3D Modelling and Assessment of Tidal Current Energy Resources in the Bay of Fundy

Total Page:16

File Type:pdf, Size:1020Kb

3D Modelling and Assessment of Tidal Current Energy Resources in the Bay of Fundy 3D Modelling and Assessment of Tidal Current Energy Resources in the Bay of Fundy N. Durand, A. Cornett, S. Bourban Technical Report CHC-TR-052 April 2008 3D MODELLING AND ASSESSMENT OF TIDAL CURRENT ENERGY RESOURCES IN THE BAY OF FUNDY Technical Report CHC-TR-052 April 2008 N. Durand, A. Cornett, S. Bourban Canadian Hydraulics Centre National Research Council of Canada Ottawa, K1A 0R6, Canada CHC-TR-52 i Abstract The development and application of a high-resolution three-dimensional hydrodynamic model of tidal flows in the Bay of Fundy is described in this report. The model has been calibrated and verified against water level measurements, velocity measurements and tide table predictions. Following successful calibration and verification, the model has been employed to simulate three-dimensional tidal flows in the Bay of Fundy during a 15-day period containing average spring and neap conditions. Results from this 15-day period can be considered to be representative of conditions during a full year. Simulation results for seven areas with substantial kinetic energy resources are presented and discussed in detail. These areas are Minas Passage, Petit Passage, Grand Passage and Digby Gut in Nova Scotia, and Western Passage, Head Harbour Passage and Letete Passage in New Brunswick. Information on the spatial distribution and temporal variation of the currents and the kinetic power density is presented for each area. These simulation results provide a more detailed and more accurate picture of the scale and attributes of the tidal current energy resource throughout the Bay than was previously available. The main deliverable of this study is the development of a computer application that provides a diverse community of interested stakeholders with direct and easy access to the full three- dimensional simulation results described in this report. This application is named MarKE – Fundy3D, which stands for “Marine Kinetic Energy Explorer”. While providing information on tidal currents and kinetic energy resources throughout the Bay, MarKE-Fundy3D also provides users with the ability to forecast the power production from hypothetical energy conversion devices installed at any location and elevation within the water column. MarKE-Fundy3D can be used to obtain a detailed understanding of the resource, including its temporal and spatial attributes, and to conduct “what-if” evaluations of alternative sites. CHC-TR-52 ii Table of Contents Page Abstract.........................................................................................................................................................i Table of Contents ........................................................................................................................................ii List of Tables ..............................................................................................................................................iii List of Figures.............................................................................................................................................iv 1. Introduction.............................................................................................................................................1 1.1 Background.........................................................................................................................................1 1.2 Terms of Reference.............................................................................................................................2 1.3 Report outline......................................................................................................................................4 2. Numerical model development ..............................................................................................................5 2.1 The TELEMAC System......................................................................................................................5 2.2 Representation of the Bay of Fundy in the numerical model..............................................................6 2.3 Bathymetry for the 3D hydrodynamic model .....................................................................................7 2.4 Boundary conditions for the 3D hydrodynamic model.......................................................................9 3. Calibration and validation of the 3D hydrodynamic model..............................................................10 3.1 Calibration and validation events......................................................................................................10 3.2 Calibration / validation of the 3D hydrodynamic model ..................................................................12 3.3 Additional verification of the 3D hydrodynamic model ...................................................................19 4. Simulation Results and Tidal Energy Resource Assessment ............................................................25 4.1 Previous Assessments of Kinetic Energy Resources ........................................................................25 4.2 Simulation Results for Selected Areas in Nova Scotia .....................................................................27 4.2.1 Petit Passage and Grand Passage.............................................................................................30 4.2.2 Digby Gut...................................................................................................................................50 4.2.3 Minas Passage ...........................................................................................................................64 4.3 Simulation Results for Selected Areas in New Brunswick...............................................................78 4.3.1 Letete Passage ...........................................................................................................................86 4.3.2 Western Passage........................................................................................................................92 4.3.3 Head Harbour Passage..............................................................................................................99 5. Conclusions & Recommendations .....................................................................................................107 6. Acknowledgement ...............................................................................................................................109 7. References............................................................................................................................................109 CHC-TR-52 iii List of Tables Page Table 1 – Location of the hydrodynamic calibration and validation points................................................10 Table 2 – Tidal heights and mean water level at Yarmouth. ......................................................................11 Table 3 – Average spring and average neap conditions at Yarmouth.........................................................12 Table 4 – 3D hydrodynamic model calibration results, average spring tide...............................................15 Table 5 – 3D hydrodynamic model validation results, average neap tide. .................................................18 Table 6 – Comparison of surface current predictions in Grand Manan Channel........................................19 Table 7 – Summary of tidal kinetic energy resources in the Bay of Fundy (Reference 11). ......................26 Table 8 – Summary of tidal in-stream energy resources in the Bay of Fundy (Reference 7 and Reference 8)..............................................................................................................................27 Table 9 – Location of the analysis points in Petit Passage and Grand Passage. .........................................30 Table 10 – Colour scale for power density roses in Petit and Grand Passages...........................................32 Table 11 – Location of the analysis points at Digby Gut............................................................................50 Table 12 – Colour scale for power density roses at Digby Gut. .................................................................52 Table 13 – Location of the analysis points in Minas Passage.....................................................................64 Table 14 – Colour scale for power density roses in Minas Passage. ..........................................................66 Table 15 – Location of the analysis points in Letete Passage.....................................................................86 Table 16 – Colour scale for power density roses in Letete Passage. ..........................................................87 Table 17 – Location of the analysis points in Western Passage. ................................................................92 Table 18 – Location of the analysis points in Head Harbour Passage. .......................................................99 Table 19 – Colour scale for power density roses in Head Harbour Passage.............................................100 Table 20 – Summary of predicted mean power densities at potential sites in New Brunswick and Nova Scotia. .....................................................................................................................................108 CHC-TR-52 iv List of Figures Page Figure 1 – Extent and grid resolution of the 3D hydrodynamic model.........................................................7
Recommended publications
  • Striped Bass Morone Saxatilis
    COSEWIC Assessment and Status Report on the Striped Bass Morone saxatilis in Canada Southern Gulf of St. Lawrence Population St. Lawrence Estuary Population Bay of Fundy Population SOUTHERN GULF OF ST. LAWRENCE POPULATION - THREATENED ST. LAWRENCE ESTUARY POPULATION - EXTIRPATED BAY OF FUNDY POPULATION - THREATENED 2004 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2004. COSEWIC assessment and status report on the Striped Bass Morone saxatilis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 43 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Production note: COSEWIC would like to acknowledge Jean Robitaille for writing the status report on the Striped Bass Morone saxatilis prepared under contract with Environment Canada, overseen and edited by Claude Renaud the COSEWIC Freshwater Fish Species Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Ếgalement disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la situation de bar rayé (Morone saxatilis) au Canada. Cover illustration: Striped Bass — Drawing from Scott and Crossman, 1973. Her Majesty the Queen in Right of Canada 2004 Catalogue No. CW69-14/421-2005E-PDF ISBN 0-662-39840-8 HTML: CW69-14/421-2005E-HTML 0-662-39841-6 Recycled paper COSEWIC Assessment Summary Assessment Summary – November 2004 Common name Striped Bass (Southern Gulf of St.
    [Show full text]
  • Canada 21: Shepody Bay, New Brunswick
    CANADA 21: SHEPODY BAY, NEW BRUNSWICK Information Sheet on Ramsar Wetlands Effective Date of Information: The information provided is taken from text supplied at the time of designation to the List of Wetlands of International Importance, May 1987 and updated by the Canadian Wildlife Service - Atlantic Region in October 2001. Reference: 21st Ramsar site designated in Canada. Name and Address of Compiler: Canadian Wildlife Service, Environment Canada, Box 6227, 17 Waterfowl Lane, Sackville, N.B, E4L 1G6. Date of Ramsar Designation: 27 May 1987. Geographical Coordinates: 45°47'N., 64°35'W. General Location: Shepody Bay is situated at the head of the Bay of Fundy, 50 km south of the City of Moncton, New Brunswick. Area: 12 200 ha. Wetland Type (Ramsar Classification System): Marine and coastal wetlands: Type A - marine waters; Type D - rocky marine shores and offshore islands; Type F - estuarine waters; Type G -intertidal mud, sand, and salt flats; Type H - intertidal marshes. Altitude: Range is from - 6 to 6 m. Overview (Principle Characteristics): The area consists of 7700 ha of open water, 4000 ha of mud flats, 800 ha of salt marsh and 100 ha of beach. Physical Features (Geology, Geomorphology, Hydrology, Soils, Water, Climate): The area is situated at the head of the Bay of Fundy, an area with the largest tidal range in the world (up to 14 m in Shepody Bay). Shepody Bay is a large tidal embayment surrounded by low, rolling upland. A narrow band of salt marsh occurs along the western shore, whereas the eastern side is characterised by a rocky, eroding coastline with sand- gravel beaches.
    [Show full text]
  • A Review of Ice and Tide Observations in the Bay of Fundy
    A tlantic Geology 195 A review of ice and tide observations in the Bay of Fundy ConDesplanque1 and David J. Mossman2 127 Harding Avenue, Amherst, Nova Scotia B4H 2A8, Canada departm ent of Physics, Engineering and Geoscience, Mount Allison University, 67 York Street, Sackville, New Brunswick E4L 1E6, Canada Date Received April 27, 1998 Date Accepted December 15,1998 Vigorous quasi-equilibrium conditions characterize interactions between land and sea in macrotidal regions. Ephemeral on the scale of geologic time, estuaries around the Bay of Fundy progressively infill with sediments as eustatic sea level rises, forcing fringing salt marshes to form and reform at successively higher levels. Although closely linked to a regime of tides with large amplitude and strong tidal currents, salt marshes near the Bay of Fundy rarely experience overflow. Built up to a level about 1.2 m lower than the highest astronomical tide, only very large tides are able to cover the marshes with a significant depth of water. Peak tides arrive in sets at periods of 7 months, 4.53 years and 18.03 years. Consequently, for months on end, no tidal flooding of the marshes occurs. Most salt marshes are raised to the level of the average tide of the 18-year cycle. The number of tides that can exceed a certain elevation in any given year depends on whether the three main tide-generating factors peak at the same time. Marigrams constructed for the Shubenacadie and Cornwallis river estuaries, Nova Scotia, illustrate how the estuarine tidal wave is reshaped over its course, to form bores, and varies in its sediment-carrying and erosional capacity as a result of changing water-surface gradients.
    [Show full text]
  • Ahead of the Wave
    sciencenewsf o rkids.o rg http://www.sciencenewsforkids.org/2013/02/scientists-are-working-to-predict-and-tame-the-tsunamis-that-can-threaten-some- coastal-communities/ Ahead of the wave By Stephen Ornes / February 13, 2013 Bump a glass and any water inside might slop over the side. Splash in the bathtub and waves slosh. Toss a rock into a pond and ripples move outward in expanding rings. In each case, the water moves in waves. Those waves carry energy. And the more energy that gets added to a watery environment, the more powerf ul the waves may become. Now imagine an undersea earthquake and the tremendous amount of energy it can transf er to the ocean. That is because the movement of the Earth’s crust can shif t huge volumes of water, unleashing a parade of great and powerf ul waves. The water races away at speeds up to 800 kilometers (500 miles) per hour, or as f ast as a jet plane. Eventually those waves reach shallow Wate r p o urs asho re as a tsunami strike s the e ast co ast o f Jap an o n March 11, 2011. Cre d it: Mainichi Shimb un/Re ute rs water. They slow down and swell, sometimes as high as a 10-story building. When the waves eventually crash onto land, they can swamp hundreds of kilometers (miles) of shoreline. They may snap trees like twigs, collapse of f ice buildings and sweep away cars. Among nature’s most powerf ul f orces of destruction, these waves are called tsunamis (tzu NAAM eez).
    [Show full text]
  • Documenting Inuit Knowledge of Coastal Oceanography in Nunatsiavut
    Respecting ontology: Documenting Inuit knowledge of coastal oceanography in Nunatsiavut By Breanna Bishop Submitted in partial fulfillment of the requirements for the degree of Master of Marine Management at Dalhousie University Halifax, Nova Scotia December 2019 © Breanna Bishop, 2019 Table of Contents List of Tables and Figures ............................................................................................................ iv Abstract ............................................................................................................................................ v Acknowledgements ........................................................................................................................ vi Chapter 1: Introduction ............................................................................................................... 1 1.1 Management Problem ...................................................................................................................... 4 1.1.1 Research aim and objectives ........................................................................................................................ 5 Chapter 2: Context ....................................................................................................................... 7 2.1 Oceanographic context for Nunatsiavut ......................................................................................... 7 2.3 Inuit knowledge in Nunatsiavut decision making .........................................................................
    [Show full text]
  • SPH Based Shallow Water Simulation
    Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2011) J. Bender, K. Erleben, and E. Galin (Editors) SPH Based Shallow Water Simulation Barbara Solenthaler1 Peter Bucher1 Nuttapong Chentanez2 Matthias Müller2 Markus Gross1 1ETH Zurich 2NVIDIA PhysX Research Abstract We present an efficient method that uses particles to solve the 2D shallow water equations. These equations describe the dynamics of a body of water represented by a height field. Instead of storing the surface heights using uniform grid cells, we discretize the fluid with 2D SPH particles and compute the height according to the density at each particle location. The particle discretization offers the benefits that it simplifies the use of sparsely filled domains and arbitrary boundary geometry. Our solver can handle terrain slopes and supports two-way coupling of the particle-based height field with rigid objects. An improved surface definition is presented that reduces visible bumps related to the underlying particle representation. It furthermore smoothes areas with separating particles to achieve better rendering results. Both the physics and the rendering are implemented on modern GPUs resulting in interactive performances in all our presented examples. Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation and Virtual Reality 1. Introduction in height field methods as well as in full 3D simulations. The grid discretization allows for efficient simulations, but Physically-based simulations have become an important el- handling irregular domain boundaries that are not aligned ement of real-time applications like computer games.
    [Show full text]
  • Lady Crabs, Ovalipes Ocellatus, in the Gulf of Maine
    18_04049_CRABnotes.qxd 6/5/07 8:16 PM Page 106 Notes Lady Crabs, Ovalipes ocellatus, in the Gulf of Maine J. C. A. BURCHSTED1 and FRED BURCHSTED2 1 Department of Biology, Salem State College, Salem, Massachusetts 01970 USA 2 Research Services, Widener Library, Harvard University, Cambridge, Massachusetts 02138 USA Burchsted, J. C. A., and Fred Burchsted. 2006. Lady Crabs, Ovalipes ocellatus, in the Gulf of Maine. Canadian Field-Naturalist 120(1): 106-108. The Lady Crab (Ovalipes ocellatus), mainly found south of Cape Cod and in the southern Gulf of St. Lawrence, is reported from an ocean beach on the north shore of Massachusetts Bay (42°28'60"N, 70°46'20"W) in the Gulf of Maine. All previ- ously known Gulf of Maine populations north of Cape Cod Bay are estuarine and thought to be relicts of a continuous range during the Hypsithermal. The population reported here is likely a recent local habitat expansion. Key Words: Lady Crab, Ovalipes ocellatus, Gulf of Maine, distribution. The Lady Crab (Ovalipes ocellatus) is a common flats (Larsen and Doggett 1991). Lady Crabs were member of the sand beach fauna south of Cape Cod. not found in intensive local studies of western Cape Like many other members of the Virginian faunal Cod Bay (Davis and McGrath 1984) or Ipswich Bay province (between Cape Cod and Cape Hatteras), it (Dexter 1944). has a disjunct population in the southern Gulf of St. Berrick (1986) reports Lady Crabs as common on Lawrence (Ganong 1890). The Lady Crab is of consid- Cape Cod Bay sand flats (which commonly reach 20°C erable ecological importance as a consumer of mac- in summer).
    [Show full text]
  • Feeding Ecology and Movement Patterns Of
    FEEDING ECOLOGY AND MOVEMENT PATTERNS OF ATLANTIC STURGEON IN MINAS BASIN, BAY OF FUNDY by MONTANA FRANCESCA MCLEAN Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Sciences (Biology) Acadia University Spring Convocation 2013© by MONTANA FRANCESCA MCLEAN, 2013 TABLE OF CONTENTS ________________________________________________________________________ List of tables ........................................................................................................... vi List of figures ....................................................................................................... vii Abstract .................................................................................................................. xi List of abbreviations and symbols used ............................................................ xii Acknowledgements ............................................................................................ xiii General Introduction ............................................................................................. 1 Atlantic sturgeon (Acipenser oxyrinchus Mitchill, 1815) ............................ 1 Feeding ecology ........................................................................................... 5 Minas Basin intertidal ecology ................................................................... 11 Movement in the intertidal ......................................................................... 12 Context for this research ...........................................................................
    [Show full text]
  • Minas Basin, N.S
    An examination of the population characteristics, movement patterns, and recreational fishing of striped bass (Morone saxatilis) in Minas Basin, N.S. during summer 2008 Report prepared for Minas Basin Pulp and Power Co. Ltd. Contributors: Jeremy E. Broome, Anna M. Redden, Michael J. Dadswell, Don Stewart and Karen Vaudry Acadia Center for Estuarine Research Acadia University Wolfville, NS B4P 2R6 June 2009 2 Executive Summary This striped bass study was initiated because of the known presence of both Shubenacadie River origin and migrant USA striped bass in the Minas Basin, the “threatened” species COSEWIC designation, the existence of a strong recreational fishery, and the potential for impacts on the population due to the operation of in- stream tidal energy technology in the area. Striped bass were sampled from Minas Basin through angling creel census during summer 2008. In total, 574 striped bass were sampled for length, weight, scales, and tissue. In addition, 529 were tagged with individually numbered spaghetti tags. Striped bass ranged in length from 20.7-90.6cm FL, with a mean fork length of 40.5cm. Data from FL(cm) and Wt(Kg) measurements determined a weight-length relationship: LOG(Wt) = 3.30LOG(FL)-5.58. Age frequency showed a range from 1-11 years. The mean age was 4.3 years, with 75% of bass sampled being within the Age 2-4 year class. Total mortality (Z) was estimated to be 0.60. Angling effort totalling 1732 rod hours was recorded from June to October, 2008, with an average 7 anglers fishing per tide. Catch per unit effort (Fish/Rod Hour) was determined to be 0.35, with peak landing periods indicating a relationship with the lunar cycle.
    [Show full text]
  • 2019 Bay of Fundy Guide
    VISITOR AND ACTIVITY GUIDE 2019–2020 BAYNova OF FUNDYScotia’s & ANNAPOLIS VALLEY TIDE TIMES pages 13–16 TWO STUNNING PROVINCES. ONE CONVENIENT CROSSING. Digby, NS – Saint John, NB Experience the phenomenal Bay of Fundy in comfort aboard mv Fundy Rose on a two-hour journey between Nova Scotia and New Brunswick. Ferries.ca Find Yourself on the Cliffs of Fundy TWO STUNNING PROVINCES. ONE CONVENIENT CROSSING. Digby, NS – Saint John, NB Isle Haute - Bay of Fundy Experience the phenomenal Bay of Fundy in comfort aboard mv Fundy Rose on a two-hour journey between Nova Scotia Take the scenic route and fi nd yourself surrounded by the and New Brunswick. natural beauty and rugged charm scattered along the Fundy Shore. Find yourself on the “Cliffs of Fundy” Cape D’or - Advocate Harbour Ferries.ca www.fundygeopark.ca www.facebook.com/fundygeopark Table of Contents Near Parrsboro General Information .................................. 7 Top 5 One-of-a-Kind Shopping ........... 33 Internet Access .................................... 7 Top 5 Heritage and Cultural Smoke-free Places ............................... 7 Attractions .................................34–35 Visitor Information Centres ................... 8 Tidally Awesome (Truro to Avondale) ....36–43 Important Numbers ............................. 8 Recommended Scenic Drive ............... 36 Map ............................................... 10–11 Top 5 Photo Opportunities ................. 37 Approximate Touring Distances Top Outdoor Activities ..................38–39 Along Scenic Route .........................10
    [Show full text]
  • The Annapolis Basin Scallop Fishery: a Historical Perspective and 1993 Stock Assessment
    Scientific Excellence • Resource Protection & Conservation • Benefits for Canadians Excellence scientifique • Protection et conservation des ressources • Bénéfices aux Canadiens DFO Library MPO - Bbliothèque III IIIIHIIIIJIIII II I/9-- - 12022666 The Annapolis Basin Scallop Fishery: A Historical Perspective and 1993 Stock Assessment E. L. Kenchington and M. J. Lundy Benthic Fisheries and Aquaculture Division Biological Sciences Branch Department of Fisheries and Oceans P.O. Box 550 Halifax, Nova Scotia B3J 2S7 1994 Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2230 5-é-/ 23 Fisheries Pêches 1+1 and Oceans et Océans Canada. Canadian Manuscript Report of Fisheries and Aquatic Sciences Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribu- tion is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences. Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in Aquatic Sciences and Fisherics Abstracts and indexed in the Department's annual index to scientific and technical publications. Numbers 1-900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports ( Biological Series) of the Fisherics Research Board of Canada. Numbers 901-1425 were issued as Manuscript Reports of the Fisheries Research Board of Canada.
    [Show full text]
  • Annapolis Basin Bay of Fundy Estuary Profile Annapolis Basin
    Bay of Fundy Estuary Profiles Annapolis Basin Bay of Fundy Estuary Profile Annapolis Basin The Annapolis Basin is a sub-basin of the Bay of Fundy along the northwestern shore of Nova Scotia and at the western end of the Annapolis Valley. The Annapolis River is the major water source flowing into the estuary. At the NB mouth of the estuary, a narrow channel known as the Digby Gut connects the 44 NS estuary to the Bay of Fundy. Annapolis Royal and Digby are the main communities along the shore of the estuary, and Kingston-Greenwood is within the catchment area. Near Digby, there is a ferry port that connects to Saint John, New Brunswick. The estuary also hosts a tidal power generating station, which is near Annapolis Royal. The economy within the catchment area is largely driven by agriculture. However, Estuary surface area 104.07 km2 there are also several shellfish and finfish aquaculture tenures, and some Width at estuary mouth 1.85 km commercial fisheries near the mouth of the estuary that largely target Shoreline length 200.63 km invertebrates such as crab, lobster, and clams that inhabit tidal mudflats. The Catchment area 2322.05 km2 extensive tidal mudflats within the estuary are important habitat for Shorebird colonies 2 shorebirds. Within the catchment area there is freshwater habitat for wood Protected area 94.81 km2 turtles, and two protected areas that overlap with the landward boundary of Paved roads 1028 km the estuary. Although the upper valley is primarily agricultural land, much of Aquaculture leases 10 the rest of the catchment area is covered by forest.
    [Show full text]