Latest Quaternary Stratigraphic Framework of the Mississippi River Delta Region

Total Page:16

File Type:pdf, Size:1020Kb

Latest Quaternary Stratigraphic Framework of the Mississippi River Delta Region Latest Quaternary Stratigraphic Framework of the Mississippi River Delta Region Kulp, Mark,1 Howell, Paul,2 Adiau, Sandra,2 Penland, Shea,1 Kindinger, Jack,3 and Williams, S. Jeffress4 1Coastal Research Laboratory University of New Orleans, New Orleans, Louisiana 70148 2Department of Geological Sciences, University of Kentucky, Lexington, Kentucky 40503 3United States Geological Survey, Coastal and Marine Geology Program, Woods Hole, Massachusetts 02543 4United States Geological Survey, Center for Coastal and Regional Marine Studies, St. Petersburg, Florida 33701 Abstract Previous researchers separated the uppermost Quaternary stratigraphy of the Mississippi River delta region into two major lithofacies. The stratigraphically lower of these, “substratum,” primarily consists of coarse-grained sediment deposited within lowstand-incised stream valleys. Relatively finer-grained “topstra- tum” overlies substratum; above interfluves, topstratum directly overlies weathered late Pleistocene sediments. However, the onshore to offshore distribution and architecture of these lithofacies was not well con- strained. This study integrates published and unpublished lithostratigraphic data with high-resolution seismic profiles from the continental shelf to aid in mapping the regional distribution of major substratum deposits and thickness of topstratum sediments. A transgressive sand sheet commonly marks the base of the topstratum deposits, providing a stratigraphic marker to aid in regional lithostratigraphic correlations. Radiocarbon- dated deposits and boreholes tied to oxygen isotope chronologies provide chronostratigraphic control. Excel- lent correlation between these multiple datasets has been found to exist, enabling construction of regional isopachous and structural elevation maps and cross sections detailing elements of the Late Quaternary stratigraphy. Introduction Upper Quaternary stratigraphic relationships in the Mississippi River delta region, north-central Gulf of Mex- ico, have been a topic of investigation for at least five decades (e.g., Fisk, 1944; Kolb and van Lopik, 1958; Frazier, 1967; Suter 1986), contributing significantly toward current knowledge of sedimentation patterns on fluvio-deltaic dominated, continental margins and the associated role of glacio-eustatic fluctuations. The most recent, regional stud- ies covering both the onshore and offshore Late Quaternary (latest Wisconsinan-Holocene) stratigraphy date from the seminal work of Fisk and colleagues (Fisk, 1944; Fisk and McFarlan, 1955; McFarlan, 1961). However, subsequent investigations have been more geographically restricted (e.g., Coleman and Roberts, 1988a; Kindinger, 1988; Stanley et al., 1996; Sydrow and Roberts, 1996) and, despite the availability of appropriate data, a full onshore-to-off- shore linkage of latest Quaternary stratigraphic units has not been previously completed. This study builds upon and expands earlier findings by integrating published and unpublished stratigraphic data sets to establish a regional, onshore-offshore lithostratigraphic correlation of uppermost Quaternary sediments of the region. Several thousand kilometers of high-resolution seismic reflection profiles, more than 800 onshore and offshore boreholes, and numer- ous cross sections spanning 50 years of research constitute the database. The strata of primary interest in this paper have been deposited since a late Wisconsinan lowstand of approxi- mately 120 m (394 ft) below modern sea level 18,000 yr B.P. (Fairbanks, 1989). This dominantly fine-grained interval is herein termed the “topstratum lithosome,” specifically building upon the work of Fisk (1944) who lithostratigraph- ically differentiated the uppermost Quaternary stratigraphy. Fisk’s stratigraphically youngest, fine-grained topstratum represented deposition in fluvial, deltaic, and shelf environments concomitant with and subsequent to full marine flooding of the continental shelf following the latest Wisconsinan lowstand, whereas the subjacent, coarser-grained substratum was suggestive of fluvial deposition within lowstand river valleys. More clearly defining the distribution Gulf Coast Association of Geological Societies Transactions, Volume 52, 2002 573 Kulp et al. and character of these lithofacies is critical to future stratigraphic studies and to an evaluation of existing models that describe the regional late Quaternary sedimentation patterns. Latest Quaternary Sedimentary Response During the late Wisconsinan sea-level fall, drainage systems of the northern Gulf basin responded by extending across the continental shelf and/or incising into older sediments (Fisk, 1944; Suter, 1986; Kindinger, 1988). Subaerial exposure at maximum lowstand created an expanded coastal plain; point-source fluvial delivery to the outer shelf and upper slope created offlapping, shelf-edge deltaic sequences between 60 m and 150 m (197 ft and 492 ft) thick (Suter, 1986; Kindinger, 1988; Sydrow and Roberts, 1996). Subaerial exposure and pedogenetic processes within stream val- leys and on interfluves created mature soil profiles (Fisk, 1944; Kolb and Van Lopik, 1958; Morton and Price, 1987). Color-mottled, silt-rich clay and clay-rich silt of yellow-brown, reddish-brown, and gray hues; calcareous concre- tions; crack-fills; root traces; and Fe/Mn oxide lenses lithologically distinguish the level of subaerial weathering (Fisk, 1944; Stanley et al., 1996; Sydrow and Roberts, 1996). Historically, this weathered horizon has been referred to as the “Prairie surface” because of suggested updip correlation to a coast-parallel outcrop of the late Pleistocene Prai- rie Formation (Fisk and McFarlan, 1955). The erosional surface created above Pleistocene strata is referred to here as the late Wisconsinan unconformity (sensu Stanley et al., 1996). Toward the late Wisconsinan shelfbreak, where shorter or nonexistent exposure produced an ill-defined erosional surface, the unconformity is difficult to discern; downdip of the late Wisconsinan shelf break the surface is a poorly defined correlative conformity below shelf-edge deltaic strata (Suter, 1986; Sydrow and Roberts, 1996). This study addresses the sedimentary package deposited shoreward of the late Wisconsinan shelf-edge. Substratum Shelf deposition during the late Wisconsinan lowstand and early sea-level rise was primarily restricted to incised valleys within braided fluvial systems (Fisk and McFarlan, 1955; Coleman et al., 1991). This depositional phase produced a lithologically distinct unit, dominated by gravel and sand-rich sediments referred to as substratum (Fisk, 1944). Grain-size analysis of multiple lithofacies above the late Wisconsinan unconformity has revealed that only substratum contains sediments with a coarsest first percentile greater than 350 µm (Kuecher, 1994). Substratum deposits are not well studied but generally exhibit a fining-upward stratigraphy (Saucier, 1994). Topstratum Lowstand, braided fluvial systems adjusted to subsequent base-level rise by evolving toward meandering regimes (Coleman et al., 1991). Maturation of backswamp and floodplain environments enhanced aggradational depo- sition, likely accounting for the upward-fining grain size of the substratum interval. Organic-rich and fine-grained sediments of brackish origin above coarse-grained, channel-fill sediments typically indicate initial drowning, inception of estuarine environments, and a major depositional change within progressively flooded stream valleys (Suter et al., 1987; Sydrow and Roberts, 1996). Above interfluves, this marine incursion is marked by a marine ravinement and/or transgressive marine facies created during marine reworking of underlying sediments at the transgressing shoreline. The transgressive marine facies has been referred to as nearshore Gulf facies, bay-sound facies, transgressive sand sheet, and a coalesced strandplain deposit (Kolb and Van Lopik, 1958; Frazier, 1974; May et al., 1984; Stanley et al., 1996). From the modern birdfoot depocenter (Balize subdelta) to below New Orleans, the lithofacies consists of shell-rich, sandy and silty sediment that exists as a locally continuous “sheet,” as well as infill of local topography on the underlying unconformity. Fine-grained, shell-rich sediment below the Balize depocenter passes northward into sandier and more silt-rich sediment, the facies terminates northward as shell and mud-rich sediment at a mid-Holocene, beach/barrier sand (Pine Island Beach Trend) near New Orleans (Saucier, 1994; Stanley et al., 1996). Radiocarbon-dated shells within the facies below the Balize depocenter indicate a maximum age of 15,500 yr B.P. for the lithofacies (Morgan et al., 1963), whereas dates from the Pine Island Beach Trend range from 5,500 to 6,000 yr B.P. (Saucier, 1994). Below chenier-plain deposits of the western Louisiana coastline the facies has been dated at between 4,500 and 6,000 yr B.P. (Coleman, 1966). Progradation of Mississippi River-fed deltaic complexes has resulted in burial of the basal transgressive facies across much of the northern shelf, creating a regressive sequence of deltaic deposits above the transgressive facies and/or marine ravinement. Initial progradation of Holocene deltas from the western margin of the Mississippi alluvial valley (Maringouin/Teche delta plain) began by at least 7,000 yrs B.P. (Frazier, 1974; Boyd et al., 1989). Although 574 Latest Quaternary Stratigraphic Framework of the Mississippi River Delta Region earlier deltaic strata have been suggested to exist on the central mid shelf, burial and
Recommended publications
  • Alexander the Great's Tombolos at Tyre and Alexandria, Eastern Mediterranean ⁎ N
    Available online at www.sciencedirect.com Geomorphology 100 (2008) 377–400 www.elsevier.com/locate/geomorph Alexander the Great's tombolos at Tyre and Alexandria, eastern Mediterranean ⁎ N. Marriner a, , J.P. Goiran b, C. Morhange a a CNRS CEREGE UMR 6635, Université Aix-Marseille, Europôle de l'Arbois, BP 80, 13545 Aix-en-Provence cedex 04, France b CNRS MOM Archéorient UMR 5133, 5/7 rue Raulin, 69365 Lyon cedex 07, France Received 25 July 2007; received in revised form 10 January 2008; accepted 11 January 2008 Available online 2 February 2008 Abstract Tyre and Alexandria's coastlines are today characterised by wave-dominated tombolos, peculiar sand isthmuses that link former islands to the adjacent continent. Paradoxically, despite a long history of inquiry into spit and barrier formation, understanding of the dynamics and sedimentary history of tombolos over the Holocene timescale is poor. At Tyre and Alexandria we demonstrate that these rare coastal features are the heritage of a long history of natural morphodynamic forcing and human impacts. In 332 BC, following a protracted seven-month siege of the city, Alexander the Great's engineers cleverly exploited a shallow sublittoral sand bank to seize the island fortress; Tyre's causeway served as a prototype for Alexandria's Heptastadium built a few months later. We report stratigraphic and geomorphological data from the two sand spits, proposing a chronostratigraphic model of tombolo evolution. © 2008 Elsevier B.V. All rights reserved. Keywords: Tombolo; Spit; Tyre; Alexandria; Mediterranean; Holocene 1. Introduction Courtaud, 2000; Browder and McNinch, 2006); (2) establishing a typology of shoreline salients and tombolos (Zenkovich, 1967; The term tombolo is used to define a spit of sand or shingle Sanderson and Eliot, 1996); and (3) modelling the geometrical linking an island to the adjacent coast.
    [Show full text]
  • The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 8-8-2007 The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands Lon Boudreaux Jr. University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Boudreaux, Lon Jr., "The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands" (2007). University of New Orleans Theses and Dissertations. 564. https://scholarworks.uno.edu/td/564 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Urban Studies By Lon J. Boudreaux Jr. B.S. Our Lady of Holy Cross College, 1992 M.S. University of New Orleans, 2007 August, 2007 Table of Contents Abstract.............................................................................................................................
    [Show full text]
  • Subsurface Geology of Cenozoic Deposits, Gulf Coastal Plain, South-Central United States
    REGIONAL STRATIGRAPHY AND _^ SUBSURFACE GEOLOGY OF CENOZOIC DEPOSITS, GULF COASTAL PLAIN, SOUTH-CENTRAL UNITED STATES V U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1416-G AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications re­ leased prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may no longer be available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices listed below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, all of general interest (such as leaflets, pamphlets, booklets), single of which are authorized agents of the Superintendent of Docu­ copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from ANCHORAGE, Alaska-Rm.
    [Show full text]
  • Life Cycle of Oil and Gas Fields in the Mississippi River Delta: a Review
    water Review Life Cycle of Oil and Gas Fields in the Mississippi River Delta: A Review John W. Day 1,*, H. C. Clark 2, Chandong Chang 3 , Rachael Hunter 4,* and Charles R. Norman 5 1 Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 2 Department of Earth, Environmental and Planetary Science, Rice University, Houston, TX 77005, USA; [email protected] 3 Department of Geological Sciences, Chungnam National University, Daejeon 34134, Korea; [email protected] 4 Comite Resources, Inc., P.O. Box 66596, Baton Rouge, LA 70896, USA 5 Charles Norman & Associates, P.O. Box 5715, Lake Charles LA 70606, USA; [email protected] * Correspondence: [email protected] (J.W.D.); [email protected] (R.H.) Received: 20 April 2020; Accepted: 20 May 2020; Published: 23 May 2020 Abstract: Oil and gas (O&G) activity has been pervasive in the Mississippi River Delta (MRD). Here we review the life cycle of O&G fields in the MRD focusing on the production history and resulting environmental impacts and show how cumulative impacts affect coastal ecosystems. Individual fields can last 40–60 years and most wells are in the final stages of production. Production increased rapidly reaching a peak around 1970 and then declined. Produced water lagged O&G and was generally higher during declining O&G production, making up about 70% of total liquids. Much of the wetland loss in the delta is associated with O&G activities. These have contributed in three major ways to wetland loss including alteration of surface hydrology, induced subsidence due to fluids removal and fault activation, and toxic stress due to spilled oil and produced water.
    [Show full text]
  • Atlantic and Gulf Coastal Plain Region SUMMARY of FINDINGS
    WETLAND DETERMINATION DATA FORM – Atlantic and Gulf Coastal Plain Region Project/Site: City/County: Sampling Date: Applicant/Owner: State: Sampling Point: Investigator(s): Section, Township, Range: Landform (hillslope, terrace, etc.): Local relief (concave, convex, none): Slope (%): Subregion (LRR or MLRA): Lat: Long: Datum: Soil Map Unit Name: NWI classification: Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.) Are Vegetation , Soil , or Hydrology significantly disturbed? Are “Normal Circumstances” present? Yes No Are Vegetation , Soil , or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes No Is the Sampled Area Hydric Soil Present? Yes No within a Wetland? Yes No Wetland Hydrology Present? Yes No Remarks: HYDROLOGY Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) Surface Water (A1) Aquatic Fauna (B13) Sparsely Vegetated Concave Surface (B8) High Water Table (A2) Marl Deposits (B15) (LRR U) Drainage Patterns (B10) Saturation (A3) Hydrogen Sulfide Odor (C1) Moss Trim Lines (B16) Water Marks (B1) Oxidized Rhizospheres along Living Roots (C3) Dry-Season Water Table (C2) Sediment Deposits (B2) Presence of Reduced Iron (C4) Crayfish Burrows (C8) Drift Deposits (B3) Recent Iron Reduction
    [Show full text]
  • Coastal Plain of Georgia
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIBECTOK WATER-SUPPLY PAPER UNDERGROUND WATERS OF THE COASTAL PLAIN OF GEORGIA BY L. W. STEPHENSON AND J. 0. VEATCH AND A DISCUSSION OP THE QUALITY OF THE WATERS BY R. B. DOLE Prepared in cooperation with the Geological Survey of Georgia WASHINGTON GOVERNMENT PRINTING OFFICE 1915 CONTENTS. __ Page. Introduction.............................................................. 25 Physiography.............................................................. 26 Cumberland Plateau.................................................... 26 Appalachian Valley.................................................... 27 Appalachian Mountains................................................ 27 Piedmont Plateau..................................................... 27 Coastal Plain........................................................... 28 General features................................................... 28 Physiographic subdivisions......................................... 29 Fall-line Mils................................................. 29 Dougherty plain............................................... 31 Altamaha upland............................................... 32 Southern limesink region...................................... 34 Okefenokee plain.............................................. 35 Satilla coastal lowland ......................................... 36 Minor features..................................................... 38 Terraces......................................................
    [Show full text]
  • Mass Wasting Processes and Products of the Mississippi Delta Front
    Mass Wasting Processes and Products of the Mississippi Delta Front: Data Synthesis and Observation Sam Bentley1,2, Kehui Xu2,3, Ioannis Georgiou6, Jillian Maloney4, Michael Miner5, Greg Keller1,2, Jeff Obelcz2,3 1 LSU Dept of Geology and Geophysics 2 LSU Coastal Studies Institute 3 LSU Dept of Oceanography and Coastal Sciences 4 San Diego State University 5 US Bureau of Ocean Energy Management 6University of New Orleans River Deltas Worldwide Influenced by: • River water and sediment • Wave reworking • Tidal flows Examples of rivers with strongest Fluvial signature: • Mississippi, Po, Fraser • Yellow/Huang He • Others Figure: after Galloway, 1975 Delta Front: Active Marine Deposition from River Plumes Delta Front after Walsh and Nittrouer, 2009 Why is the delta-front region so important? • Proximal location of abundant mud deposition from river plumes • Sedimentary gateway between rivers and oceans • Navigation, petroleum resources • Geohazards – especially mass wasting, submarine landslides Project Study Area and Objectives The Mississippi River Delta Front: • Petroleum: Active production and transfer region for O&G • Impacted by submarine landslides at a range of temporal and spatial scales, producing substantial risk from these geohazards • Last major regional survey and studies ca. 1977-1982 Objectives for the present project: • Data gathering, synthesis, gap analysis • Geophysical data: focus on high-quality digital data sets • Pilot field studies using recent technologies for mapping, sampling, analysis • Develop proposal for major new regional survey and field/modeling analyses and synthesis Research Motivation and Questions: We know that the Mississippi River Delta Front is a region of active sedimentation and submarine landslides We know that major hurricanes cause landslides.
    [Show full text]
  • West Gulf Coastal Plain Pine
    Rapid Assessment Reference Condition Model The Rapid Assessment is a component of the LANDFIRE project. Reference condition models for the Rapid Assessment were created through a series of expert workshops and a peer-review process in 2004 and 2005. For more information, please visit www.landfire.gov. Please direct questions to [email protected]. Potential Natural Vegetation Group (PNVG) R5GCPP West Gulf Coastal Plain Pine -- Uplands + Flatwoods General Information Contributors (additional contributors may be listed under "Model Evolution and Comments") Modelers Reviewers Maria Melnechuk [email protected] In worshop review Mike Melnechuk [email protected] Doug Zollner [email protected] Doug Zollner [email protected] Vegetation Type General Model Sources Rapid AssessmentModel Zones Forested Literature California Pacific Northwest Local Data Great Basin South Central Dominant Species* Expert Estimate Great Lakes Southeast Northeast S. Appalachians PITA LANDFIRE Mapping Zones PIEC Northern Plains Southwest 37 N-Cent.Rockies QUER 44 ANDR 45 Geographic Range This PNVG lies in Arkansas, Louisiana, Texas, and SE Oklahoma. The West Gulf Coastal Plain Pine- Hardwood Forest type is found over a large area of the South Central model zone. It is the predominate vegetation system over most of the Upper West Gulf Coastal Plain ecoregion with smaller incursions into the southern Interior Highlands (Ecological Classification CES203.378). The flatwoods communities represent predominately dry flatwoods of limited areas of the inland portions of West Gulf Coastal Plain. (Ecological Classification CES203.278) Biophysical Site Description This PNVG was historically present on nearly all uplands in the region except on the most edaphically limited sites (droughty sands, calcareous clays, and shallow soil barrens/rock outcrops).
    [Show full text]
  • Alaska Peninsula and Becharof
    U.S. Fish & Wildlife Service Alaska Peninsula and Becharof National Wildlife Refuge Bird List Covering approximately 4.6 million acres (larger than Connecticut and Rhode Island combined), the Alaska Peninsula/Becharof National Wildlife Refuge includes an immense variety of Peregrine Falcon ©Rod Cyr habitats and is home to more than 200 species of birds. Established in 1980, the Refuge conserves fish and wildlife populations and habitats in their natural diversity. Introduction The Alaska Peninsula/Becharof National Wildlife Refuge is a long, thin refuge; reaching from the Gulf of Alaska coast, over the Aleutian Mountains and a number of large inland lakes, to the middle of the Bristol Bay Coastal Plain. The Refuge stretches from the Katmai National Park’s southern boundary to American Bay on the Gulf of Alaska and Port Moller on the Bristol Bay coast, and is interrupted by Aniakchak National Monument and Preserve. Becharof Lake, completely within Becharof NWR, is the largest lake in the wildlife refuge system. The landscape is shaped by the Pacific Ocean, active volcanoes and glaciers, meandering rivers and sub- arctic weather cells. Habitats include near-shore marine, coastal shores and cliffs, alpine tundra, forest, shrub and a mostly treeless tundra/ shrubland/wetland complex at lower elevations. This diversity of the Refuge’s landforms and habitats contributes to a diverse avifauna. Starting at the Gulf of Alaska, coastal waters support a variety of seabirds, other cliff dependent species, and wintering waterfowl. The land rises sharply to the Aleutian Mountains, where alpine species of landbirds, shorebirds, cliff nesting raptors, and the elusive Kittlitz’s Murrelet find homes.
    [Show full text]
  • Summary of Hydrology of the Regional Aquifer Systems, I Gulf Coastal Plain, South-Central United States
    SUMMARY OF HYDROLOGY OF THE REGIONAL AQUIFER SYSTEMS, I GULF COASTAL PLAIN, SOUTH-CENTRAL UNITED STATES PROFESSIONAL PAPER I416-A science for a changing world Availability of Publications of the U.S. Geological Survey Order U.S. Geological Survey (USGS) publications from the Documents. Check or money order must be payable to the offices listed below. Detailed ordering instructions, along with Superintendent of Documents. Order by mail from prices of the last offerings, are given in the current-year issues Superintendent of Documents of the catalog "New Publications of the U.S. Geological Government Printing Office Survey." Washington, DC 20402 Books, Maps, and Other Publications Information Periodicals By Mail Many Information Periodicals products are available through Books, maps, and other publications are available by mail the systems or formats listed below: from Printed Products USGS Information Services Box 25286, Federal Center Printed copies of the Minerals Yearbook and the Mineral Com­ Denver, CO 80225 modity Summaries can be ordered from the Superintendent of Publications include Professional Papers, Bulletins, Water- Documents, Government Printing Office (address above). Supply Papers, Techniques of Water-Resources Investigations, Printed copies of Metal Industry Indicators and Mineral Indus­ Circulars. Fact Sheets, publications of general interest, single try Surveys can be ordered from the Center for Disease Control copies of permanent USGS catalogs, and topographic and and Prevention, National Institute for Occupational Safety and thematic maps. Health, Pittsburgh Research Center, P.O. Box 18070, Pitts­ burgh, PA 15236-0070. Over the Counter Mines FaxBack: Return fax service Books, maps, and other publications of the U.S. Geological Survey are available over the counter at the following USGS \.
    [Show full text]
  • Restoring the Mississippi River Delta in Louisiana Ecological Tradeoffs and Barriers to Action
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Orleans University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Fall 12-18-2015 Restoring the Mississippi River Delta in Louisiana Ecological Tradeoffs and Barriers to Action Alison Maulhardt University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Environmental Studies Commons, Natural Resources Management and Policy Commons, Sustainability Commons, and the Urban Studies and Planning Commons Recommended Citation Maulhardt, Alison, "Restoring the Mississippi River Delta in Louisiana Ecological Tradeoffs and Barriers to Action" (2015). University of New Orleans Theses and Dissertations. 2098. https://scholarworks.uno.edu/td/2098 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Restoring the Mississippi River Delta in Louisiana Ecological Tradeoffs and Barriers to Action A Thesis Submitted to the Graduate Faculty Of the University of New Orleans in partial fulfillment of the requirement for the degree of Master of Urban and Regional Planning By Alison Maulhardt B.A.
    [Show full text]
  • Hurricane Katrina External Review Panel Christine F
    THE NEW ORLEANS HURRICANE PROTECTION SYSTEM: What Went Wrong and Why A Report by the American Society of Civil Engineers Hurricane Katrina External Review Panel Christine F. Andersen, P.E., M.ASCE Jurjen A. Battjes, Ph.D. David E. Daniel, Ph.D., P.E., M.ASCE (Chair) Billy Edge, Ph.D., P.E., F.ASCE William Espey, Jr., Ph.D., P.E., M.ASCE, D.WRE Robert B. Gilbert , Ph.D., P.E., M.ASCE Thomas L. Jackson, P.E., F.ASCE, D.WRE David Kennedy, P.E., F.ASCE Dennis S. Mileti, Ph.D. James K. Mitchell, Sc.D., P.E., Hon.M.ASCE Peter Nicholson, Ph.D., P.E., F.ASCE Clifford A. Pugh, P.E., M.ASCE George Tamaro, Jr., P.E., Hon.M.ASCE Robert Traver, Ph.D., P.E., M.ASCE, D.WRE ASCE Staff: Joan Buhrman Charles V. Dinges IV, Aff.M.ASCE John E. Durrant, P.E., M.ASCE Jane Howell Lawrence H. Roth, P.E., G.E., F.ASCE Library of Congress Cataloging-in-Publication Data The New Orleans hurricane protection system : what went wrong and why : a report / by the American Society of Civil Engineers Hurricane Katrina External Review Panel. p. cm. ISBN-13: 978-0-7844-0893-3 ISBN-10: 0-7844-0893-9 1. Hurricane Katrina, 2005. 2. Building, Stormproof. 3. Hurricane protection. I. American Society of Civil Engineers. Hurricane Katrina External Review Panel. TH1096.N49 2007 627’.40976335--dc22 2006031634 Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191 www.pubs.asce.org Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein.
    [Show full text]