Soleus Muscle Injury

Total Page:16

File Type:pdf, Size:1020Kb

Soleus Muscle Injury SOLEUS MUSCLE INJURY “The Betrothed”, oil on canvas, 1892, John William Godward, Guildhall Art Gallery London. To the trained Artistic eye, John William Godward’s beautiful painting the “betrothed” shows its elegant subject in one of his most classical, “lazing in the Sun”, poses whilst she dreamingly admires her newly acquired ring. To the trained eye of the Physiotherapist, she also presents the “classical poses” required for the proper examination of the gastrocnemius muscle and the soleus muscle! Her right knee lies extended - the classical pose for a gastrocnemius assessment - and her left knee lies flexed - the classical pose for a soleus muscle assessment! - a true “classic” all round! SOLEUS MUSCLE INJURY Introduction The soleus muscle is one of the three muscles of the calf. It is injured less commonly than the gastrocnemius muscle, though its true incidence may be under reported. Its signs and symptoms can be more subtle than those of a gastrocnemius muscle injury. Differentiating injuries of the soleus muscle from those of the gastrocnemius muscle however is important for both treatment and prognosis. Anatomy The calf muscles consist of three separate muscles; the gastrocnemius, the soleus, and the plantaris, whose aponeuroses unite to form the Achilles tendon. The action of the soleus muscle , is plantarflexion of the foot. The soleus specifically plays an important role in maintaining standing posture; if not for its constant pull, the body would fall forward. In upright posture, it is largely responsible for pumping venous blood back into the heart from the periphery, and is often referred to as the “soleus muscle pump”. It is supplied by the tibial nerve. See also Appendix 1 below. Pathology Unlike the gastrocnemius the soleus is considered low risk for injury as it crosses only the ankle and is largely comprised of type one slow twitch muscle fibers. Sites of injury: In comparison to injuries to the Gastrocnemius muscle, (most commonly its upper media; head) - injury to the soleus muscle s more commonly seen lateral and more distal in the calf. Complications: Premature return to sport may result in a prolonged recovery or incomplete return to pre- injury baseline. Rarely, myositis ossificans and compartment syndrome may complicate acute soleus muscle injuries. Risk factors: These include: ● Age ● Deconditioned/unstretched muscles: ♥ The cold and unstretched muscles that recreational athletes often use to compete with are very likely to rupture when challenged compared with conditioned and stretched muscles ● Previous injury: ♥ The athlete with recurrent calf strains is likely to have healed with some degree of fibrotic scar tissue, which absorbs forces differently and is thus more likely to result in rupture when the muscle is re-challenged Clinical assessment Soleus strains tend to be less dramatic in clinical presentation and more subacute when compared to injuries of the gastrocnemius. The classic presentation is of a low grade injury resulting calf tightness, stiffness, and pain that worsens over a period of days to weeks. Swelling and disability are generally mild in comparison to gastrocnemius injuries. Differentiating a gastrocnemius muscle injury from a soleus muscle injury: Differentiating strains of the gastrocnemius muscle from the soleus muscle is important for both treatment and prognosis. 2 Gastrocnemius strains typically present with tenderness in the medial belly or the musculotendinous junction. In soleus strains the pain and tenderness is often lateral and more distal in the calf, in comparison to injuries of the gastrocnemius muscle. The origin of the gastrocnemius and soleus are anatomically distinct arising from above and below the knee respectively. This allows the examiner to isolate the activation of the muscles by varying the degree of knee flexion. With the knee in maximal flexion the soleus becomes the primary generator of force in plantar flexion. Conversely with the knee in full extension the gastrocnemius provides the greater contribution. This relationship allows for more accurate strength testing of the individual calf muscles and enables the clinician to better delineate which muscle has been injured. A similar approach is used to test pain and flexibility with passive ankle movements and stretching. In this case, the knee is again placed in maximal extension and then subsequently in flexion while the ankle is passively dorsiflexed to cause relative isolated stretch of the gastrocnemius and soleus respectively. So in summary: ● When the knee is fully flexed – active resistance to plantar flexion and passive stretching (by dorsiflexing the ankle) of the calf is primarily testing the soleus muscle. ● When the knee is fully extended – active resistance to plantar flexion and passive stretching (by dorsiflexing the ankle) of the calf is primarily testing the gastrocnemius muscle. It should be noted that concomitant tears of both the soleus and gastrocnemius are possible, though this is uncommon. This will complicate the clinical picture. Severity Muscle injuries are classically divided into 3 grades of severity. Grade I injury being an injured muscle without significant tearing or rupture, Grade II inquires being those that have partial tearing and grade III injuries being those that have a complete tear. Soleus muscle injuries most commonly are of grade I or II, rather than grade III Investigations Ultrasound Ultrasound is good initial imaging investigation to establish the nature and full extent of injury. MRI MRI is the best imaging modality for the diagnosis of soleus muscle/ tendon injuries. It is usually reserved for the assessment of elite sportspersons and/or or those with suspected severe injury. Management First aid: The basic principles of the initial management of any soft tissue injury apply These can be summarized as: RICE and No HARM. These protocols aim to minimize any further bleeding and edema into the muscle and are maintained over the first 48-72 hours, post injury. The aim is to reduce the bleeding, edema and further damage to the muscle. See separate Guidelines: Soft Tissue Injury. Analgesia: Simple oral analgesia is usually sufficient, unless the injury is severe, where titrated opioid may initially be required Options include: 2 For less severe pain use: ● Paracetamol 1gram orally 4 hourly prn (to a maximum dose of 4 gram per 24 hour period) And/or ● Ibuprofen 400mg orally 6 hourly prn For more severe pain use: ● Oxycodone immediate release 5 to 10 mg orally 4 to 6 hourly prn With ● Paracetamol 1gram orally 4 hourly prn (to a maximum dose of 4 gram per 24 hour period) And/or ● Ibuprofen 400 mg orally 6 hourly prn Following initial management: Rehabilitation: Recovery can often be quite a slow process, however it is usually somewhat quicker than is the case with gastrocnemius muscle injuries. Disposition For athletes and/or severe in juries there should be referral to: ● A physiotherapist ● A specialist in Sports Medicine. For Grade three tears, there should be referral to an Orthopaedic Surgeon. Appendix 1 Anatomy of the soleus muscle: The Soleus is a broad flat muscle situated immediately in front of the Gastrocnemius. It arises by tendinous fibers from the back of the head of the fibula, and from the upper third of the posterior surface of the body of the bone; from the popliteal line, and the middle third of the medial border of the tibia; some fibers also arise from a tendinous arch placed between the tibial and fibular origins of the muscle, in front of which the popliteal vessels and tibial nerve run. The fibers end in an aponeurosis which covers the posterior surface of the muscle, and, gradually becoming thicker and narrower, joins with the tendon of the Gastrocnemius, and forms with it the Achilles tendon. (Gray’s Anatomy 1918) References 1. The Acute Pain Management Manual NHMRC, 2011. 2. J. Bryan Dixon, Gastrocnemius versus soleus strain: how to differentiate and deal with calf muscle injuries. Curr Rev Musculoskeletal Med (2009) 2:74 - 77. Doi 10.1007/s12178-009-9045-8 Dr J. Hayes Acknowledgements: Hugh Burch May 2013 .
Recommended publications
  • Gastrocnemius and Soleus Muscle Stretching Exercises
    KEVIN A. KIRBY, D.P.M. www.KirbyPodiatry.com www.facebook.com/kevinakirbydpm Sports Medicine, Foot Surgery, Pediatric & Adult Foot Disorders 107 Scripps Drive, Suite #200, Sacramento, CA 95825 (916) 925-8111 Gastrocnemius and Soleus Muscle Stretching Exercises Gastrocnemius Stretch Soleus Stretch Figure 1. In the illustration above, the gastrocnemius muscle of the left leg is being Figure 2. In the illustration above, the soleus stretched. To effectively stretch the gastroc- muscle of the left leg is being stretched. To nemius muscle the following technique must be effectively stretch the soleus muscle the following followed. First, lean into a solid surface such as a technique must be followed. While keeping the wall and place the leg to be stretched behind the back foot pointed straight ahead toward the wall other leg. Second, make sure that the foot behind and keeping the heel on the ground, the knee of you is pointing straight ahead toward the wall. the back leg must be flexed. During the soleus Third, tighten up the quadriceps (i.e. thigh stretch, it helps to try to move your hips further muscles) of the leg that is being stretched so that away from the wall and to drive your back knee the knee will be as straight as possible. Now toward the ground, while still keeping your heel on gradually lean into the wall by slowly bending your the ground. Just before the heel lifts from the elbows, with the heel of the foot always touching ground, stop and hold the stretch for 10 seconds, the ground. Just before the heel lifts from the trying to allow the muscles of the lower calf to relax ground, stop and hold the stretch for 10 seconds, during the stretch.
    [Show full text]
  • “Swollen Ankle” Due to the Presence Of
    f Bone R o e al s n e r a u r c o h J Journal of Bone Research Bojinca et al., J Bone Res 2017, 5:2 ISSN: 2572-4916 DOI: 10.4172/2572-4916.1000177 Case Report Open Access “Swollen Ankle” Due to the Presence of Accessory Soleus Muscle - Case Report Violeta Claudia Bojinca¹*, Teodora Andreea Serban² and Mihai Bojinca² ¹Department of Internal Medicine and Rheumatology, Hospital “Sfanta Maria”, University of Medicine and Pharmacy “Carol Davila”, Romania ²Department of Internal Medicine and Rheumatology, Hospital “Dr. Ion Cantacuzino”, University of Medicine and Pharmacy “Carol Davila”, Romania *Corresponding author: Violeta Claudia Bojinca, Department of Internal Medicine and Rheumatology, Hospital “Sfanta Maria”, Ion Mihalache Blv. 37-39, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania, Tel: +40723924823; Fax +40212224064; E-mail: [email protected] Received Date: June 26, 2017; Accepted Date: July 10, 2017; Published Date: July 17, 2017 Copyright: © 2017 Bojinca CV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Swollen ankle might be a problem of differential diagnosis in young patients performing physical exercises. A mass on the posteromedial region of the ankle might be attributed to the presence of Accessory Soleus Muscle (ASM), the most common supernumerary muscle in the lower leg. We present the case of a young male with swelling and moderate pain on the posteromedial part of the right ankle after prolonged physical exercise.
    [Show full text]
  • Muscular Involvement Assessed by MRI Correlates to Motor Function Measurement Values in Oculopharyngeal Muscular Dystrophy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library J Neurol (2011) 258:1333–1340 DOI 10.1007/s00415-011-5937-9 ORIGINAL COMMUNICATION Muscular involvement assessed by MRI correlates to motor function measurement values in oculopharyngeal muscular dystrophy Arne Fischmann • Monika Gloor • Susanne Fasler • Tanja Haas • Rachele Rodoni Wetzel • Oliver Bieri • Stephan Wetzel • Karl Heinimann • Klaus Scheffler • Dirk Fischer Received: 26 October 2010 / Revised: 13 January 2011 / Accepted: 25 January 2011 / Published online: 22 February 2011 Ó Springer-Verlag 2011 Abstract Oculopharyngeal muscular dystrophy (OPMD) distal motor capacity was hardly affected. We observed a is a progressive skeletal muscle dystrophy characterized by high (negative) correlation between the validated clinical ptosis, dysphagia, and upper and lower extremity weak- scores and our visual imaging scores suggesting that ness. We examined eight genetically confirmed OPMD quantitative and more objective muscle MRI might serve as patients to detect a MRI pattern and correlate muscle outcome measure for clinical trials in muscular involvement, with validated clinical evaluation methods. dystrophies. Physical assessment was performed using the Motor Function Measurement (MFM) scale. We imaged the lower Keywords MRI Á Motor function measurement Á extremities on a 1.5 T scanner. Fatty replacement was Outcome measure Á Muscle Á Oculopharyngeal muscular graded on a 4-point visual scale. We found prominent dystrophy Á OPMD affection of the adductor and hamstring muscles in the thigh, and soleus and gastrocnemius muscles in the lower leg. The MFM assessment showed relative mild clinical Introduction impairment, mostly affecting standing and transfers, while Oculopharyngeal muscular dystrophy (OPMD) is a rare, slowly progressive autosomal dominant muscular dystro- Arne Fischmann and Monika Gloor authors are contributed equally to this work.
    [Show full text]
  • Isolated Tibialis Posterior Muscle Strain: a Rare Sporting Injury
    International Journal of Sport, Exercise and Health Research 2020; 4(2): 44-45 Case Report Isolated Tibialis Posterior Muscle Strain: A rare sporting IJSEHR 2020; 4(2): 44-45 © 2020, All rights reserved injury www.sportscienceresearch.com Received: 12-06-2020 Paul Marovic1, Paul Edmond Smith2, Drew Slimmon3 Accepted: 20-08-2020 1 Alfred Hospital, Melbourne, Australia 2 Epworth Medical Imaging, Melbourne, Australia 3 Olympic Park Sports Medicine Centre, Melbourne, Australia Abstract We present the case of an isolated tibialis posterior muscle strain in an Australian Rules Football (AFL) player, an injury not previously described in the medical literature. The elite footballer presented with calf tightness following a game of AFL. The clinical history, examination findings and treatment regime followed a course similar to more typical “calf strains” involving the gastrocnemius and soleus muscles, however Magnetic Resonance Imaging (MRI) revealed a low grade isolated muscle strain of tibialis posterior. The only inciting factor was the use of new football boots. This novel case will alert radiologists and sports physicians to a new potential source of calf pain in athletes. Keywords: Tibialis Posterior, Strain, Calf, Muscle. INTRODUCTION Pathology of the tibialis posterior tendon, from chronic tibialis posterior dysfunction leading to acquired pes planus, to acute rupture in forced eversion injuries, are well documented [1,2]. Tibialis posterior muscle strains are rare with only one published case in the chiropractic literature, diagnosed on clinical grounds in a triathlete and supported by an ultrasound demonstrating “limited inflammation” in the calf [3]. CASE REPORT We present the case of a 27-year-old right foot dominant professional male AFL player who presented with right calf pain following a game of AFL football.
    [Show full text]
  • Muscular Variations in the Gluteal Region, the Posterior Compartment of the Thigh and the Popliteal Fossa: Report of 4 Cases
    CLINICAL VIGNETTE Anatomy Journal of Africa. 2021. Vol 10 (1): 2006-2012 MUSCULAR VARIATIONS IN THE GLUTEAL REGION, THE POSTERIOR COMPARTMENT OF THE THIGH AND THE POPLITEAL FOSSA: REPORT OF 4 CASES Babou Ba1, Tata Touré1, Abdoulaye Kanté1/2, Moumouna Koné1, Demba Yatera1, Moustapha Dicko1, Drissa Traoré2, Tieman Coulibaly3, Nouhoum Ongoïba1/2, Abdel Karim Koumaré1. 1) Anatomy Laboratory of the Faculty of Medicine and Odontostomatology of Bamako, Mali. 2) Department of Surgery B of the University Hospital Center of Point-G, Bamako, Mali. 3) Department of Orthopedic and Traumatological Surgery of the Gabriel Touré University Hospital Center, Bamako, Mali. Correspondence: Tata Touré, PB: 1805, email address: [email protected], Tel :( 00223) 78008900 ABSTRACT: During a study of the sciatic nerve by anatomical dissection in the anatomy laboratory of the Faculty of Medicine and Odontostomatology (FMOS) of Bamako, 4 cases of muscle variations were observed in three male cadavers. The first case was the presence of an accessory femoral biceps muscle that originated on the fascia that covered the short head of the femoral biceps and ended on the head of the fibula joining the common tendon formed by the long and short head of the femoral biceps. The second case was the presence of an aberrant digastric muscle in the gluteal region and in the posterior compartment of the thigh. He had two bellies; the upper belly, considered as a piriform muscle accessory; the lower belly, considered a third head of the biceps femoral muscle; these two bellies were connected by a long tendon. The other two cases were the presence of third head of the gastrocnemius.
    [Show full text]
  • Foot Pain Exercises
    Page 1 of 4 View this article online at: patient.info/health/foot-pain-exercises Foot Pain Exercises There are two main aims of physiotherapy for plantar fasciitis. The first is to control inflammation; the second is to stretch the muscles and connective tissue in the calf. Symptoms of plantar fasciitis are often brought on or made worse by tightening of these tissues. These exercises should take about 15 minutes a day. Once your symptoms are controlled it's worth getting into the habit of doing them once or twice a day to reduce the risk of symptoms coming back. 1.Inflammation control a) Ice bag Fill a bag with ice (do not apply ice directly to the skin). Press the ice bag under your foot for about 12-15 minutes. b) Ice bottle Fill a round bottle with water and place in the freezer overnight. Cover the bottle with a thin wet tea towel and roll your foot on the bottle, adding pressure through the foot. Do this for about one to two minutes for each foot (if both are affected). Complete as many times daily as possible. This method is most effective first thing in the morning, when symptoms tend to be at their worst. 2. Calf and fascia stretches Fascia is a band of tough connective tissue that connects muscles and other organs together and provides stability. These exercises are aimed at stretching both the fascia and the many muscles in your calves, to help relieve symptoms of plantar fasciitis. Page 2 of 4 Gastrocnemius muscle Stand with both feet forward, facing towards a wall.
    [Show full text]
  • Clinical Anatomy of the Lower Extremity
    Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p.
    [Show full text]
  • Connective Tissue Injury in Calf Muscle Tears and Return to Play
    Original article Br J Sports Med: first published as 10.1136/bjsports-2017-098362 on 26 October 2017. Downloaded from Connective tissue injury in calf muscle tears and return to play: MRI correlation Ashutosh Prakash,1,2 Tom Entwisle,1 Michal Schneider,3 Peter Brukner,4 David Connell1 1Imaging @ Olympic Park, ABSTRACT tissues, which connect to the tendon. The integrity Melbourne, Victoria, Australia 2 Objective The aim of our study was to assess a of the connective tissue scaffold is therefore vital Diagnostic Radiology, Tan for muscle to function normally. Furthermore, Tock Seng Hospital, Singapore, group of patients with calf muscle tears and evaluate Singapore the integrity of the connective tissue boundaries and muscle fibres are vulnerable to shear forces at these 3Department of Medical interfaces. Further, we propose a novel MRI grading muscle fibre-connective tissue interfaces that can Imaging and Radiation Sciences, system based on integrity of the connective tissue occur during eccentric loading or strain.8 Faculty of Medicine, Nursing and assess any correlation between the grading score Tendon, aponeurosis and epimysium heal slower and Health Sciences, Monash University, Melbourne, Victoria, and time to return to play. We have also reviewed the than muscle. The status of the connective tissue Australia anatomy of the calf muscles. (epimysium, aponeurosis, intramuscular tendon 4La Trobe University, Melbourne, Materials and methods We retrospectively evaluated and free tendon) supporting the muscle fibres may Victoria, Australia 100 consecutive patients with clinical suspicion and well determine the healing time in muscle injury, MRI confirmation of calf muscle injury. We evaluated not just in the calf but in other muscles too.
    [Show full text]
  • Unilateral Accessory Plantaris Muscle: a Rare Anatomical Variation with Clinical Implications by Dr
    Global Journal of Medical Research: H Orthopedic and Musculoskeletal System Volume 14 Issue 4 Version 1.0 Year 2014 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4618 & Print ISSN: 0975-5888 Unilateral Accessory Plantaris Muscle: A Rare Anatomical Variation with Clinical Implications By Dr. Sherry Sharma, Dr. Meenakshi Khullar & Dr. Sunil Bhardwaj Punjab Institute of Medical Sciences, India Abstract- Plantaris, a small muscle with its long slender tendon, is of interest not only from anatomical but also from phylogenetic view point. It is regarded as vestigial in man, believing that, with assumption of an erect posture, the tendon lost its original insertion into plantar aponeurosis and gained a secondary calcaneal attachment. The muscle is known to exhibit variations but there are few reports on the existence of complete duplication of plantaris. During the routine dissection for the undergraduate medical students we encountered unilateral accessory plantaris muscle in the right lower limb of an adult male cadaver. Though often dismissed as a small vestigial muscle, an injury to this muscle should actually be included in the differential diagnosis of the painful calf. Keywords: vestigial, plantar aponeurosis, tendon transfer operations. GJMR-H Classification: NLMC Code: QY 35 UnilateralAccessoryPlantarisMuscleARareAnatomicalVariationwithClinicalImplications Strictly as per the compliance and regulations of: © 2014. Dr. Sherry Sharma, Dr. Meenakshi Khullar & Dr. Sunil Bhardwaj. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Non commercial 3.0 Unported License http://creativecommons.org/licenses/by- nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • A Biomechanical Characterisation of Eccentric and Concentric Loading of the Triceps Surae Complex
    A Biomechanical Characterisation of Eccentric and Concentric Loading of the Triceps Surae Complex A thesis submitted for the degree of Doctor of Philosophy by Saira Chaudhry School of Engineering and Material Science Centre for Sports and Exercise Medicine Queen Mary University of London December 2012 Abstract This thesis presents a biomechanical characterisation of eccentric (EL) and concentric loading (CL) of the triceps surae. EL is commonly adopted as an effective treatment for Achilles tendinopathy, with notably better treatment success compared with CL. However, there is a lack of consensus about the most appropriate protocols for completing triceps surae exercises. Exercise parameters such as speed and load are important and may affect the stimuli sensed by the muscle-tendon unit and thus influence repair. This thesis aims to biomechanically characterise and compare EL and CL as a basis for trying to understand treatment effects. A measuring system comprising motion tracking, 2D ultrasound, force plates and EMG was adopted and a semi-automatic tracking algorithm developed to track the muscle-tendon junction throughout the loading cycle (Chapter 3). Having validated the accuracy of measurements (Chapter 4), the effect of variables such as speed of exercise (chapter 5) and addition of load (Chapter 6) were assessed on Achilles tendon force, stiffness, stress, strain and force perturbations as well as muscle activation and contraction frequency (Chapter 7), in healthy subjects. It was found that EL and CL do not differ in terms of tendon force, stiffness or strain. However, EL is characterised by lower muscle activation and by 10 Hz perturbations present within the tendon.
    [Show full text]
  • Crural Fascia Injuri
    The Journal of Sports Medicine and Performance 2017 Case Report Crural Fascia Injuries and Thickening on Musculoskeletal Ultrasound in athletes with calf pain, calf ‘strains’, exertional compartment syndrome and botulinum toxin injections Marc R. Silberman, Kaitlin Anders New Jersey Sports Medicine and Performance Center, Gillette, New Jersey, 07933 Correspondence should be addressed to Marc R. Silberman, M.D. Copyright © 2016 Marc R. Silberman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract. Crural fascia injuries are under recognized and under reported. Only one known dedicated paper on a crural fascia injury depicting thickening exists in the literature, written in a greater context on an article on a proximal paratendon Achilles injury. The following three cases of fascia thickening surrounding the medial gastrocnemius, none of which involve the Achilles tendon, demonstrate the superiority of ultrasound imaging over the ubiquitous MRI in visualizing the crural fascia and questions whether these injuries are as rare as previously thought. One athlete suffered from recurrent ‘calf strains’, one athlete had exertional compartment syndrome treated with botulinum toxin, and one athlete suffered an acute injury to his superficial gastrocnemius fascia. Keywords: crural fascia thickening, fascia tear, musculoskeletal ultrasound, calf strain, exertional compartment
    [Show full text]
  • Electromyograhic Activity in Squatting at 40°, 60° and 90° Knee Flexion
    ARTIGO ORIGINAL Atividade eletromiográfica no agachamento nas posições de 40o, 60o e 90o de flexão do joelho Catarina de Oliveira Sousa1, José Jamacy de Almeida Ferreira2, Ana Catarina L. Veras Medeiros3, Antônia Hermínia de Carvalho4, Rosana Cavalcante Pereira5, Dimitri Taurino Guedes6 e Jerônimo F. de Alencar2 RESUMO Palavras-chave: Biomecânica. Reabilitação. Atividade muscular. Cadeia cinética fe- chada. O objetivo deste estudo foi comparar a atividade eletromiográ- Keywords: Biomechanics. Rehabilitation. Muscular activity. Closed kinetic fica (EMG) dos músculos reto femoral, bíceps femoral, tibial ante- chain. rior e sóleo no agachamento, associando a posição de tronco ere- to com 2 ângulos de flexão do joelho (40° e 60°) e a posição de tronco fletido a 45° com 3 ângulos de flexão do joelho (40°, 60° e 90°). Todas as combinações foram realizadas com e sem acrésci- trunk at 45° flexion with three angles of knee flexion (40°, 60° and mo de carga (10kg). A amostra foi composta por 12 indivíduos 90°). All associations were performed with and without additional saudáveis com idade de 21,1 ± 2,5 anos e massa corporal de 62,8 load (10 kg). The sample was composed of 12 healthy individuals ± 7,4kg. O EMG dos músculos citados foi registrado, isometrica- with mean age of 21.1 ± 2.5 years and weight of 62.8 ± 7.4 kg. mente, em 10 posições de agachamento. Para a análise estatísti- The EMG of the cited muscles was isometrically registered in 10 ca foi aplicada ANOVA Two-Way de Friedman e o teste Post-Hoc squatting positions. For statistical analysis, Friedman Two-Way de Newman-Keuls.
    [Show full text]