On-Orbit Results and Lessons Learned from the ASTERIA Space Telescope Mission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Phase Variations of the 55 Cancri System
The Astrophysical Journal, 740:61 (7pp), 2011 October 20 doi:10.1088/0004-637X/740/2/61 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. PLANETARY PHASE VARIATIONS OF THE 55 CANCRI SYSTEM Stephen R. Kane1, Dawn M. Gelino1, David R. Ciardi1, Diana Dragomir1,2, and Kaspar von Braun1 1 NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125, USA; [email protected] 2 Department of Physics & Astronomy, University of British Columbia, Vancouver, BC V6T1Z1, Canada Received 2011 May 6; accepted 2011 July 21; published 2011 September 29 ABSTRACT Characterization of the composition, surface properties, and atmospheric conditions of exoplanets is a rapidly progressing field as the data to study such aspects become more accessible. Bright targets, such as the multi-planet 55 Cancri system, allow an opportunity to achieve high signal-to-noise for the detection of photometric phase variations to constrain the planetary albedos. The recent discovery that innermost planet, 55 Cancri e, transits the host star introduces new prospects for studying this system. Here we calculate photometric phase curves at optical wavelengths for the system with varying assumptions for the surface and atmospheric properties of 55 Cancri e. We show that the large differences in geometric albedo allows one to distinguish between various surface models, that the scattering phase function cannot be constrained with foreseeable data, and that planet b will contribute significantly to the phase variation, depending upon the surface of planet e. We discuss detection limits and how these models may be used with future instrumentation to further characterize these planets and distinguish between various assumptions regarding surface conditions. -
Mars Reconnaissance Orbiter
Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations. -
REVIEW ARTICLE the NASA Spitzer Space Telescope
REVIEW OF SCIENTIFIC INSTRUMENTS 78, 011302 ͑2007͒ REVIEW ARTICLE The NASA Spitzer Space Telescope ͒ R. D. Gehrza Department of Astronomy, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, Minnesota 55455 ͒ T. L. Roelligb NASA Ames Research Center, MS 245-6, Moffett Field, California 94035-1000 ͒ M. W. Wernerc Jet Propulsion Laboratory, California Institute of Technology, MS 264-767, 4800 Oak Grove Drive, Pasadena, California 91109 ͒ G. G. Faziod Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 ͒ J. R. Houcke Astronomy Department, Cornell University, Ithaca, New York 14853-6801 ͒ F. J. Lowf Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 ͒ G. H. Riekeg Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 ͒ ͒ B. T. Soiferh and D. A. Levinei Spitzer Science Center, MC 220-6, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125 ͒ E. A. Romanaj Jet Propulsion Laboratory, California Institute of Technology, MS 264-767, 4800 Oak Grove Drive, Pasadena, California 91109 ͑Received 2 June 2006; accepted 17 September 2006; published online 30 January 2007͒ The National Aeronautics and Space Administration’s Spitzer Space Telescope ͑formerly the Space Infrared Telescope Facility͒ is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope ͑1990͒, the Compton Gamma-Ray Observatory ͑1991–2000͒, and the Chandra X-Ray Observatory ͑1999͒. Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. -
HD 97658 and Its Super-Earth Spitzer & MOST Transit Analysis and Seismic Modeling of the Host Star
The space photometry revolution CoRoT3-KASC7 joint meeting HD 97658 and its super-Earth Spitzer & MOST transit analysis and seismic modeling of the host star Valerie Van Grootel (University of Liege, Belgium) M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge), D. Dragomir (UC Santa Barbara), and the Spitzer team 1. Introducing HD 97658 and its super-Earth The second brightest star harboring a transiting super-Earth HD 97658 (V=7.7, K=5.7) HD 97658 b, a transiting super-Earth • • Teff = 5170 ± 50 K (Howard et al. 2011) Discovery by Howard et al. (2011) from Keck- Hires RVs: • [Fe/H] = -0.23 ± 0.03 ~ Z - M sin i = 8.2 ± 1.2 M • d = 21.11 ± 0.33 pc ; from Hipparcos P earth - P = 9.494 ± 0.005 d (Van Leeuwen 2007) orb • Transits discovered by Dragomir et al. (2013) with MOST: RP = 2.34 ± 0.18 Rearth From Howard et al. (2011) From Dragomir et al. (2013) Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 2 2. Modeling the host star HD 97658 Rp α R* 2/3 Mp α M* Radial velocities Transits + the age of the star is the best proxy for the age of its planets (Sun: 4.57 Gyr, Earth: 4.54 Gyr) • With Asteroseismology: T. Campante, V. Van Eylen’s talks • Without Asteroseismology: stellar evolution modeling Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse 3 2. Modeling the host star HD 97658 • d = 21.11 ± 0.33 pc, V = 7.7 L* = 0.355 ± 0.018 Lsun • +Teff from spectroscopy: R* = 0.74 ± 0.03 Rsun • Stellar evolution code CLES (Scuflaire et al. -
Wide-Field Infrared Survey Explorer Launch Press
PRess KIT/DECEMBER 2009 Wide-field Infrared Survey Explorer Launch Contents Media Services Information ................................................................................................................. 3 Quick Facts ............................................................................................................................................. 4 Mission Overview .................................................................................................................................. 5 Why Infrared? ....................................................................................................................................... 10 Science Goals and Objectives ......................................................................................................... 12 Spacecraft ............................................................................................................................................. 16 Science Instrument ............................................................................................................................. 19 Infrared Missions: Past and Present ............................................................................................... 23 NASA’s Explorer Program ................................................................................................................. 25 Program/Project Management .......................................................................................................... 27 Media Contacts J.D. Harrington -
Interior Dynamics of Super-Earth 55 Cancri E Constrained by General Circulation Models
Geophysical Research Abstracts Vol. 21, EGU2019-4167, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. Interior dynamics of super-Earth 55 Cancri e constrained by general circulation models Tobias Meier (1), Dan J. Bower (1), Tim Lichtenberg (2), and Mark Hammond (2) (1) Center for Space and Habitability, Universität Bern , Bern, Switzerland , (2) Department of Physics, University of Oxford, Oxford, United Kingdom Close-in and tidally-locked super-Earths feature a day-side that always faces the host star and are thus subject to intense insolation. The thermal phase curve of 55 Cancri e, one of the best studied super-Earths, reveals a hotspot shift (offset of the maximum temperature from the substellar point) and a large day-night temperature contrast. Recent general circulation models (GCMs) aiming to explain these observations determine the spatial variability of the surface temperature of 55 Cnc e for different atmospheric masses and compositions. Here, we use constraints from the GCMs to infer the planet’s interior dynamics using a numerical geodynamic model of mantle flow. The geodynamic model is devised to be relatively simple due to uncertainties in the interior composition and structure of 55 Cnc e (and super-Earths in general), which preclude a detailed treatment of thermophysical parameters or rheology. We focus on several end-member models inspired by the GCM results to map the variety of interior regimes relevant to understand the present-state and evolution of 55 Cnc e. In particular, we investigate differences in heat transport and convective style between the day- and night-sides, and find that the thermal structure close to the surface and core-mantle boundary exhibits the largest deviations. -
Asteroseismology with Corot, Kepler, K2 and TESS: Impact on Galactic Archaeology Talk Miglio’S
Asteroseismology with CoRoT, Kepler, K2 and TESS: impact on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 AsteroseismologyPlato as it is : a Legacy with CoRoT Mission, Kepler for Galactic, K2 and TESS: impactArchaeology on Galactic Archaeology talk Miglio’s CRISTINA CHIAPPINI Leibniz-Institut fuer Astrophysik Potsdam PLATO PIC, Padova 09/2019 Galactic Archaeology strives to reconstruct the past history of the Milky Way from the present day kinematical and chemical information. Why is it Challenging ? • Complex mix of populations with large overlaps in parameter space (such as Velocities, Metallicities, and Ages) & small volume sampled by current data • Stars move away from their birth places (migrate radially, or even vertically via mergers/interactions of the MW with other Galaxies). • Many are the sources of migration! • Most of information was confined to a small volume Miglio, Chiappini et al. 2017 Key: VOLUME COVERAGE & AGES Chiappini et al. 2018 IAU 334 Quantifying the impact of radial migration The Rbirth mix ! Stars that today (R_now) are in the green bins, came from different R0=birth Radial Migration Sources = bar/spirals + mergers + Inside-out formation (gas accretion) GalacJc Center Z Sun R Outer Disk R = distance from GC Minchev, Chiappini, MarJg 2013, 2014 - MCM I + II A&A A&A 558 id A09, A&A 572, id A92 Two ways to expand volume for GA • Gaia + complementary photometric information (but no ages for far away stars) – also useful for PIC! • Asteroseismology of RGs (with ages!) - also useful for core science PLATO (miglio’s talk) The properties at different places in the disk: AMR CoRoT, Gaia+, K2 + APOGEE Kepler, TESS, K2, Gaia CoRoT, Gaia+, K2 + APOGEE PLATO + 4MOST? Predicon: AMR Scatter increases towards outer regions Age scatter increasestowars outer regions ExtracGng the best froM GaiaDR2 - Anders et al. -
Tiny "Chipsat" Spacecra Set for First Flight
7/24/2019 Tiny "Chipsat" Spacecraft Set for First Flight - Scientific American Subscribe S P A C E Tiny "Chipsat" Spacecra Set for First Flight Launch in July will test new way to explore the solar system—and beyond By Nicola Jones, Nature magazine on June 1, 2016 A rearward view of the International Space Station. Credit: NASA/Crew of STS-132 On 6 July, if all goes to plan, a pack of about 100 sticky-note-sized ‘chipsats’ will be launched up to the International Space Station for a landmark deployment. During a brief few days of testing, the minuscule satellites will transmit data on their energy load and orientation before they drift out of orbit and burn up in Earth’s atmosphere. https://www.scientificamerican.com/article/tiny-chipsat-spacecraft-set-for-first-flight/ 1/6 7/24/2019 Tiny "Chipsat" Spacecraft Set for First Flight - Scientific American The chipsats, flat squares that measure just 3.2 centimetres to a side and weigh about 5 grams apiece, were designed for a PhD project. Yet their upcoming test in space is a baby step for the much-publicized Breakthrough Starshot mission, an effort led by billionaire Yuri Milner to send tiny probes on an interstellar voyage. “We’re extremely excited,” says Brett Streetman, an aerospace engineer at the non- profit Charles Stark Draper Laboratory in Cambridge, Massachusetts, who has investigated the feasibility of sending chipsats to Jupiter’s moon Europa. “This will give flight heritage to the chipsat platform and prove to people that they’re a real thing with real potential.” The probes are the most diminutive members of a growing family of small satellites. -
Multiple Star Systems Observed with Corot and Kepler
Multiple star systems observed with CoRoT and Kepler John Southworth Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK Abstract. The CoRoT and Kepler satellites were the first space platforms designed to perform high-precision photometry for a large number of stars. Multiple systems dis- play a wide variety of photometric variability, making them natural benefactors of these missions. I review the work arising from CoRoT and Kepler observations of multiple sys- tems, with particular emphasis on eclipsing binaries containing giant stars, pulsators, triple eclipses and/or low-mass stars. Many more results remain untapped in the data archives of these missions, and the future holds the promise of K2, TESS and PLATO. 1 Introduction The CoRoT and Kepler satellites represent the first generation of astronomical space missions capable of large-scale photometric surveys. The large quantity – and exquisite quality – of the data they pro- vided is in the process of revolutionising stellar and planetary astrophysics. In this review I highlight the immense variety of the scientific results from these concurrent missions, as well as the context provided by their precursors and implications for their successors. CoRoT was led by CNES and ESA, launched on 2006/12/27,and retired in June 2013 after an irre- trievable computer failure in November 2012. It performed 24 observing runs, each lasting between 21 and 152days, with a field of viewof 2×1.3◦ ×1.3◦, obtaining light curves of 163000 stars [42]. Kepler was a NASA mission, launched on 2009/03/07and suffering a critical pointing failure on 2013/05/11. It observed the same 105deg2 sky area for its full mission duration, obtaining high-precision light curves of approximately 191000 stars. -
Data Mining in the Spanish Virtual Observatory. Applications to Corot and Gaia
Highlights of Spanish Astrophysics VI, Proceedings of the IX Scientific Meeting of the Spanish Astronomical Society held on September 13 - 17, 2010, in Madrid, Spain. M. R. Zapatero Osorio et al. (eds.) Data mining in the Spanish Virtual Observatory. Applications to Corot and Gaia. Mauro L´opez del Fresno1, Enrique Solano M´arquez1, and Luis Manuel Sarro Baro2 1 Spanish VO. Dep. Astrof´ısica. CAB (INTA-CSIC). P.O. Box 78, 28691 Villanueva de la Ca´nada, Madrid (Spain) 2 Departamento de Inteligencia Artificial. ETSI Inform´atica.UNED. Spain Abstract Manual methods for handling data are impractical for modern space missions due to the huge amount of data they provide to the scientific community. Data mining, understood as a set of methods and algorithms that allows us to recover automatically non trivial knowledge from datasets, are required. Gaia and Corot are just a two examples of actual missions that benefits the use of data mining. In this article we present a brief summary of some data mining methods and the main results obtained for Corot, as well as a description of the future variable star classification system that it is being developed for the Gaia mission. 1 Introduction Data in Astronomy is growing almost exponentially. Whereas projects like VISTA are pro- viding more than 100 terabytes of data per year, future initiatives like LSST (to be operative in 2014) and SKY (foreseen for 2024) will reach the petabyte level. It is, thus, impossible a manual approach to process the data returned by these surveys. It is impossible a manual approach to process the data returned by these surveys. -
Epo in a Multinational Context
→EPO IN A MULTINATIONAL CONTEXT Heidelberg, June 2013 ESA FACTS AND FIGURES • Over 40 years of experience • 20 Member States • Six establishments in Europe, about 2200 staff • 4 billion Euro budget (2013) • Over 70 satellites designed, tested and operated in flight • 17 scientific satellites in operation • Six types of launcher developed • Celebrated the 200th launch of Ariane in February 2011 2 ACTIVITIES ESA is one of the few space agencies in the world to combine responsibility in nearly all areas of space activity. • Space science • Navigation • Human spaceflight • Telecommunications • Exploration • Technology • Earth observation • Operations • Launchers 3 →SCIENCE & ROBOTIC EXPLORATION TODAY’S SCIENCE MISSIONS (1) • XMM-Newton (1999– ) X-ray telescope • Cluster (2000– ) four spacecraft studying the solar wind • Integral (2002– ) observing objects in gamma and X-rays • Hubble (1990– ) orbiting observatory for ultraviolet, visible and infrared astronomy (with NASA) • SOHO (1995– ) studying our Sun and its environment (with NASA) 5 TODAY’S SCIENCE MISSIONS (2) • Mars Express (2003– ) studying Mars, its moons and atmosphere from orbit • Rosetta (2004– ) the first long-term mission to study and land on a comet • Venus Express (2005– ) studying Venus and its atmosphere from orbit • Herschel (2009– ) far-infrared and submillimetre wavelength observatory • Planck (2009– ) studying relic radiation from the Big Bang 6 UPCOMING MISSIONS (1) • Gaia (2013) mapping a thousand million stars in our galaxy • LISA Pathfinder (2015) testing technologies -
FDIR Variability and Impacts on Avionics
FDIR variability and impacts on avionics : Return of Experience and recommendations for the future Jacques Busseuil Antoine Provost-Grellier Thales Alenia Space ADCSS 2011- FDIR - 26/10/2011 All rights reserved, 2007, Thales Alenia Space Presentation summary Page 2 • Survey of FDIR main features and in-flight experience if any for various space domains and missions Earth Observation (Meteosat Second Generation - PROTEUS) Science missions (Herschel/Planck) Telecommunication (Spacebus – constellations) • FDIR main features for short term ESA programs and trends (if any!) Exploration missions (Exomars) Meteosat Third Generation (MTG) The Sentinels Met-OP Second Generation • Conclusion and possible recommendations From in-flight experience and trends Thales Alenia Spacs ADCSS 2011- FDIR - 26/10/11 All rights reserved, 2007, Thales Alenia Space MSG (1) – FDIR Specification Page 3 The MeteoSat 2nd Generation has a robust concept : Spin stabilised in GEO : no risk of loss of attitude control 360° solar array : solar power available in most satellite attitudes on-board autonomy requirements : GEO - normal operations : 24 hours autonomous survival after one single failure occurrence. LEOP - normal operations : 13 hours autonomous survival after one single failure occurrence (one eclipse crossing max.) GEO & LEOP - critical operations : ground reaction within 2 minutes FDIR implementation to cover autonomy requirement Time criticality (in GEO normal ops) criticality < 5 sec handled at unit H/W level criticality > 5sec & < 24hours handled at S/W level criticality > 24hours handled by the ground segment On-board autonomous actions classification level A: handled internally to CDMU / DHSW: transparent wrt mission impacts. (e.g. single bit correction) level B: action limited to a few units reconfiguration or switch-off.