Đối Xứng Trong Nghệ Thuật

Total Page:16

File Type:pdf, Size:1020Kb

Đối Xứng Trong Nghệ Thuật 3 Đối xứng trong nghệ thuật Hình 3.1: Mái nhà thờ Sagrada Familia ở Barcelona (Tây Ban Nha), do nghệ sĩ kiến trúc sư Antonio Gaudí (1852–1926) thiết kế, nhìn từ bên trong gian giữa. Nguồn: wikipedia. 59 Chương 3. Đối xứng trong nghệ thuật Các hình đối xứng là các hình có sự giống nhau giữa các phần, tức là chúng tuân thủ nguyên lý lặp đi lặp lại của cái đẹp. Chính bởi vậy mà trong nghệ thuật, và trong cuộc sống hàng ngày, chúng ta gặp rất nhiều hình đối xứng đẹp mắt. Ngay các bài thơ, bản nhạc cũng có sự đối xứng. Tuy nhiên chương này sẽ chỉ bàn đến đối xứng trong các nghệ thuật thị giác (visual arts). Các phép đối xứng Hình 3.2: Mặt nước phản chiếu tạo hình ảnh với đối xứng gương. Trong toán học có định lý sau: Mọi phép biến đổi bảo toàn khoảng cách trong không gian bình thường của chúng ta (tức là không gian Euclid 3 chiều hoặc trên mặt phẳng 2 chiều) đều thuộc một trong bốn loại sau: 60 Chương 3. Đối xứng trong nghệ thuật 1) Phép đối xứng gương (mirror symmetry), hay còn gọi là phép phản chiếu (reflection): trong không gian 3 chiều thì là phản chiếu qua một mặt phẳng nào đó, còn trên mặt phẳng thì là phản chiếu qua một đường thẳng. 2) Phép quay (rotation): trong không gian 3 chiều thì là quay quanh một trục nào đó, còn trên mặt phẳng thì là quay quanh một điểm nào đó, theo một góc nào đó. Hình 3.3: Con sao biển có cả đối xứng gương lẫn đối xứng quay một phần năm vòng tròn. Có những loại sao biển có n chân với n > 5 (thậm chí với n = 18), và khi đó nó đối xứng quay theo góc 2π/n. 3) Phép tịnh tiến (translation): dịch chuyển tất cả các điểm đi cùng một khoảng cách theo cùng một hướng nào đó. Như kiểu ánh xạ τ :(x,y) 7→ (x+T,y) trên mặt phẳng, dịch chuyển các điểm theo hướng của trục x một đoạn có độ dài bằng T . 61 Chương 3. Đối xứng trong nghệ thuật Hình 3.4: Đường viền sư tử tại thành cổ Persepolis (Iran). 4) Phép lượn (glide), là kết hợp của một phép đối xứng gương và một phép tịnh tiến theo hướng song song với trục giữa hay mặt giữa của đối xứng gương đó. Như kiểu ánh xạ T g : (x,y) 7→ (x + , −y) là kết hợp của phép đối xứng gương 2 T biến y thành −y và phép tịnh tiến biến x thành x + . Chú ý 2 rằng nếu chúng ta thực hiện liên tiếp một phép lượn hai lần thì lại được một phép tịnh tiến. Hình 3.5: Một dải gỗ trang trí, từ invitinghome.com. 62 Chương 3. Đối xứng trong nghệ thuật Định lý trên không quá khó, và có thể dùng làm bài tập thú vị cho học sinh THCS (trường hợp 2 chiều) và THPT (trường hợp 3 chiều). Nếu chúng ta có một hình (hai chiều hoặc ba chiều), và có một trong các phép biến đổi như trên bảo toàn hình đó (tức là đổi chỗ các điểm của hình cho nhau nhưng biến hình vào chính nó), thì ta gọi đó là một phép đối xứng của hình. Tất nhiên, ta luôn có một phép đối xứng tầm thường, tức là phép giữ nguyên tất cả các điểm. Nhưng khi nói đến đối xứng, người ta thường hiểu là phép đối xứng không tầm thường. Nếu một hình có ít nhất một phép đối xứng không tầm thường, thì được gọi là một hình đối xứng. Hình nào mà có càng nhiều phép đối xứng, thì hình đó càng đối xứng. Phép tịnh tiến và phép lượn khác phép phản chiếu và phép quay ở chỗ nếu ta cứ lặp đi lặp lại cùng một phép tịnh tiến hay phép lượn lên một điểm ban đầu nào đó, thì điểm đó sẽ chạy dần ra vô cùng. Bởi vậy nếu nói một cách chặt chẽ thì không có một phép tịnh tiến hay phép lượn nào có thể bảo toàn một vật hay một hình hữu hạn. Nhưng nếu ta chấp nhận là phép tịnh tiến không cần được thực hiện trên toàn bộ hình mà chỉ trên một phần của hình, hoặc ta hình dung rằng hình có thể được trải dài nối tiếp ra đến vô cùng, thì các phép tịnh tiến và phép lượn cũng trở thành phép đối xứng, theo nghĩa mở rộng. Hình 3.4 khắc họa những con sư tử trên tường thành phố cổ Persepolis ở Iran là một ví dụ về phép đối xứng tịnh tiến theo nghĩa mở rộng: vector tịnh tiến ở đây là vector nối từ mũi 63 Chương 3. Đối xứng trong nghệ thuật một con sư tử đến mũi của con sư tử tiếp theo. Còn hình 3.5 có phép đối xứng lượn theo nghĩa mở rộng. Hình 3.6: Các công trình kiến trúc rất hay có đối xứng gương giữa hai bên. Trong ảnh là Mosque (nhà thờ Hồi Giáo) tại Abu Dhabi. Trong toán học, tập hợp các phép đối xứng của một vật hay một hình được gọi là một nhóm (group), bởi ta có thể làm hai phép toán trên đó, là phép nhân (tích của hai phần tử) và phép nghịch đảo. Nghịch đảo của một phép biến đổi đối xứng (bảo toàn hình) chính là phép biến đổi ngược lại, tất nhiên cũng bảo toàn hình. Còn tích của hai phép biến đổi đối xứng chính là phép "hợp thành" của chúng: đầu tiên ta thực hiện biến đổi theo phép thứ nhất, rồi biến đổi tiếp theo phép thứ hai. Tất nhiên, nếu cả hai phép biến đổi bảo toàn hình, thì hình vẫn được bảo toàn khi ta thực hiện liên tiếp hai phép biến đổi đó. Các công trình kiến trúc, đồ vật, hình họa và trang trí nghệ 64 Chương 3. Đối xứng trong nghệ thuật Hình 3.7: Tháp Phước Duyên ở chùa Thiên Mụ (Huế) có đối xứng theo hình bát giác, và kiến trúc xung quanh có đối xứng gương. thuật có thể được phân loại theo nhóm các đối xứng của chúng. Ví dụ, tháp Phước Duyên ở chùa Thiên Mụ (Hình 3.7) có tám mặt, với đáy giống như là một hình bát giác đều, và như vậy nhóm đối xứng của nó cũng giống như nhóm đối xứng của một hình bát giác đều (nếu ta bỏ qua các chi tiết không đối xứng trên tháp, ví dụ như không phải mặt nào cũng có cửa). Tháp Eiffel ở Paris (Hình 3.8) thì có bốn mặt giống nhau, đáy hình vuông, nên nhóm đối xứng của nó giống như là nhóm đối xứng của hình vuông. Ở dưới đây, chúng ta sẽ tìm hiểu sự phân loại theo nhóm đối xứng cho các hình đa giác, rồi cho các trang trí đường viền 65 Chương 3. Đối xứng trong nghệ thuật (frieze) và cho các kiểu lát gạch tuần hoàn (tessellation). Hình 3.8: Tháp Eiffel ở Paris với 4 mặt như nhau, có nhóm đối xứng D4 giống hình vuông. Phân loại đa giác theo nhóm đối xứng Vào quãng năm 2013, tôi có dành một buổi để tìm hiểu cùng với con gái, lúc đó đang học năm cuối THCS (ở Pháp gọi là "collège"), về các nhóm đối xứng của các đa giác. Kết quả của buổi tìm hiểu và thực hành cùng với giấy và kéo đó được ghi lại trên Hình 3.9 và được viết lại chi tiết thành một chương trong quyển sách "Các bài giảng về toán cho Mirella". Đây là một hoạt động thực hành toán học đơn giản mà thú vị, các bạn học sinh rất nên làm. 66 Chương 3. Đối xứng trong nghệ thuật Đầu tiên là xét các tam giác. Chúng có thể có 1 đối xứng (trong trường hợp tam giác không cân, chỉ có phép "để yên" là bảo toàn tam giác), 2 đối xứng (nếu là tam giác cân, ngoài phép để yên còn có phép đối xứng gương), hoặc mấy đối xứng nếu là tam giác đều? Có những người sẽ trả lời là 3, và có những người sẽ trả lời là 4. Câu trả lời chính xác là 6, trong đó có 3 phép đối xứng gương, và 3 phép quay theo các góc 0 độ, 120 độ và 240 độ. (Quay theo góc 0 độ có nghĩa là để yên). Hình 3.9: Các đa giác và số các đối xứng của chúng. Đến lượt tứ giác: nhiều đối xứng nhất là hình vuông, với 8 đối xứng (4 đối xứng gương và 4 phép quay), tiếp theo là đến hình chữ nhật và hình thoi đều có 4 đối xứng. Tiếp theo 67 Chương 3. Đối xứng trong nghệ thuật là các hình có 2 đối xứng: hình bình hành (với đối xứng quay 180 độ), hình thang cân, hình mũi tên và hình cánh diều (với đối xứng gương). Còn nếu lấy một hình tứ giác tùy ý, không có cạnh nào bằng cạnh nào, thì nhóm các đối xứng của nó sẽ là nhóm tầm thường, chỉ có mỗi một phần tử, là phép để yên.
Recommended publications
  • Fractal Wallpaper Patterns Douglas Dunham John Shier
    Fractal Wallpaper Patterns Douglas Dunham John Shier Department of Computer Science 6935 133rd Court University of Minnesota, Duluth Apple Valley, MN 55124 USA Duluth, MN 55812-3036, USA [email protected] [email protected] http://john-art.com/ http://www.d.umn.edu/˜ddunham/ Abstract In the past we presented an algorithm that can fill a region with an infinite sequence of randomly placed and progressively smaller shapes, producing a fractal pattern. In this paper we extend that algorithm to fill rectangles and triangles that tile the plane, which yields wallpaper patterns that are locally fractal in nature. This produces artistic patterns which have a pleasing combination of global symmetry and local randomness. We show several sample patterns. Introduction We have described an algorithm [2, 4, 6] that can fill a planar region with a series of progressively smaller randomly-placed motifs and produce pleasing patterns. Here we extend that algorithm to fill rectangles and triangles that can fill the plane, creating “wallpaper” patterns. Figure 1 shows a randomly created circle pattern with symmetry group p6mm. In order to create our wallpaper patterns, we fill a fundamental region Figure 1: A locally random circle fractal with global p6mm symmetry. for one of the 17 2-dimensional crystallographic groups with randomly placed, progressively smaller copies of a motif, such as a circle in Figure 1. The randomness generates a fractal pattern. Then copies of the filled fundamental region can be used to tile the plane, yielding a locally fractal, but globally symmetric pattern. In the next section we recall how the basic algorithm works and describe the modifications needed to create wallpaper patterns.
    [Show full text]
  • Underlying Tiles in a 15Th Century Mamluk Pattern
    Bridges Finland Conference Proceedings Underlying Tiles in a 15th Century Mamluk Pattern Ron Asherov Israel [email protected] Abstract An analysis of a 15th century Mamluk marble mosaic pattern reveals an interesting construction method. Almost invisible cut-lines prove there was an underlying pattern upon which the artisan designed the visible pattern. This construction method allowed the artisan to physically strengthen the work and make its marble tiles more stable. We identify the underlying pattern and generate other patterns using the same underlying tiles. We conclude with an exhaustive description of all such patterns. Introduction The city of Cairo (from Arabic al-Qahira, “the strong”) was the capital of the Mamluk Sultanate, the greatest Islamic empire of the later Middle Ages. Arising from the weakening of the Ayyubid Dynasty in Egypt and Syria in 1250, the Mamluks (Arabic for “owned slaves”), soldier-slaves of Circassian origin, ruled large areas in the Middle East until the Ottoman conquest of Egypt in 1517. The great wealth of the Mamluks, generated by trade of spices and silk, allowed generous patronage of Mamluk artists, which integrated influences from all parts of the Islamic world at that time, as well as refugees from East and West. Some of the Mamluk architectural principles are still visible today, mainly in Cairo. Figure 1 shows a rich and lively pattern from the first half of the 15th century that probably adorned the lower register of a wall of an unknown Cairo building, and now presented at the New York Metropolitan Museum of Art. The polychrome marble mosaic is a classic example of the work of the rassamun (Arabic for “painters”), designers whose Cairo-based workshops generated and distributed geometric patterns made of various materials for a large variety of purposes.
    [Show full text]
  • Tessellations: Lessons for Every Age
    TESSELLATIONS: LESSONS FOR EVERY AGE A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Kathryn L. Cerrone August, 2006 TESSELLATIONS: LESSONS FOR EVERY AGE Kathryn L. Cerrone Thesis Approved: Accepted: Advisor Dean of the College Dr. Linda Saliga Dr. Ronald F. Levant Faculty Reader Dean of the Graduate School Dr. Antonio Quesada Dr. George R. Newkome Department Chair Date Dr. Kevin Kreider ii ABSTRACT Tessellations are a mathematical concept which many elementary teachers use for interdisciplinary lessons between math and art. Since the tilings are used by many artists and masons many of the lessons in circulation tend to focus primarily on the artistic part, while overlooking some of the deeper mathematical concepts such as symmetry and spatial sense. The inquiry-based lessons included in this paper utilize the subject of tessellations to lead students in developing a relationship between geometry, spatial sense, symmetry, and abstract algebra for older students. Lesson topics include fundamental principles of tessellations using regular polygons as well as those that can be made from irregular shapes, symmetry of polygons and tessellations, angle measurements of polygons, polyhedra, three-dimensional tessellations, and the wallpaper symmetry groups to which the regular tessellations belong. Background information is given prior to the lessons, so that teachers have adequate resources for teaching the concepts. The concluding chapter details results of testing at various age levels. iii ACKNOWLEDGEMENTS First and foremost, I would like to thank my family for their support and encourage- ment. I would especially like thank Chris for his patience and understanding.
    [Show full text]
  • Group Theory
    Introduction to Group Theory with Applications in Molecular and Solid State Physics Karsten Horn Fritz-Haber-Institut der Max-Planck-Gesellschaft 030 8412 3100, e-mail [email protected] Symmetry - old concept, already known to Greek natural philosophy Group theory: mathematical theory, developed in 19th century Application to physics in the 1920’s : Bethe 1929, Wigner 1931, Kohlrausch 1935 Why apply group theory in physics? “It is often hard or even impossible to obtain a solution to the Schrödinger equation - however, a large part of qualitative results can be obtained by group theory. Almost all the rules of spectroscopy follow from the symmetry of a problem” E.Wigner, 1931 Outline 1. Symmetry elements and point groups 4.! Vibrations in molecules 1.1. Symmetry elements and operations 4.1. Number and symmetry of normal modes in ! molecules 1.2. Group concepts 4.2. Vibronic wave functions 1.3. Classification of point groups, including the Platonic Solids 4.3. IR and Raman selection rules 1.4. Finding the point group that a molecule belongs to 5.! Electron bands in solids 2.! Group representations 5.1. Symmetry properties of solids 2.1. An intuitive approach 5.2. Wave functions of energy bands 2.2. The great orthogonality theorem (GOT) 5.3. The group of the wave vector 2.3. Theorems about irreducible representations 5.4. Band degeneracy, compatibility 2.4. Basis functions 2.5. Relation between representation theory and quantum mechanics 2.6. Character tables and how to use them 2.7. Examples: symmetry of physical properties, tensor symmetries 3. ! Molecular Orbitals and Group Theory 3.1.
    [Show full text]
  • Schreyer Honors College
    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENTS OF BIOLOGY & PSYCHOLOGY THE SALIENCE OF LOWER-ORDER FEATURES IN HIGHLY SELF-SIMILAR WALLPAPER GROUPS SHIVAM VEDAK SPRING 2014 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Biology with interdisciplinary honors in Biology and Psychology Reviewed and approved* by the following: Rick Gilmore Associate Professor of Psychology Thesis Supervisor Gong Chen Professor of Biology Honors Adviser Rick Jacobs Professor of Psychology Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT There exists an abundance of visual symmetry within our environment. Yet research on human perception has almost exclusively been limited to studies of a single type of symmetry— two-fold reflection—leaving uncertainty about human perceptual sensitivity to the other types of symmetry as derived from the mathematics of Group Theory. Clarke et al. (2011) found that five of the seventeen wallpaper groups—P1, P3M1, P31M, P6, and P6M—have a high degree of self-similarity, as determined by the frequency with which participants grouped random-dot noise representations of the same wallpaper group together. The current study attempts to replicate Clarke et al. (2011) in a limited form. Here, we sought to understand the salience of lower-order features within each of five wallpaper groups, and concordantly, their impact on symmetry detection. Adult participants were presented with twenty exemplars of each of the five aforementioned wallpaper groups and instructed to sort them into as many subsets as they wished based on any criteria they saw appropriate. Participants were then surveyed on the methods they used to classify these images.
    [Show full text]
  • 1033Rahul Srivastava(80781021).Pdf
    A thesis report on CUSTOMIZATION OF CAD MODELLING SOFTWARE USING PARAMETRIC MACROS FOR DESIGN OF MACHINABLE ARTISTIC SURFACE PATTERNS Submitted In partial fulfillment of the requirements for the award of degree of Master of Engineering in CAD/CAM & ROBOTICS ENGINEERING Submitted by: RAHUL SRIVASTAVA Roll No: 80781021 Under the guidance of Dr. Ajay Batish Mr. A. S. Jawanda Mr. Ravinder K. Duvedi Associate Professor, MED Assistant Professor, MED Lecturer, MED TU, Patiala-147004 TU, Patiala-147004 TU, Patiala-147004 MECHANICAL ENGINNERING DEPARTMENT THAPAR UNIVERSITY PATIALA – 147004 2009 ACKNOWLEDGEMENT I express my sincere gratitude to Dr. Ajay Batish, Associate Professor, Mr. A. S. Jawanda, Assistant Professor and Mr. Ravinder K. Duvedi, Lecturer Mechanical Engineering Department, Thapar University, Patiala, for their valuable guidance, proper advice and constant encouragement during the course of my thesis work. I express my deep sense of gratitude to Mr. S.K Mohapatra, Head of Department, MED for this inspirational guidance and wholehearted corporation I do not find enough words with which I can express my feeling of thanks to the entire faculty and staff of Mechanical Engineering Department, Thapar university, for their help, inspiration and moral support which went a long way successful completion of the work. ( RAHUL SRIVASTAVA) ABSTRACT The design of the artistic feature involves various aspects such as analysis, creativity, and development. The craft work cannot be completed without the manual operations because such workmanship is the outcome of the some special skills owned by the artisans or craftsman. The initial canvas or the base parts required for craftwork are produced using some simple hand tools or manual machine tools as in case of wooden handicraft.
    [Show full text]
  • 17 PLANE SYMMETRY GROUPS 1. Introduction Patterns Are
    17 PLANE SYMMETRY GROUPS ANNA NELSON, HOLLI NEWMAN, MOLLY SHIPLEY 1. Introduction Patterns are everywhere. They are deeply embedded all around us. We observe patterns in nature, art, architec- ture, mathematics, etc. If you were to picture any type of repeating pattern, like in bathroom tiles, quilts, rugs, or wallpaper, you would be picturing a pattern that be- longs to one of only 17 distinct symmetry groups. In fact, the concept of these symmetry groups are often nicknamed wallpaper groups because of this relation. These symme- try groups are two-dimensional repetitive patterns that are categorized and classified by their symmetries. The classi- fications are determined by what type of rotations, reflec- tions, translations, and glide-reflections each pattern has. It might sound surprising, that of all the repeating pat- terns we can think of there are only 17 distinct groups. The reason this can be is because many patterns could look completely different and still fall within the same category. Alternatively, there could be pat- terns that look very similar but do not fall within the same category. It all has to do with their symmetries. 1 (a) Symmetry (b) Rotation (c) Translation (d) Reflection (e) Glide-reflection Visualization of Terminology 2. History So, how do we know there are only 17 symmetry groups? Two proofs have been provided, one by Russian mathematician, Evgraf Fedorov, in 1891, and another by Austrian mathematician, George Plya, in 1924. These proofs have shown that there are only 17 possible patterns that make up these symmetry groups. Even though the proofs are relatively recent, the existence of the different groups has been seen throughout history.
    [Show full text]
  • Wallpaper Groups
    WALLPAPER GROUPS Julija Zavadlav Abstract In this paper we present the wallpaper groups or plane crystallographic groups. The name wallpaper groups refers to the symmetry group of periodic pattern in two dimensions. We start by presenting the symmetries of the Euclidean plane. Than all 17 types of wallpaper symmetries are described. June 2012 Contents 1 Introduction 1 2 Symmetry in the plane 2 2.1 Composition of isometries . 3 2.2 Lattices and point groups . 4 3 The Wallpaper groups 6 3.1 Parallelogram lattices . 6 3.2 Rectangular and centerd rectangular (rhombic) lattices . 7 3.3 Square lattices . 11 3.4 Hexagonal lattices . 13 A 17 Wallpaper groups 16 1 Introduction Intuitively a wallpaper pattern is a design used for making wallpaper. One can make such a pattern by taking a motif and repeating it horizontally and vertically. The example on Figure 1 (left) was made by taking a motif Γ, and translating it horizontally and vertically. There are other ways of repeating a basic motif to get a pattern. For instance, one could repeat the the same motif in an another way to obtain different wallpaper pattern (Figure 1 right). As we will see there are exactly 17 number of ways a motif can be arranged to form a patter. Figure 1: Two different ways of wallpaper pattern construction by repeating the same motif. Wallpaper patterns occur frequently in architecture and decorative art. A nice example is the Alhambra. This Islamic palace lays in the valleys of Granada, Spain and was built after the Muslims conquered Spain in the 8th century.
    [Show full text]
  • The Role of the Greco-Roman Practice As a Progenitor of the Armenian And
    The Role of the Greco-Roman Practice as a Progenitor of the Armenian and Eastern Roman Ornamental Art Mehmet Erbudaka and Selim Onatb aDepartment of Physics, ETHZ, CH-8093 Zurich, Switzerland and Physics Department, Bo˘gazi¸ci University, Istanbul, Turkey; bFree Now Tech, Data Science, D-22767 Hamburg, Germany ARTICLE HISTORY Compiled November 24, 2020 ABSTRACT We investigate two-dimensional, periodic ornaments of the Late Hellenistic (some centuries before the Common Era, the Classical Period) and Early Roman (Common Era) classical periods found at different locations in Asia Minor in Turkey and classify them into mathematical wallpaper groups based on their symmetry properties. The source material comes from Terrace Houses in Ephesus, Izmir, from Zeugma, now in the Zeugma Museum, Gaziantep, and from the recently released bathing pool in Antiochia ad Cragum near Gazipa¸sa,Antalya. Using the artifacts we first determine the occurrence of each symmetry group. Then we compare this distribution with those of the medieval cultures of the Middle East, namely the Armenian, Byzantine, Arab and Seljuk Turks, calculating in pairs the Euclidean distances of the wallpaper distributions. The subsequent multi-dimensional scaling and hierarchical cluster analysis of the results confirm that the Armenian and Byzantine artworks are strongly inspired by the classical masterpieces, as is the Seljuk creation by the Arabs. KEYWORDS Ornaments; mosaics; wallpaper group; Byzantine; Armenian; Hellenistic; Roman; Greco-Roman; arXiv:2011.10973v1 [physics.soc-ph] 22 Nov 2020 Arab; multi-dimensional scaling; hierarchical cluster analysis; CONTACT: M. Erbudak: [email protected] { S. Onat: [email protected] The analysis and dataset presented in this manuscript can be downloaded from the following repository https://github.com/selimonat/ornament symmgroups 1.
    [Show full text]
  • Discrete Groups and Visualization of Three-Dimensional Manifolds
    Discrete Groups and Visualization of Three-Dimensional Manifolds Charlie Gunn The Geometry Center, The University of Minnesota 1.1 The circle and the line x) Abstract When we evaluate the expression sin (2 we are only interested in ( x) = ( (x + x mod 1, since sin is a periodic function: sin 2 sin 2 k )) We describe a software implementation for interactive visualization , where k is an integer. The set of all motions of the real line of a wide class of discrete groups. In addition to familiar Euclidean R by integer amounts forms a group , which leaves invariant the x) R= space, these groups act on the curved geometries of hyperbolic function sin (2 . We can form the quotient , which is the set and spherical space. We construct easily computable models of of equivalence classes with respect to this group. This quotient can 0; 1] our geometric spaces based on projective geometry; and establish be represented by the closed interval [ , with the understanding algorithms for visualization of three-dimensional manifolds based that we identify the two endpoints. But identifying the two endpoints x) upon the close connection between discrete groups and manifolds. yields a circle. Once we know the values of sin (2 on the circle, We describe an object-oriented implementation of these concepts, we can compute it for any other value y , simply by subtracting or [0; 1) and several novel visualization applications. As a visualization adding integers to y until the result lies in the range . tool, this software breaks new ground in two directions: interactive In this example the discrete group is the set of transformations x ! x + k k exploration of curved spaces, and of topological manifolds modeled of R given by all translations , where is an integer.
    [Show full text]
  • Collection Volume I
    Collection volume I PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 29 Jul 2010 21:47:23 UTC Contents Articles Abstraction 1 Analogy 6 Bricolage 15 Categorization 19 Computational creativity 21 Data mining 30 Deskilling 41 Digital morphogenesis 42 Heuristic 44 Hidden curriculum 49 Information continuum 53 Knowhow 53 Knowledge representation and reasoning 55 Lateral thinking 60 Linnaean taxonomy 62 List of uniform tilings 67 Machine learning 71 Mathematical morphology 76 Mental model 83 Montessori sensorial materials 88 Packing problem 93 Prior knowledge for pattern recognition 100 Quasi-empirical method 102 Semantic similarity 103 Serendipity 104 Similarity (geometry) 113 Simulacrum 117 Squaring the square 120 Structural information theory 123 Task analysis 126 Techne 128 Tessellation 129 Totem 137 Trial and error 140 Unknown unknown 143 References Article Sources and Contributors 146 Image Sources, Licenses and Contributors 149 Article Licenses License 151 Abstraction 1 Abstraction Abstraction is a conceptual process by which higher, more abstract concepts are derived from the usage and classification of literal, "real," or "concrete" concepts. An "abstraction" (noun) is a concept that acts as super-categorical noun for all subordinate concepts, and connects any related concepts as a group, field, or category. Abstractions may be formed by reducing the information content of a concept or an observable phenomenon, typically to retain only information which is relevant for a particular purpose. For example, abstracting a leather soccer ball to the more general idea of a ball retains only the information on general ball attributes and behavior, eliminating the characteristics of that particular ball.
    [Show full text]
  • Chapter 3: Transformations Groups, Orbits, and Spaces of Orbits
    Preprint typeset in JHEP style - HYPER VERSION Chapter 3: Transformations Groups, Orbits, And Spaces Of Orbits Gregory W. Moore Abstract: This chapter focuses on of group actions on spaces, group orbits, and spaces of orbits. Then we discuss mathematical symmetric objects of various kinds. April 27, 2018 -TOC- Contents 1. Introduction 2 2. Definitions and the stabilizer-orbit theorem 2 2.0.1 The stabilizer-orbit theorem 5 2.1 First examples 6 2.1.1 The Case Of 1 + 1 Dimensions 10 3. Action of a topological group on a topological space 13 3.1 Left and right group actions of G on itself 18 4. Spaces of orbits 19 4.1 Simple examples 21 4.2 Fundamental domains 22 4.3 Algebras and double cosets 27 4.4 Orbifolds 27 4.5 Examples of quotients which are not manifolds 28 4.6 When is the quotient of a manifold by an equivalence relation another man- ifold? 32 5. Isometry groups 33 6. Symmetries of regular objects 35 6.1 Symmetries of polygons in the plane 38 3 6.2 Symmetry groups of some regular solids in R 41 6.3 The symmetry group of a baseball 42 7. The symmetries of the platonic solids 43 7.1 The cube (\hexahedron") and octahedron 44 7.2 Tetrahedron 46 7.3 The icosahedron 47 7.4 No more regular polyhedra 49 7.5 Remarks on the platonic solids 49 7.5.1 Mathematics 50 7.5.2 History of Physics 50 7.5.3 Molecular physics 50 7.5.4 Condensed Matter Physics 51 7.5.5 Mathematical Physics 51 7.5.6 Biology 51 7.5.7 Human culture: Architecture, art, music and sports 52 7.6 Regular polytopes in higher dimensions 52 { 1 { 8.
    [Show full text]