu’au centre des A16outiennes. -
Sea Otter Studies - 1969
SEA OTTER STUDIES - 1969 by Karl Schneider SEA OTT ER STU DIES - 1969 This report is a comp il ation of a numbe r o short reports _written for the marine mammals staff files. While it serves some of the purposes of a segment report, ft was compiled for the use of the staff only. Many of the conclusions and ideas expressed are tentative and based on incomplete analysis or the dat.a . The contents of the report are as follows: Proje"ct Statement Aerial Count (Aleutians, Alaska Peninsula, Shumagins) Survey -Sitka to Cape Spencer Survey - Klag Bay Area Sightings - Yakutat Bay History of Harvests and Transplants Age Determination Age Structure Growth Reproduction Tagged Otter In addition to the work presented here, much time was spent on a sea otter transplant, observing the effects of nuclear testing at Amchitka and collecting information on pelt sales. Analysis of much information and specimens collected since 1967 is still incomplete and will be written up at a later date . · .. STATE: Alaska JOB T ITL.E: . Sea Otte.r · JOB NO.: . G-2 . NAME AND TITLE OF PRINCIPAL INVESTIGATOR: Karl Schneider, Study Leader NAME AND ADDRESS OF FISH AND GAME AGENCY: Alaska Department of Fish and Game, Subpart Building, Juneau,-. Alaska ~ :. ·- · --- -~ · JOB DESCRIPTION: OBJECTIVES: 1. To determine trends in distribution changes of sea otter populations in areas where repopulation of former habitat is incomplete. 2. To determine the effectiveness of aerial, surface and photographic· counts as census tools. )-. To obtain information relating to molt, breeding biology, population sex and age composition, growth and food habits of the sea otter in selected. -
Identifying Nesting Habitat of Kittlitz's
Kenney & Kaler: NestingShort habitat Notes of Kittlitz’s Murrelets 73 IDENTIFYING NESTING HABITAT OF KITTLITZ’S MURRELETS BRACHYRAMPHUS BREVIROSTRIS: OLD NESTS LEAD TO A NEW BREEDING RECORD LEAH A. KENNEY1 & ROBB S.A. KALER2 1Alaska Maritime National Wildlife Refuge, Homer, AK, USA ([email protected]) 2Migratory Bird Management, US Fish and Wildlife Service, Anchorage, AK, USA Received 2 September 2012, accepted 27 December 2012 Kittlitz’s Murrelet (Brachyramphus brevirostris) is one of the rarest Kittlitz’s Murrelets at Agattu Island (hereafter, Agattu). In 2009, the breeding seabirds in the North Pacific and one of the least known second year of the Agattu murrelet study, we revisited all previously in North America. With a patchy distribution in both Alaska and discovered nests and noted that several nest sites had increased the Russian Far East, the Kittlitz’s Murrelet population in Alaska plant cover compared with the surrounding area. Specifically, nest is estimated at 19 578 individuals (range 8 190–36 193; BirdLife scrapes where a murrelet chick survived for at least 10–15 days International 2012). Owing to its small population size, restricted contained dense mosses (Tetraplodon mnioides; a coprophilous moss distribution, and an apparent rapid population decline, the US Fish usually found growing on fecal materials and animal remains) and and Wildlife Service (USFWS) has proposed Kittlitz’s Murrelet as grasses (Poaceae). Kittlitz’s Murrelet adults provision their young a candidate species for listing under the Endangered Species Act with marine fishes at the nest scrape during the 24–40 day nestling (USFWS 2009). period (Day et al. 1999, Kaler et al. -
A Preliminary Baseline Study of Subsistence Resource Utilization in the Pribilof Islands
A PRELIMINARY BASELINE STUDY OF SUBSISTENCE RESOURCE UTILIZATION IN THE PRIBILOF ISLANDS Douglas W. Veltre Ph.D Mary J. Veltre, B.A. Technical Paper Number 57 Prepared for Alaska Department of Fish and Game Division of Subsistence Contract 81-119 October 15, 1981 ACKNOWLEDGMENTS . The authors would like to thank those numerous mem- bers of St. George and St. Paul who gave generously of their time and knowledge to help with this project. The Tanaq Corporation of St. George and the Tanadgusix Corporation of St. Paul, as well as the village councils of both communities, also deserve thanks for their cooperation. In addition, per- sonnel of the National Marine Fisheries Service in the Pribi- lofs provided insight into the fur seal operations. Finally, Linda Ellanna and Alice Stickney of the Department of Fish and Game gave valuable assistance and guidance, especially through their participation in field research. ii TABLE OF CONTENTS ACKNOWLEDGMENTS . ii Chapter I INTRODUCTION . 1 Purpose . 1 Research objectives . : . 4 Research methods . 6 Discussion of research methodology . 8 Organization of the report . 11 II BACKGROUND ON ALEUT SUBSISTENCE . 13 Introduction . 13 Precontact subsistence patterns . 15 The early postcontact period . 22 Conclusions . 23 III HISTORICAL BACXGROUND . 27 Introduction . 27 Russian period . 27 American period ........... 35 History of Pribilof Island settlements ... 37 St. George community profile ........ 39 St. Paul community profile ......... 45 Conclusions ......... ; ........ 48 IV THE NATURAL SETTING .............. 50 Introduction ................ 50 Location, geography, and geology ...... 50 Climate ................... 55 Fauna and flora ............... 61 Aleutian-Pribilof Islands comparison .... 72 V SUBSISTENCE RESOURCES AND UTILIZATION IN THE PRIBILOF ISLANDS ............ 74 Introduction ................ 74 Inventory of subsistence resources . -
Die-Off of Common Murres on the Alaska Peninsula and Unimak Island
SHORT COMMUNICATIONS 215 SI~~PSON, S., AND J. J. GALBRAITH. 1905. An inves- WETMORE, A. 1921. A study of the body temper- tigation into the diurnal variation of the body tem- ature of birds. Smithsonian Misc. Coll. 72:1-51. perature of nocturnal and other birds, and a few mammals. J. Physiol., 38:225-238. Accepted for publication 12 July 1971. A NORTHERLY WINTERING RECORD is more than 500 mi. NW of the nearest reported OF THE ELF OWL wintering locality. The bird was mist-netted in second-growth thorn (MICRATHENE WHITNEYI) forest near a harvested corn field. It was retained alive and taken to Tucson, Arizona. It appeared to be in good CHARLES A. ELY health and fed freely on insects given it on the nights Department of Zoology of 12-13 and 13-14 January, but suddenly fell dead Fort Hays Kansas State College Hays, Kansas 67601 from its perch late on the night of 13-14 January. Upon skinning the specimen, Crossin noted a circular AND area about 10 mm in diameter on the lower stomach. RICHARD S. CROSSIN The area was a dark bluish-green in color and resem- bled dermal tissue which has received a severe bruise. Neotropical Ornithological Foundation 1719 North Huachuca The cause of the affliction was not determined, but Tucson, Arizona 85705 may possibly have resulted from the intake of some chemical poisoning during feeding. The owl might Ligon (Misc. Publ., Mus. Zool., Univ. Michigan, No. have been afflicted before its capture, which could 136, 1968) investigated the winter range of the Elf account for its wintering far north of the recorded Owl in Mexico, chiefly by playing sound recordings winter range. -
Alaska Range
Alaska Range Introduction The heavily glacierized Alaska Range consists of a number of adjacent and discrete mountain ranges that extend in an arc more than 750 km long (figs. 1, 381). From east to west, named ranges include the Nutzotin, Mentas- ta, Amphitheater, Clearwater, Tokosha, Kichatna, Teocalli, Tordrillo, Terra Cotta, and Revelation Mountains. This arcuate mountain massif spans the area from the White River, just east of the Canadian Border, to Merrill Pass on the western side of Cook Inlet southwest of Anchorage. Many of the indi- Figure 381.—Index map of vidual ranges support glaciers. The total glacier area of the Alaska Range is the Alaska Range showing 2 approximately 13,900 km (Post and Meier, 1980, p. 45). Its several thousand the glacierized areas. Index glaciers range in size from tiny unnamed cirque glaciers with areas of less map modified from Field than 1 km2 to very large valley glaciers with lengths up to 76 km (Denton (1975a). Figure 382.—Enlargement of NOAA Advanced Very High Resolution Radiometer (AVHRR) image mosaic of the Alaska Range in summer 1995. National Oceanic and Atmospheric Administration image mosaic from Mike Fleming, Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska. The numbers 1–5 indicate the seg- ments of the Alaska Range discussed in the text. K406 SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD and Field, 1975a, p. 575) and areas of greater than 500 km2. Alaska Range glaciers extend in elevation from above 6,000 m, near the summit of Mount McKinley, to slightly more than 100 m above sea level at Capps and Triumvi- rate Glaciers in the southwestern part of the range.