(CHRNA5-CHRNA3-CHRNB4) and Cessation Treatments in Smoking

Total Page:16

File Type:pdf, Size:1020Kb

(CHRNA5-CHRNA3-CHRNB4) and Cessation Treatments in Smoking A r tic le Interplay of Genetic Risk Factors (CH R N A 5 -CH R N A 3 -CH R N B 4 ) and Cessation tre atm e n ts in Smoking Cessation Success Li-Shiun Chen, M.D., M.P.H., Sc.D. O b je c tiv e : Smoking is highly intractable, R e su lts: The genetic variants in the and the genetic influences on cessation CHRNA5-CHRNA3-CHRNB4 region that pre- Timothy B. Baker, Ph.D. are unclear. Identifying the genetic factors dict nicotine dependence also predicted a affecting smoking cessation could eluci- later age at smoking cessation in the com - date the nature of tobacco dependence, munity sample. In the smoking cessation Megan E. Piper, Ph.D. enhance risk assessment, and support de- trial, haplotype predicted abstinence at velopment of treatment algorithms. This end of treatment in individuals receiving Naomi Breslau, Ph.D. study tested whether variants in the nico- placebo but not among individuals re- tinic receptor gene cluster CHRNA5- ceiving active medication. Haplotype in- Dale S. Cannon, Ph.D. CHRNA3-CHRNB4 predict age at smoking teracted with treatment in affecting ces- cessation and relapse after an attempt to sation success. Kimberly F. Doheny, Ph.D. quit smoking. Conclusions: Smokers with the high-risk M e th o d : In a community-based, cross- haplotype were three times as likely to re- Stephanie M. Gogarten, Ph.D. sectional study (N=5,216) and a random - spond to pharmacologic cessation treat- ized comparative effectiveness smoking ments as were smokers with the low-risk Eric O. Johnson, Ph.D. cessation trial (N=1,073), the authors used haplotype. The high-risk haplotype in- Cox proportional hazard models and lo- creased the risk of cessation failure, and Nancy L. Saccone, Ph.D. gistic regression to model the relation- this increased risk was ameliorated by ships of smoking cessation (self-reported cessation pharmacotherapy. By identify- quit age in the community study and ing a high-risk genetic group with height- Jen C. Wang, Ph.D. point-prevalence abstinence at the end ened response to smoking cessation phar- of treatment in the clinical trial) to three macotherapy, this work may support the Robert B. Weiss, Ph.D. common haplotypes in the CHRNA5- development of personalized cessation CHRNA3-CHRNB4 region defined by treatments. Alison M. Goate, D.Phil. rs16969968 and rs680244. Laura Jean Bierut, M.D. (Am J Psychiatry 2012; 169:735–742) Tobacco smoking is a serious public health problem. tity, defined by cigarettes per day; the most robust asso- Unfortunately, smoking is a quintessential dependence ciations have been reported for rs16969968 and rs1051730, disorder, evidenced by a characteristic withdrawal syn- two highly correlated variants (p<5.57×10–72) (10). In the drome and heavy, uncontrolled use (1). Cardinal mani- CHRNA5-A3-B4 region, at least two independent signals festations of uncontrolled use are persistent use and an have been identified (9, 12). The first signal, tagged by inability to quit successfully in a cessation attempt (1–3). rs16969968, a variant that results in an amino acid change Nicotine dependence is associated with both a reduced in the a5 nicotinic cholinergic receptor (CHRNA5), alters likelihood of quitting over time (4) and a rapid return to nicotinic receptor conductance in vitro (13, 14). A second, smoking following a quit attempt (3, 5–7). Therefore, iden- distinct signal, tagged by rs680244, is associated with vari- tification of the factors that contribute to either sustained ability in CHRNA5 mRNA levels (15). Resequencing of the smoking or more rapid smoking relapse should help eluci- CHRNA5-CHRNA3-CHRNB4 locus in subjects of European date the causal basis of tobacco dependence, permit more ancestry identified three common haplotypes in the region accurate prediction of dependence and relapse risk, and spanning CHRNA5 and the 3( end of CHRNA3 (12), which support more effective application of treatment. can be defined by rs16969968 and rs680244 (15). Recent meta-analyses (8–11) based on tens of thousands The CHRNA5-CHRNA3-CHRNB4 variants have been of subjects of European descent have confirmed the asso- less consistently associated with cessation outcomes than ciation of chromosome region 15q25.1 with smoking quan- with measures of smoking quantity. Five studies have This article is featured in this month’s AJP A u d io, is discussed in an ed ito rials by Dr. Lotrich (p. 681), is an article that provides Clinical Guidance (p. 742), and is the subject of a CM e course (p. 767) Am J Psychiatry 169:7, July 2012 ajp.psychiatryonline.org 7 3 5 G eN etic Facto rs an d SM o K IN G CessatIo N Success shown an association between the CHRNA5-CHRNA3- sample and failed abstinence at the end of treatment in a CHRNB4 region and successful smoking cessation (16– treatment trial. Analyses addressed three major questions: 20). All five found that the same genetic risk variants that 1) Does the natural history of smoking cessation vary by contribute to smoking quantity and nicotine dependence genetic variants in the chromosome 15q25 region? 2) Do also predicted smoking cessation. Other studies, howev- these variants predict cessation in a treatment trial? 3) er, failed to confirm this association (21–23). A genome- Does the relation between the genetic variants and cessa- wide association study of three treatment cohorts did tion depend on treatment status? The results are relevant not identify any nicotinic receptor genes as predictors of to understanding the nature of risk posed by the targeted prospectively measured smoking cessation (23). One large variants for cessation and whether the variants have phar- genome-wide association meta-analysis that strongly macogenetic implications in treatment assignment or ap- supported the association between 15q25.1 and smoking plication. quantity failed to find an association with smoking cessa- tion (current versus former smoking) at a genome-wide M e th o d level of significance (10). A logical case can be made for a relation between the Community Study CHRNA5-CHRNA3-CHRNB4 variants and smoking cessa- We used the ARIC study to examine the genetic association tion. These variants are consistently related to measures with age at cessation in a nontreatment setting. It is a prospec- of smoking quantity and nicotine dependence (12, 16), tive epidemiologic study conducted in four U.S. communities and there is copious evidence that measures of nicotine to investigate atherosclerosis. In 1987, each ARIC field center dependence predict cessation likelihood (4, 5, 24). These recruited a cohort sample ages 45–64 from a defined population findings encourage examination of the involvement of in its community, and almost 16,000 subjects participated. Self- reported age at cessation was assessed with the question “How the CHRNA5-CHRNA3-CHRNB4 variants in cessation old were you when you stopped smoking?” Genotyping was per- and further suggest that this relation is mediated by de- formed on the Affymetrix 6.0 chip at the Broad Institute of the pendence. If evidence for mediation is not found and yet Massachusetts Institute of Technology and Harvard University. the variants are related to cessation, it would suggest that Genetic and phenotype data were available for 12,771 subjects; the variants influence cessation through routes that are data were obtained from the National Center for Biotechnol- ogy Information database of Genotypes and Phenotypes (http:// independent of their influence on dependence. More- www.ncbi.nlm.nih.gov/sites/entrez?db=gap; dbGaP accession over, previous research suggests that the relation between number phs000090.v1.p1). the CHRNA5-CHRNA3-CHRNB4 variants and cessation should be examined with regard to pharmacotherapy. Smoking Cessation Clinical Trial There is mounting evidence that pharmacotherapies work We used a randomized, placebo-controlled smoking cessa- by mitigating the risks for cessation failure that are related tion trial at the University of Wisconsin Center for Tobacco Re- to severity of nicotine dependence (25, 26). This suggests search and Intervention (31) to examine the genetic association with time to relapse after quitting in a treatment trial setting. This that the connection between the variants and cessation study group has not been previously examined for the association may be strongest among individuals who do not receive of genetic risk with smoking cessation. The institutional review pharmacotherapy for smoking cessation. board at the University of Wisconsin–Madison approved this trial, Using data from a community-based project, the Ath- and all subjects provided written informed consent. erosclerosis Risk in Communities (ARIC) study (27), and Participants were eligible to participate if they were 18 years of age or older, smoked 10 or more cigarettes per day, and were mo- a smoking cessation clinical trial at the University of Wis- tivated to quit smoking. Before randomization, the participants consin Transdisciplinary Tobacco Use Research Center, we completed baseline assessments of demographic characteristics, extended the research on the CHRNA5-CHRNA3-CHRNB4 smoking history (including cigarettes smoked per day), and to- region and smoking cessation success. This research was bacco dependence, which included the Fagerström Test for Nico- predicated on hypotheses about the relations of CHRNA5- tine Dependence (32). Each participant provided a breath sample for alveolar carbon monoxide analysis to verify smoking status CHRNA3-CHRNB4 variants, tobacco dependence, and and estimate the quantity of smoking. smoking cessation. The two types of studies differ in study The participants (N=1,073) were randomly assigned to six duration, amount of experimental contact and monitor- conditions: placebo (N=132), nicotine patch (N=187), nicotine ing, and type of participants. However, complementary lozenge (N=183), sustained-release bupropion (N=188), nicotine hypotheses were developed for these two types of research patch and nicotine lozenge (N=193), or bupropion and nicotine lozenge (N=190).
Recommended publications
  • Understanding the Role of the Chromosome 15Q25.1 in COPD Through Epigenetics and Transcriptomics
    European Journal of Human Genetics (2018) 26:709–722 https://doi.org/10.1038/s41431-017-0089-8 ARTICLE Understanding the role of the chromosome 15q25.1 in COPD through epigenetics and transcriptomics 1 1,2 1,3,4 5,6 5,6 Ivana Nedeljkovic ● Elena Carnero-Montoro ● Lies Lahousse ● Diana A. van der Plaat ● Kim de Jong ● 5,6 5,7 6 8 9 10 Judith M. Vonk ● Cleo C. van Diemen ● Alen Faiz ● Maarten van den Berge ● Ma’en Obeidat ● Yohan Bossé ● 11 1,12 12 1 David C. Nickle ● BIOS Consortium ● Andre G. Uitterlinden ● Joyce J. B. van Meurs ● Bruno C. H. Stricker ● 1,4,13 6,8 5,6 1 1 Guy G. Brusselle ● Dirkje S. Postma ● H. Marike Boezen ● Cornelia M. van Duijn ● Najaf Amin Received: 14 March 2017 / Revised: 6 November 2017 / Accepted: 19 December 2017 / Published online: 8 February 2018 © The Author(s) 2018. This article is published with open access Abstract Chronic obstructive pulmonary disease (COPD) is a major health burden in adults and cigarette smoking is considered the most important environmental risk factor of COPD. Chromosome 15q25.1 locus is associated with both COPD and smoking. Our study aims at understanding the mechanism underlying the association of chromosome 15q25.1 with COPD through epigenetic and transcriptional variation in a population-based setting. To assess if COPD-associated variants in 1234567890();,: 15q25.1 are methylation quantitative trait loci, epigenome-wide association analysis of four genetic variants, previously associated with COPD (P < 5 × 10−8) in the 15q25.1 locus (rs12914385:C>T-CHRNA3, rs8034191:T>C-HYKK, rs13180: C>T-IREB2 and rs8042238:C>T-IREB2), was performed in the Rotterdam study (n = 1489).
    [Show full text]
  • Scrutiny of the CHRNA5-CHRNA3-CHRNB4
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2013 Scrutiny of the CHRNA5-CHRNA3-CHRNB4 smoking behavior locus reveals a novel association with alcohol use in a Finnish population based study Jenni Hällfors University of Helsinki Anu Loukola University of Helsinki Janne Pitkäniemi University of Helsinki Ulla Broms University of Helsinki Satu Männistö National Institute for Health and Welfare, Helsinki, Finland See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Hällfors, Jenni; Loukola, Anu; Pitkäniemi, Janne; Broms, Ulla; Männistö, Satu; Salomaa, Veikko; Heliövaara, Markku; Lehtimäki, Terho; Raitakari, Olli; Madden, Pamela AF; Heath, Andrew C.; Montgomery, Grant W.; Martin, Nicholas G.; Korhonen, Tellervo; and Kaprio, Jaakko, ,"Scrutiny of the CHRNA5-CHRNA3-CHRNB4 smoking behavior locus reveals a novel association with alcohol use in a Finnish population based study." International Journal of Molecular Epidemiology and Genetics.4,2. 109-119. (2013). https://digitalcommons.wustl.edu/open_access_pubs/3075 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Jenni Hällfors, Anu Loukola, Janne Pitkäniemi, Ulla Broms, Satu Männistö, Veikko Salomaa, Markku Heliövaara, Terho Lehtimäki,
    [Show full text]
  • Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed Hipscs To
    Hindawi Publishing Corporation Stem Cells International Volume 2013, Article ID 784629, 25 pages http://dx.doi.org/10.1155/2013/784629 Research Article Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny Leonhard Linta,1 Marianne Stockmann,1 Qiong Lin,2 André Lechel,3 Christian Proepper,1 Tobias M. Boeckers,1 Alexander Kleger,3 and Stefan Liebau1 1 InstituteforAnatomyCellBiology,UlmUniversity,Albert-EinsteinAllee11,89081Ulm,Germany 2 Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelstrasse 30, 52074 Aachen, Germany 3 Department of Internal Medicine I, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany Correspondence should be addressed to Alexander Kleger; [email protected] and Stefan Liebau; [email protected] Received 31 January 2013; Accepted 6 March 2013 Academic Editor: Michael Levin Copyright © 2013 Leonhard Linta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of, for example, ion selectivity, gating mechanism, composition, or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs) and their somatic cell source, keratinocytes from plucked human hair. This comparison revealed that 26% of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6% were downregulated.
    [Show full text]
  • Stem Cells and Ion Channels
    Stem Cells International Stem Cells and Ion Channels Guest Editors: Stefan Liebau, Alexander Kleger, Michael Levin, and Shan Ping Yu Stem Cells and Ion Channels Stem Cells International Stem Cells and Ion Channels Guest Editors: Stefan Liebau, Alexander Kleger, Michael Levin, and Shan Ping Yu Copyright © 2013 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Stem Cells International.” All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Nadire N. Ali, UK Joseph Itskovitz-Eldor, Israel Pranela Rameshwar, USA Anthony Atala, USA Pavla Jendelova, Czech Republic Hannele T. Ruohola-Baker, USA Nissim Benvenisty, Israel Arne Jensen, Germany D. S. Sakaguchi, USA Kenneth Boheler, USA Sue Kimber, UK Paul R. Sanberg, USA Dominique Bonnet, UK Mark D. Kirk, USA Paul T. Sharpe, UK B. Bunnell, USA Gary E. Lyons, USA Ashok Shetty, USA Kevin D. Bunting, USA Athanasios Mantalaris, UK Igor Slukvin, USA Richard K. Burt, USA Pilar Martin-Duque, Spain Ann Steele, USA Gerald A. Colvin, USA EvaMezey,USA Alexander Storch, Germany Stephen Dalton, USA Karim Nayernia, UK Marc Turner, UK Leonard M. Eisenberg, USA K. Sue O’Shea, USA Su-Chun Zhang, USA Marina Emborg, USA J. Parent, USA Weian Zhao, USA Josef Fulka, Czech Republic Bruno Peault, USA Joel C. Glover, Norway Stefan Przyborski, UK Contents Stem Cells and Ion Channels, Stefan Liebau,
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation Or Nicotine Exposure
    6900 • The Journal of Neuroscience, August 1, 2018 • 38(31):6900–6920 Systems/Circuits Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation or Nicotine Exposure X Glenn Morton,1 Nailyam Nasirova,1 Daniel W. Sparks,3 Matthew Brodsky,1 Sanghavy Sivakumaran,3 X Evelyn K. Lambe,3,4,5 and XEric E. Turner1,2 1Center for Integrative Brain Research, Seattle Children’s Research Institute, 2Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98101, 3Department of Physiology, 4Department of Obstetrics and Gynecology, and 5Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada Genetic studies have shown an association between smoking and variation at the CHRNA5/A3/B4 gene locus encoding the ␣5, ␣3, and ␤4 nicotinic receptor subunits. The ␣5 receptor has been specifically implicated because smoking-associated haplotypes contain a coding variant in the CHRNA5 gene. The Chrna5/a3/b4 locus is conserved in rodents and the restricted expression of these subunits suggests neural pathways through which the reinforcing and aversive properties of nicotine may be mediated. Here, we show that, in the interpe- duncular nucleus (IP), the site of the highest Chrna5 mRNA expression in rodents, electrophysiological responses to nicotinic acetylcho- line receptor stimulation are markedly reduced in ␣5-null mice. IP neurons differ markedly from their upstream ventral medial habenula cholinergic partners, which appear unaltered by loss of ␣5. To probe the functional role of ␣5-containing IP neurons, we used BAC recombineering to generate transgenic mice expressing Cre-recombinase from the Chrna5 locus. Reporter expression driven by Chrna5 Cre demonstrates that transcription of Chrna5 is regulated independently from the Chrna3/b4 genes transcribed on the opposite strand.
    [Show full text]
  • Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence
    G C A T T A C G G C A T genes Article Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence Lingjun Zuo 1, Rolando Garcia-Milian 2, Xiaoyun Guo 1,3,4,*, Chunlong Zhong 5,*, Yunlong Tan 6, Zhiren Wang 6, Jijun Wang 3, Xiaoping Wang 7, Longli Kang 8, Lu Lu 9,10, Xiangning Chen 11,12, Chiang-Shan R. Li 1 and Xingguang Luo 1,6,* 1 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; [email protected] (L.Z.); [email protected] (C.-S.R.L.) 2 Curriculum & Research Support Department, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, CT 06510, USA; [email protected] 3 Shanghai Mental Health Center, Shanghai 200030, China; [email protected] 4 Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA 5 Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China 6 Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China; [email protected] (Y.T.); [email protected] (Z.W.) 7 Department of Neurology, Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai 200080, China; [email protected] 8 Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Diseases of Tibet Autonomous Region, Xizang Minzu University School of Medicine, Xianyang, Shanxi 712082, China; [email protected] 9 Provincial Key Laboratory for Inflammation and Molecular Drug Target, Medical
    [Show full text]
  • Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology
    brain sciences Review Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology Andrea Becchetti 1,* , Laura Clara Grandi 1 , Giulia Colombo 1 , Simone Meneghini 1 and Alida Amadeo 2 1 Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; [email protected] (L.C.G.); [email protected] (G.C.); [email protected] (S.M.) 2 Department of Biosciences, University of Milano, 20133 Milano, Italy; [email protected] * Correspondence: [email protected] Received: 13 October 2020; Accepted: 21 November 2020; Published: 25 November 2020 Abstract: Sleep-related hypermotor epilepsy (SHE) is characterized by hyperkinetic focal seizures, mainly arising in the neocortex during non-rapid eye movements (NREM) sleep. The familial form is autosomal dominant SHE (ADSHE), which can be caused by mutations in genes encoding subunits of the neuronal nicotinic acetylcholine receptor (nAChR), Na+-gated K+ channels, as well as non-channel signaling proteins, such as components of the gap activity toward rags 1 (GATOR1) macromolecular complex. The causative genes may have different roles in developing and mature brains. Under this respect, nicotinic receptors are paradigmatic, as different pathophysiological roles are exerted by distinct nAChR subunits in adult and developing brains. The widest evidence concerns α4 and β2 subunits. These participate in heteromeric nAChRs that are major modulators of excitability in mature neocortical circuits as well as regulate postnatal synaptogenesis. However, growing evidence implicates mutant α2 subunits in ADSHE, which poses interpretive difficulties as very little is known about the function of α2-containing (α2*) nAChRs in the human brain.
    [Show full text]
  • Variation in the Nicotinic Acetylcholine Receptor Gene Cluster CHRNA5–CHRNA3–CHRNB4 and Its Interaction with Recent Tobacco Use Influence Cognitive Flexibility
    Neuropsychopharmacology (2010) 35, 2211–2224 & 2010 Nature Publishing Group All rights reserved 0893-133X/10 $32.00 www.neuropsychopharmacology.org Variation in the Nicotinic Acetylcholine Receptor Gene Cluster CHRNA5–CHRNA3–CHRNB4 and Its Interaction with Recent Tobacco Use Influence Cognitive Flexibility 1,2 4 1,2 ,1,2,3 Huiping Zhang , Henry R Kranzler , James Poling and Joel Gelernter* 1Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; 2VA Connecticut Healthcare System, West Haven, CT, USA; 3Departments of Neurobiology and Genetics, Yale University School of Medicine, New Haven, CT, USA; 4 Departments of Psychiatry and Genetics and Developmental Biology, University of Connecticut School of Medicine, Farmington, CT, USA Variants in the CHRNA5–CHRNA3–CHRNB4 gene cluster have been associated with nicotine dependence (ND) and ND-related traits. To evaluate a potential underlying mechanism for this association, we investigated the effects of 10 variants in this gene cluster and their interactive effects as a result of recent smoking on cognitive flexibility, a possible mediator of genetic effects in smokers. Cognitive flexibility of 466 European Americans (EAs; 360 current smokers) and 805 African Americans (AAs; 635 current smokers) was assessed using the Wisconsin Card Sorting Test. The main effects of variants and haplotypes and their interaction with recent smoking on cognitive flexibility were examined using multivariate analysis of variance and the haplotype analysis program HAPSTAT. In EAs, the major alleles of five variants (CHRNA5-rs3841324–22 bp-insertion-allele, CHRNA5-rs615470-C-allele, CHRNA3-rs6495307-C-allele, CHRNA3- rs2869546-T-allele, and CHRNB4-rs11637890-C-allele) were associated with significantly greater perseverative responses (P ¼ 0.003– 0.017) and perseverative errors (P ¼ 0.004–0.026; recessive effect).
    [Show full text]
  • Resequencing of Nicotinic Acetylcholine Receptor Genes and Association of Common and Rare Variants with the Fagerstro¨M Test for Nicotine Dependence
    Neuropsychopharmacology (2010) 35, 2392–2402 & 2010 Nature Publishing Group All rights reserved 0893-133X/10 $32.00 www.neuropsychopharmacology.org Resequencing of Nicotinic Acetylcholine Receptor Genes and Association of Common and Rare Variants with the Fagerstro¨m Test for Nicotine Dependence 1,4 1 2 2 1 Jennifer Wessel , Sarah M McDonald , David A Hinds , Renee P Stokowski , Harold S Javitz , 2 1 2 1 2 1 Michael Kennemer , Ruth Krasnow , William Dirks , Jill Hardin , Steven J Pitts , Martha Michel , 1 2 3 1 ,1 Lisa Jack , Dennis G Ballinger , Jennifer B McClure , Gary E Swan and Andrew W Bergen* 1 2 3 Center for Health Sciences, SRI International, Menlo Park, CA, USA; Perlegen Sciences, Mountain View, CA, USA; Group Health Research 4 Institute, Seattle, WA, USA; Department of Public Health, Indiana University School of Medicine, Indianapolis, IN, USA Common single-nucleotide polymorphisms (SNPs) at nicotinic acetylcholine receptor (nAChR) subunit genes have previously been associated with measures of nicotine dependence. We investigated the contribution of common SNPs and rare single-nucleotide variants (SNVs) in nAChR genes to Fagerstro¨m test for nicotine dependence (FTND) scores in treatment-seeking smokers. Exons of 10 genes were resequenced with next-generation sequencing technology in 448 European-American participants of a smoking cessation trial, and CHRNB2 and CHRNA4 were resequenced by Sanger technology to improve sequence coverage. A total of 214 SNP/SNVs were identified, of which 19.2% were excluded from analyses because of reduced completion rate, 73.9% had minor allele frequencies o5%, and 48.1% were novel relative to dbSNP build 129.
    [Show full text]
  • Role of Non-Coding Genetic Risk Variation in CHRNA5-CHRNA3-CHRNAB4 Cluster on Chromosome 15Q21
    Role of Non-Coding Genetic Risk Variation in CHRNA5-CHRNA3-CHRNAB4 Cluster on chromosome 15q21 in Addiction, Lung Cancer, Learning and Memory By Sonya Kostova Belimezova M.S. (M.D.) Sofia Medical University, Bulgaria A dissertation submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Integrative Physiology 2017 ii This thesis entitled: “Role of Non-Coding Genetic Risk Variation in CHRNA5-CHRNA3- CHRNAB4 Cluster on chromosome 15q21 in Addiction, Lung Cancer, Learning and Memory” Written by Sonya Kostova Belimezova has been approved for the Department of Integrative Physiology __________________________ (Dr. Marissa A. Ehringer, Ph.D.) ___________________________ (Dr. Jerry A. Stitzel, Ph.D.) ___________________________ (Dr. Robert Spencer, Ph.D.) ____________________________ (Dr. Michael C. Stallings, Ph.D.) ____________________________ (Dr. Christopher Lowry, Ph.D.) Date: _________ The final copy of this thesis has been examined by the signatories, and we find that both the content and form meet acceptable presentation standards of scholarly work in the above-mentioned discipline. IACUC protocol # 1510.02 iii Belimezova, Sonya Kostova (Ph.D., Integrative Physiology) Role of Non-Coding Genetic Risk Variation in CHRNA5-CHRNA3-CHRNAB4 Cluster on chromosome 15q21 in Addiction, Lung Cancer, Learning and Memory Thesis directed by Associate Professor Marissa A. Ehringer Modern large-scale genetic approaches like GWAS have allowed
    [Show full text]
  • 1 1 2 3 Cell Type-Specific Transcriptomics of Hypothalamic
    1 2 3 4 Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to 5 weight-loss 6 7 Fredrick E. Henry1,†, Ken Sugino1,†, Adam Tozer2, Tiago Branco2, Scott M. Sternson1,* 8 9 1Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 10 20147, USA. 11 2Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, 12 Cambridge CB2 0QH, UK 13 14 †Co-first author 15 *Correspondence to: [email protected] 16 Phone: 571-209-4103 17 18 Authors have no competing interests 19 1 20 Abstract 21 Molecular and cellular processes in neurons are critical for sensing and responding to energy 22 deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population 23 that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific 24 transcriptomics can be used to identify pathways that counteract weight-loss, and here we 25 report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived 26 young adult mice. For comparison, we also analyzed POMC neurons, an intermingled 27 population that suppresses appetite and body weight. We find that AGRP neurons are 28 considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell 29 type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion 30 channels, neuropeptides, and receptors. Combined with methods to validate and manipulate 31 these pathways, this resource greatly expands molecular insight into neuronal regulation of 32 body weight, and may be useful for devising therapeutic strategies for obesity and eating 33 disorders.
    [Show full text]