Convergent Evolution of the Army Ant Syndrome and Congruence in Big-Data Phylogenetics – Supplementary Figures and Tables

Total Page:16

File Type:pdf, Size:1020Kb

Convergent Evolution of the Army Ant Syndrome and Congruence in Big-Data Phylogenetics – Supplementary Figures and Tables Convergent evolution of the army ant syndrome and congruence in big-data phylogenetics – Supplementary figures and tables Marek L. Borowiec 1 Harpegnathos_saltator_Genome Linepithema_humile_Genome 100 Camponotus_floridanus_Genome 100 Pogonomyrmex_barbatus_Genome Vollenhovia_emeryi_Genome 100 100 Cardiocondyla_obscurior_Genome 100 Solenopsis_invicta_Genome 100 Atta_cephalotes_Genome 100 Acromyrmex_echinatior_Genome Tanipone_scelesta_M159 100 Tanipone_zona_M182 100 Tanipone_hirsuta_M279 100 Tanipone_aglandula_M280 Lioponera_longitarsus_M193 Lioponera_vespula_M210 100100 Lioponera_nr_kraepelinii_M131 100 Lioponera_nr_mayri_M215 100 Lioponera_MY_M268 100 Lioponera_cf_suscitata_M267 100 Lioponera_PG_M250 100 Lioponera_marginata_M249 87 Lioponera_princeps_M137 100 100 Lioponera_ruficornis_M165 Lividopone_MG_M132 100 100 Lividopone_MG_M194 100Lividopone_MG_M216 66 Lividopone_MG_M294 Zasphinctus_MZ_M229 100 Zasphinctus_KE_M227 100 100 Zasphinctus_TH_M192 100 Zasphinctus_trux_M136 100 Zasphinctus_PG_M285 100 100 Zasphinctus_imbecilis_M170 Parasyscia_UG_M281 100 Parasyscia_MG_M212 Parasyscia_UG_M219 100 100 Parasyscia_UG_M218 100 100 Parasyscia_wittmeri_M282 83 Parasyscia_VN_M207 100 Parasyscia_PG_M204 100 Parasyscia_dohertyi_M142 Vicinopone_conciliatrix_M128 Simopone_grandidieri_M186 83 100 Simopone_cf_oculata_D0792 100 Simopone_dryas_M224 100 Simopone_marleyi_M171 100 Simopone_conradti_M144 93 Simopone_rex_M133 100 Simopone_trita_M185 Syscia_augustae_M196 100 Syscia_GT_M127 100 Syscia_typhla_D0841 100 Syscia_MY_M176 100 100 Syscia_MY_M147 Eusphinctus_TH_M158 83 93 Ooceraea_fragosa_D0842 Ooceraea_biroi_Genome 100 100 Ooceraea_australis_M138 100 Ooceraea_MY_M270 100 Ooceraea_PG_M248 100 Ooceraea_FJ06_M168 Eburopone_CM02_D0788 100 Eburopone_UG_M259 Eburopone_MG_M195 100 100 Eburopone_MG_M130 100 Eburopone_MG_M213 100 Eburopone_MG_M214 Yunodorylus_TH_M160 100 98 Yunodorylus_paradoxus_M190 100 Yunodorylus_TH_M191 100 Yunodorylus_eguchii_M247 100 Cerapachys_sulcinodis_M243 100 Cerapachys_MY_M264 100 Cerapachys_antennatus_M263 100 84 Cerapachys_TH_M203 Chrysapace_TH_M156 100 Chrysapace_cf_crawleyi_M262 100 Chrysapace_MG_M155 100 Chrysapace_cf_sauteri_M261 Aenictogiton_ZM02_M181 100 Aenictogiton_UG_M189 97 100 Dorylus_laevigatus_M157 Dorylus_orientalis_M244 99 100100 Dorylus_conradti_M178 100 Dorylus_fimbriatus_M288 Dorylus_cf_fulvus_M149 100 100 Dorylus_fulvus_M179 100 Dorylus_spininodis_M292 Dorylus_braunsi_M289 100100 Dorylus_affinis_M177 97 100Dorylus_kohli_M180 100Dorylus_mayri_M291 100Dorylus_molestus_M290 100Dorylus_rubellus_M287 93 Dorylus_UG_M153 Aenictus_silvestrii_M221 100 Aenictus_yamanei_M265 99 Aenictus_latifemoratus_M266 49 Aenictus_bobaiensis_M197 100 100 Aenictus_levior_M231 Aenictus_camposi_M222 Aenictus_UG_M143 100 100 Aenictus_ZA_M228 99 Aenictus_fergusoni_M223 100 100 Aenictus_hodgsoni_M198 100Aenictus_laeviceps_M269 100 Aenictus_rotundicollis_M232 100 Aenictus_turneri_M135 100Aenictus_fuchuanensis_M201 100 100 Aenictus_hoelldobleri_M200 Aenictus_currax_M245 100Aenictus_cornutus_M230 100 Aenictus_gracilis_M199 Neocerapachys_CR_M209 100 Neocerapachys_neotropicus_M134 100Neocerapachys_cf_splendens_M251 100 Neocerapachys_BR_M295 97 Cylindromyrmex_meinerti_D778 100 Cylindromyrmex_brasiliensis_M140 100 Cylindromyrmex_whymperi_M271 100 100 Cylindromyrmex_darlingtoni_M211 Acanthostichus_AZ_M277 100 Acanthostichus_AZ_M278 100 Acanthostichus_BR_M252 100Acanthostichus_GF_M208 100 98 Acanthostichus_serratulus_M166 Leptanilloides_nubecula_M167 100 Leptanilloides_mckennae_D0228 100 Leptanilloides_femoralis_M188 100 Leptanilloides_gracilis_M187 100 Leptanilloides_erinys_M246 Sphinctomyrmex_stali_M253 100 Sphinctomyrmex_marcoyi_M202 98 Cheliomyrmex_PE_M146 100Cheliomyrmex_cf_andicola_M174 96 Cheliomyrmex_cf_morosus_M217 100 Labidus_coecus_M173 100 Labidus_spininodis_M172 100 97 Labidus_praedator_M152 Nomamyrmex_hartigii_M220 100 100 Nomamyrmex_esenbecki_M129 100 Eciton_mexicanum_M238 61Eciton_vagans_M184 100 100Eciton_quadriglume_M254 Eciton_lucanoides_M239 100 100Eciton_burchellii_M273 100Eciton_hamatum_M293 100 Eciton_rapax_M145 Neivamyrmex_distans_M242 100 Neivamyrmex_alfaroi_M240 100 Neivamyrmex_swainsonii_M169 100 Neivamyrmex_adnepos_M236 100 Neivamyrmex_EC_M175 100 Neivamyrmex_gibbatus_M139 100 Neivamyrmex_impudens_M237 100 0.04 100 Neivamyrmex_melanocephalus_M154 Neivamyrmex_cf_nyensis_M296 combined data matrix 100 Neivamyrmex_compressinodis_M235 Neivamyrmex_sumichrasti_M151 100100 maximum likelihood tree Neivamyrmex_asper_M233 100Neivamyrmex_kiowapache_M275 RAxML 100Neivamyrmex_opacithorax_M276 96Neivamyrmex_texanus_M274 partitioned by locus GTR+4Gamma model 100 Neivamyrmex_californicus_M272 500 bootstrap replicates Supplementary Figure S1: Maximum likelihood tree obtained from the combined data matrix par- titioned by locus. Scale is in number of substitutions per site. Nodal support in percent bootstrap. 2 Harpegnathos_saltator_Genome Linepithema_humile_Genome 100 Camponotus_floridanus_Genome 100 Pogonomyrmex_barbatus_Genome Vollenhovia_emeryi_Genome 100 100 Cardiocondyla_obscurior_Genome 100 Solenopsis_invicta_Genome 100 Atta_cephalotes_Genome 100 Acromyrmex_echinatior_Genome Aenictogiton_ZM02_M181 100 Aenictogiton_UG_M189 100 Dorylus_laevigatus_M157 Dorylus_orientalis_M244 100100 Dorylus_conradti_M178 100 Dorylus_fimbriatus_M288 Dorylus_fulvus_M179 100 100 Dorylus_cf_fulvus_M149 100 Dorylus_spininodis_M292 Dorylus_affinis_M177 100100 Dorylus_braunsi_M289 100Dorylus_kohli_M180 100Dorylus_mayri_M291 100Dorylus_molestus_M290 100Dorylus_rubellus_M287 100 Dorylus_UG_M153 Aenictus_silvestrii_M221 Aenictus_latifemoratus_M266 10090 Aenictus_yamanei_M265 96 Aenictus_bobaiensis_M197 100 100 Aenictus_levior_M231 Aenictus_camposi_M222 Aenictus_ZA_M228 100 100 Aenictus_UG_M143 Aenictus_fergusoni_M223 100 100 Aenictus_hodgsoni_M198 100Aenictus_laeviceps_M269 100 Aenictus_rotundicollis_M232 100 Aenictus_turneri_M135 100Aenictus_fuchuanensis_M201 100 100 100 Aenictus_hoelldobleri_M200 Aenictus_currax_M245 100Aenictus_cornutus_M230 100 100 Aenictus_gracilis_M199 Cheliomyrmex_PE_M146 100Cheliomyrmex_cf_andicola_M174 100 Cheliomyrmex_cf_morosus_M217 100 Labidus_coecus_M173 100 Labidus_spininodis_M172 100 Labidus_praedator_M152 100 Nomamyrmex_hartigii_M220 100 Nomamyrmex_esenbecki_M129 100 Eciton_mexicanum_M238 Eciton_vagans_M184 100100 Eciton_quadriglume_M254 100 100 Eciton_lucanoides_M239 100Eciton_burchellii_M273 100Eciton_hamatum_M293 100 Eciton_rapax_M145 Neivamyrmex_distans_M242 100 Neivamyrmex_alfaroi_M240 99 Neivamyrmex_swainsonii_M169 100 Neivamyrmex_adnepos_M236 100 Neivamyrmex_EC_M175 100 Neivamyrmex_gibbatus_M139 100 Neivamyrmex_impudens_M237 100 99 Neivamyrmex_melanocephalus_M154 Neivamyrmex_cf_nyensis_M296 82 100 Neivamyrmex_compressinodis_M235 Neivamyrmex_sumichrasti_M151 100100 Neivamyrmex_asper_M233 100Neivamyrmex_kiowapache_M275 100Neivamyrmex_opacithorax_M276 100Neivamyrmex_texanus_M274 100 Neivamyrmex_californicus_M272 Yunodorylus_TH_M160 100 Yunodorylus_paradoxus_M190 100 Yunodorylus_TH_M191 100 Yunodorylus_eguchii_M247 Chrysapace_TH_M156 100 100 Chrysapace_cf_crawleyi_M262 100 Chrysapace_MG_M155 100 89 Chrysapace_cf_sauteri_M261 Cerapachys_sulcinodis_M243 100 Cerapachys_MY_M264 100 Cerapachys_antennatus_M263 100 Cerapachys_TH_M203 Sphinctomyrmex_stali_M253 100 Sphinctomyrmex_marcoyi_M202 Leptanilloides_nubecula_M167 96 100 Leptanilloides_mckennae_D0228 100 Leptanilloides_femoralis_M188 100 Leptanilloides_gracilis_M187 100 100 Leptanilloides_erinys_M246 100 Neocerapachys_CR_M209 100 Neocerapachys_neotropicus_M134 100Neocerapachys_cf_splendens_M251 100 Neocerapachys_BR_M295 96 Cylindromyrmex_meinerti_D778 100 Cylindromyrmex_brasiliensis_M140 100 Cylindromyrmex_whymperi_M271 100 100 Cylindromyrmex_darlingtoni_M211 Acanthostichus_AZ_M277 100 Acanthostichus_AZ_M278 100 Acanthostichus_BR_M252 100Acanthostichus_GF_M208 100 100 Acanthostichus_serratulus_M166 Eburopone_CM02_D0788 100 Eburopone_UG_M259 Eburopone_MG_M195 100 100 Eburopone_MG_M130 100 Eburopone_MG_M213 100 Eburopone_MG_M214 Syscia_GT_M127 100 Syscia_augustae_M196 100 Syscia_typhla_D0841 100 Syscia_MY_M176 100 83 100 Syscia_MY_M147 Eusphinctus_TH_M158 96 Ooceraea_fragosa_D0842 Ooceraea_biroi_Genome 100 100 Ooceraea_australis_M138 100 Ooceraea_MY_M270 100 Ooceraea_FJ06_M168 100 Ooceraea_PG_M248 100 Vicinopone_conciliatrix_M128 Simopone_grandidieri_M186 64 100 Simopone_cf_oculata_D0792 100 Simopone_dryas_M224 Simopone_rex_M133 100 100 Simopone_trita_M185 100 Simopone_conradti_M144 100 Simopone_marleyi_M171 88 Tanipone_scelesta_M159 100 Tanipone_zona_M182 100 Tanipone_hirsuta_M279 100 Tanipone_aglandula_M280 Lioponera_longitarsus_M193 Lioponera_vespula_M210 100100 Lioponera_nr_kraepelinii_M131 100 64 Lioponera_nr_mayri_M215 100 Lioponera_MY_M268 100 Lioponera_cf_suscitata_M267 100 Lioponera_PG_M250 100 Lioponera_marginata_M249 41 Lioponera_princeps_M137 100 100 Lioponera_ruficornis_M165 Lividopone_MG_M132 100 Lividopone_MG_M194 100Lividopone_MG_M216 100 Lividopone_MG_M294 Zasphinctus_MZ_M229 100 Zasphinctus_KE_M227 100 100 Zasphinctus_TH_M192 100 Zasphinctus_trux_M136 100 Zasphinctus_PG_M285 100 100 Zasphinctus_imbecilis_M170 0.07 Parasyscia_UG_M281 100 Parasyscia_MG_M212 combined data matrix Parasyscia_UG_M219 100 100 Parasyscia_UG_M218 100 maximum likelihood tree 100 Parasyscia_wittmeri_M282 Parasyscia_VN_M207 RAxML 100 Parasyscia_PG_M204 100 k-means partitions GTR+4Gamma model Parasyscia_dohertyi_M142 500 bootstrap replicates Supplementary Figure S2: Maximum likelihood tree obtained from the combined data matrix under k-means partitions. Scale is in number of
Recommended publications
  • Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
    Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check list of ground-dwelling ants (Hymenoptera: PECIES S Formicidae) of the eastern Acre, Amazon, Brazil OF Patrícia Nakayama Miranda 1,2*, Marco Antônio Oliveira 3, Fabricio Beggiato Baccaro 4, Elder Ferreira ISTS 1 5,6 L Morato and Jacques Hubert Charles Delabie 1 Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza. BR 364 – Km 4 – Distrito Industrial. CEP 69915-900. Rio Branco, AC, Brazil. 2 Instituo Federal do Acre, Campus Rio Branco. Avenida Brasil 920, Bairro Xavier Maia. CEP 69903-062. Rio Branco, AC, Brazil. 3 Universidade Federal de Viçosa, Campus Florestal. Rodovia LMG 818, Km 6. CEP 35690-000. Florestal, MG, Brazil. 4 Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-graduação em Ecologia. CP 478. CEP 69083-670. Manaus, AM, Brazil. 5 Comissão Executiva do Plano da Lavoura Cacaueira, Centro de Pesquisas do Cacau, Laboratório de Mirmecologia – CEPEC/CEPLAC. Caixa Postal 07. CEP 45600-970. Itabuna, BA, Brazil. 6 Universidade Estadual de Santa Cruz. CEP 45650-000. Ilhéus, BA, Brazil. * Corresponding author. E-mail: [email protected] Abstract: The ant fauna of state of Acre, Brazilian Amazon, is poorly known. The aim of this study was to compile the species sampled in different areas in the State of Acre. An inventory was carried out in pristine forest in the municipality of Xapuri. This list was complemented with the information of a previous inventory carried out in a forest fragment in the municipality of Senador Guiomard and with a list of species deposited at the Entomological Collection of National Institute of Amazonian Research– INPA.
    [Show full text]
  • Digging Deeper Into the Ecology of Subterranean Ants: Diversity and Niche Partitioning Across Two Continents
    diversity Article Digging Deeper into the Ecology of Subterranean Ants: Diversity and Niche Partitioning across Two Continents Mickal Houadria * and Florian Menzel Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Soil fauna is generally understudied compared to above-ground arthropods, and ants are no exception. Here, we compared a primary and a secondary forest each on two continents using four different sampling methods. Winkler sampling, pitfalls, and four types of above- and below-ground baits (dead, crushed insects; melezitose; living termites; living mealworms/grasshoppers) were applied on four plots (4 × 4 grid points) on each site. Although less diverse than Winkler samples and pitfalls, subterranean baits provided a remarkable ant community. Our baiting system provided a large dataset to systematically quantify strata and dietary specialisation in tropical rainforest ants. Compared to above-ground baits, 10–28% of the species at subterranean baits were overall more common (or unique to) below ground, indicating a fauna that was truly specialised to this stratum. Species turnover was particularly high in the primary forests, both concerning above-ground and subterranean baits and between grid points within a site. This suggests that secondary forests are more impoverished, especially concerning their subterranean fauna. Although subterranean ants rarely displayed specific preferences for a bait type, they were in general more specialised than above-ground ants; this was true for entire communities, but also for the same species if they foraged in both strata. Citation: Houadria, M.; Menzel, F.
    [Show full text]
  • List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti
    List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti Department of Zoology, Punjabi University, Patiala, India - 147002. (email: [email protected]/[email protected]) (www.antdiversityindia.com) Abstract Ants of India are enlisted herewith. This has been carried due to major changes in terms of synonymies, addition of new taxa, recent shufflings etc. Currently, Indian ants are represented by 652 valid species/subspecies falling under 87 genera grouped into 12 subfamilies. Keywords: Ants, India, Hymenoptera, Formicidae. Introduction The following 652 valid species/subspecies of myrmecology. This species list is based upon the ants are known to occur in India. Since Bingham’s effort of many ant collectors as well as Fauna of 1903, ant taxonomy has undergone major myrmecologists who have published on the taxonomy changes in terms of synonymies, discovery of new of Indian ants and from inputs provided by taxa, shuffling of taxa etc. This has lead to chaotic myrmecologists from other parts of world. However, state of affairs in Indian scenario, many lists appeared the other running/dynamic list continues to appear on web without looking into voluminous literature on http://www.antweb.org/india.jsp, which is which has surfaced in last many years and currently periodically updated and contains information about the pace at which new publications are appearing in new/unconfirmed taxa, still to be published or verified. Subfamily Genus Species and subspecies Aenictinae Aenictus 28 Amblyoponinae Amblyopone 3 Myopopone
    [Show full text]
  • THE TRUE ARMY ANTS of the INDO-AUSTRALIAN AREA (Hymenoptera: Formicidae: Dorylinae)
    Pacific Insects 6 (3) : 427483 November 10, 1964 THE TRUE ARMY ANTS OF THE INDO-AUSTRALIAN AREA (Hymenoptera: Formicidae: Dorylinae) By Edward O. Wilson BIOLOGICAL LABORATORIES, HARVARD UNIVERSITY, CAMBRIDGE, MASS., U. S. A. Abstract: All of the known Indo-Australian species of Dorylinae, 4 in Dorylus and 34 in Aenictus, are included in this revision. Eight of the Aenictus species are described as new: artipus, chapmani, doryloides, exilis, huonicus, nganduensis, philiporum and schneirlai. Phylo­ genetic and numerical analyses resulted in the discarding of two extant subgenera of Aenictus (Typhlatta and Paraenictus) and the loose clustering of the species into 5 informal " groups" within the unified genus Aenictus. A consistency test for phylogenetic characters is discussed. The African and Indo-Australian doryline species are compared, and available information in the biology of the Indo-Australian species is summarized. The " true " army ants are defined here as equivalent to the subfamily Dorylinae. Not included are species of Ponerinae which have developed legionary behavior independently (see Wilson, E. O., 1958, Evolution 12: 24-31) or the subfamily Leptanillinae, which is very distinct and may be independent in origin. The Dorylinae are not as well developed in the Indo-Australian area as in Africa and the New World tropics. Dorylus itself, which includes the famous driver ants, is centered in Africa and sends only four species into tropical Asia. Of these, the most widespread reaches only to Java and the Celebes. Aenictus, on the other hand, is at least as strongly developed in tropical Asia and New Guinea as it is in Africa, with 34 species being known from the former regions and only about 15 from Africa.
    [Show full text]
  • Ants (Hymenoptera: Fonnicidae) of Samoa!
    Ants (Hymenoptera: Fonnicidae) of Samoa! James K Wetterer 2 and Donald L. Vargo 3 Abstract: The ants of Samoa have been well studied compared with those of other Pacific island groups. Using Wilson and Taylor's (1967) specimen records and taxonomic analyses and Wilson and Hunt's (1967) list of 61 ant species with reliable records from Samoa as a starting point, we added published, unpublished, and new records ofants collected in Samoa and updated taxonomy. We increased the list of ants from Samoa to 68 species. Of these 68 ant species, 12 species are known only from Samoa or from Samoa and one neighboring island group, 30 species appear to be broader-ranged Pacific natives, and 26 appear to be exotic to the Pacific region. The seven-species increase in the Samoan ant list resulted from the split of Pacific Tetramorium guineense into the exotic T. bicarinatum and the native T. insolens, new records of four exotic species (Cardiocondyla obscurior, Hypoponera opaciceps, Solenopsis geminata, and Tetramorium lanuginosum), and new records of two species of uncertain status (Tetramorium cf. grassii, tentatively considered a native Pacific species, and Monomorium sp., tentatively considered an endemic Samoan form). SAMOA IS AN ISLAND CHAIN in western island groups, prompting Wilson and Taylor Polynesia with nine inhabited islands and (1967 :4) to feel "confident that a nearly numerous smaller, uninhabited islands. The complete faunal list could be made for the western four inhabited islands, Savai'i, Apo­ Samoan Islands." Samoa is of particular in­ lima, Manono, and 'Upolu, are part of the terest because it is one of the easternmost independent country of Samoa (formerly Pacific island groups with a substantial en­ Western Samoa).
    [Show full text]
  • Field Methods for the Study of Ants in Sugarcane Plantations in Southeastern Brazil
    Ants in sugarcane plantations in Southeastern Brazil 651 Field methods for the study of ants in sugarcane plantations in Southeastern Brazil Débora Rodrigues de Souza1; Erich Stingel2; Luiz Carlos de Almeida2; Marco Antônio Lazarini2; Catarina de Bortoli Munhae3; Odair Correa Bueno3; Claudinei Rogério Archangelo4; Maria Santina de C. Morini1* 1 UMC/NCA – Lab. de Mirmecologia, Av. Dr. Cândido Xavier de Almeida e Souza, 200 – 08701-970 – Mogi das Cruzes, SP – Brasil. 2 CTC, Fazenda Santo Antônio, s/n°, C.P. 162 – 13400-970 – Piracicaba, SP – Brasil. 3 UNESP/Centro de Estudos de Insetos Sociais, Av. 24, 1515 – 13506-725 – Rio Claro, SP – Brasil. 4 Usina Nova América S/A Agrícola – R. 11 de junho, 246 – 19800-020 – Assis, SP – Brasil. *Corresponding author <[email protected]> ABSTRACT: The harvest of sugarcane is still traditionally done manually with the burning of straw in most cultivated areas in Brazil. However, burning has been gradually eliminated with the relatively recent use of mechanical harvesting. This will result in significant changes in the agroecosystem, as the straw will remain in the field. No investigation on Formicidae found in sugarcane plantations in Southeastern Brazil harvested by this new system has been done yet. Because of their feeding habits, many species of this family may act as predators of several sugarcane pests. In this study, the sampling efficacy of pitfall traps, baits, and underground traps with two types of attractants were evaluated. Pitfall traps gave the largest richness, while abundance was the highest from baiting. Community composition and structure differed in relation to the sampling methods used.
    [Show full text]
  • Sistemática Y Ecología De Las Hormigas Predadoras (Formicidae: Ponerinae) De La Argentina
    UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área CIENCIAS BIOLÓGICAS PRISCILA ELENA HANISCH Directores de tesis: Dr. Andrew Suarez y Dr. Pablo L. Tubaro Consejero de estudios: Dr. Daniel Roccatagliata Lugar de trabajo: División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires, Marzo 2018 Fecha de defensa: 27 de Marzo de 2018 Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Resumen Las hormigas son uno de los grupos de insectos más abundantes en los ecosistemas terrestres, siendo sus actividades, muy importantes para el ecosistema. En esta tesis se estudiaron de forma integral la sistemática y ecología de una subfamilia de hormigas, las ponerinas. Esta subfamilia predomina en regiones tropicales y neotropicales, estando presente en Argentina desde el norte hasta la provincia de Buenos Aires. Se utilizó un enfoque integrador, combinando análisis genéticos con morfológicos para estudiar su diversidad, en combinación con estudios ecológicos y comportamentales para estudiar la dominancia, estructura de la comunidad y posición trófica de las Ponerinas. Los resultados sugieren que la diversidad es más alta de lo que se creía, tanto por que se encontraron nuevos registros durante la colecta de nuevo material, como porque nuestros análisis sugieren la presencia de especies crípticas. Adicionalmente, demostramos que en el PN Iguazú, dos ponerinas: Dinoponera australis y Pachycondyla striata son componentes dominantes en la comunidad de hormigas. Análisis de isótopos estables revelaron que la mayoría de las Ponerinas ocupan niveles tróficos altos, con excepción de algunas especies arborícolas del género Neoponera que dependerían de néctar u otros recursos vegetales.
    [Show full text]
  • Taxonomic Classification of Ants (Formicidae)
    bioRxiv preprint doi: https://doi.org/10.1101/407452; this version posted September 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Taxonomic Classification of Ants (Formicidae) from Images using Deep Learning Marijn J. A. Boer1 and Rutger A. Vos1;∗ 1 Endless Forms, Naturalis Biodiversity Center, Leiden, 2333 BA, Netherlands *[email protected] Abstract 1 The well-documented, species-rich, and diverse group of ants (Formicidae) are important 2 ecological bioindicators for species richness, ecosystem health, and biodiversity, but ant 3 species identification is complex and requires specific knowledge. In the past few years, 4 insect identification from images has seen increasing interest and success, with processing 5 speed improving and costs lowering. Here we propose deep learning (in the form of a 6 convolutional neural network (CNN)) to classify ants at species level using AntWeb 7 images. We used an Inception-ResNet-V2-based CNN to classify ant images, and three 8 shot types with 10,204 images for 97 species, in addition to a multi-view approach, for 9 training and testing the CNN while also testing a worker-only set and an AntWeb 10 protocol-deviant test set. Top 1 accuracy reached 62% - 81%, top 3 accuracy 80% - 92%, 11 and genus accuracy 79% - 95% on species classification for different shot type approaches. 12 The head shot type outperformed other shot type approaches.
    [Show full text]
  • Hymenoptera: Formicidae) Along an Elevational Gradient at Eungella in the Clarke Range, Central Queensland Coast, Australia
    RAINFOREST ANTS (HYMENOPTERA: FORMICIDAE) ALONG AN ELEVATIONAL GRADIENT AT EUNGELLA IN THE CLARKE RANGE, CENTRAL QUEENSLAND COAST, AUSTRALIA BURWELL, C. J.1,2 & NAKAMURA, A.1,3 Here we provide a faunistic overview of the rainforest ant fauna of the Eungella region, located in the southern part of the Clarke Range in the Central Queensland Coast, Australia, based on systematic surveys spanning an elevational gradient from 200 to 1200 m asl. Ants were collected from a total of 34 sites located within bands of elevation of approximately 200, 400, 600, 800, 1000 and 1200 m asl. Surveys were conducted in March 2013 (20 sites), November 2013 and March–April 2014 (24 sites each), and ants were sampled using five methods: pitfall traps, leaf litter extracts, Malaise traps, spray- ing tree trunks with pyrethroid insecticide, and timed bouts of hand collecting during the day. In total we recorded 142 ant species (described species and morphospecies) from our systematic sampling and observed an additional species, the green tree ant Oecophylla smaragdina, at the lowest eleva- tions but not on our survey sites. With the caveat of less sampling intensity at the lowest and highest elevations, species richness peaked at 600 m asl (89 species), declined monotonically with increasing and decreasing elevation, and was lowest at 1200 m asl (33 spp.). Ant species composition progres- sively changed with increasing elevation, but there appeared to be two gradients of change, one from 200–600 m asl and another from 800 to 1200 m asl. Differences between the lowland and upland faunas may be driven in part by a greater representation of tropical and arboreal-nesting sp ecies in the lowlands and a greater representation of subtropical species in the highlands.
    [Show full text]
  • Integrating Taxonomic Approaches to Assess Ant Diversity at the Southern Extreme of the Atlantic Forest
    Received: 19 May 2017 | Revised: 12 September 2017 | Accepted: 14 September 2017 DOI: 10.1002/ece3.3549 ORIGINAL RESEARCH Mind the gap! Integrating taxonomic approaches to assess ant diversity at the southern extreme of the Atlantic Forest Priscila Elena Hanisch1 | Pablo D. Lavinia1 | Andrew V. Suarez2 | Darío Alejandro Lijtmaer1 | Maurice Leponce3 | Carolina Ivon Paris4 | Pablo Luis Tubaro1 1Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” MACN-CONICET, Abstract Buenos Aires, Argentina Understanding patterns of species diversity relies on accurate taxonomy which can 2 Department of Entomology and Department only be achieved by long- term natural history research and the use of complementary of Animal Biology, University of Illinois, Urbana, USA information to establish species boundaries among cryptic taxa. We used DNA bar- 3Aquatic and Terrestrial Ecology unit, Royal coding to characterize the ant diversity of Iguazú National Park (INP), a protected area Belgian Institute of Natural Sciences, Brussels, of the Upper Paraná Atlantic Forest ecoregion, located at the southernmost extent of Belgium 4Departamento Ecología, Genética y this forest. We assessed ant diversity using both cytochrome c oxidase subunit 1 (COI) Evolución, Universidad de Buenos Aires, sequences and traditional morphological approaches, and compared the results of Buenos Aires, Argentina these two methods. We successfully obtained COI sequences for 312 specimens Correspondence belonging to 124 species, providing a DNA barcode reference library for nearly 50% of Priscila E Hanisch, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” the currently known ant fauna of INP. Our results support a clear barcode gap for all MACN-CONICET, Buenos Aires, Argentina. but two species, with a mean intraspecific divergence of 0.72%, and an average con- Email: [email protected] generic distance of 17.25%.
    [Show full text]
  • Convergent Evolution of the Army Ant Syndrome and Congruence in Big-Data Phylogenetics
    bioRxiv preprint doi: https://doi.org/10.1101/134064; this version posted May 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Convergent evolution of the army ant syndrome and congruence in big-data phylogenetics Marek L. Borowiec Department of Entomology and Nematology, One Shields Avenue, University of California at Davis, Davis, California, 95616, USA Current address: School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, Arizona, 85287, USA E-mail: [email protected] Abstract The evolution of the suite of morphological and behavioral adaptations underlying the eco- logical success of army ants has been the subject of considerable debate. This ”army ant syn- drome” has been argued to have arisen once or multiple times within the ant subfamily Do- rylinae. To address this question I generated data from 2,166 loci and a comprehensive taxon sampling for a phylogenetic investigation. Most analyses show strong support for convergent evolution of the army ant syndrome in the Old and New World but certain relationships are sensitive to analytics. I examine the signal present in this data set and find that conflict is di- minished when only loci less likely to violate common phylogenetic model assumptions are considered. I also provide a temporal and spatial context for doryline evolution with time- calibrated, biogeographic, and diversification rate shift analyses. This study underscores the need for cautious analysis of phylogenomic data and calls for more efficient algorithms em- ploying better-fitting models of molecular evolution.
    [Show full text]
  • Convergent Evolution of the Army Ant Syndrome and Congruence in Big-Data Phylogenetics
    Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology Syst. Biol. 68(4):642–656, 2019 © The Author(s) 2019. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please email: [email protected] DOI:10.1093/sysbio/syy088 Advance Access publication January 3, 2019 Convergent Evolution of the Army Ant Syndrome and Congruence in Big-Data Phylogenetics , , ,∗ MAREK L. BOROWIEC1 2 3 1Department of Entomology, Plant Pathology and Nematology, 875 Perimeter Drive, University of Idaho, Moscow, ID 83844, USA; 2School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ 85287, USA; and 3Department of Entomology and Nematology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA ∗ Correspondence to be sent to: Department of Entomology, Plant Pathology and Nematology, 875 Perimeter Drive, University of Idaho, Moscow, ID 83844, USA; Downloaded from https://academic.oup.com/sysbio/article-abstract/68/4/642/5272507 by Arizona State University West 2 user on 24 July 2019 E-mail: [email protected]. Received 24 May 2018; reviews returned 9 November 2018; accepted 15 December 2018 Associate Editor: Brian Wiegmann Abstract.—Army ants are a charismatic group of organisms characterized by a suite of morphological and behavioral adaptations that includes obligate collective foraging, frequent colony relocation, and highly specialized wingless queens. This army ant syndrome underlies the ecological success of army ants and its evolution has been the subject of considerable debate. It has been argued to have arisen once or multiple times within the ant subfamily Dorylinae. To address this question in a phylogenetic framework I generated data from 2166 loci and a comprehensive taxon sampling representing all 27 genera and 155 or approximately 22% of doryline species.
    [Show full text]