Northland Regional Landscape Assessment Worksheet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alexander the Great's Tombolos at Tyre and Alexandria, Eastern Mediterranean ⁎ N
Available online at www.sciencedirect.com Geomorphology 100 (2008) 377–400 www.elsevier.com/locate/geomorph Alexander the Great's tombolos at Tyre and Alexandria, eastern Mediterranean ⁎ N. Marriner a, , J.P. Goiran b, C. Morhange a a CNRS CEREGE UMR 6635, Université Aix-Marseille, Europôle de l'Arbois, BP 80, 13545 Aix-en-Provence cedex 04, France b CNRS MOM Archéorient UMR 5133, 5/7 rue Raulin, 69365 Lyon cedex 07, France Received 25 July 2007; received in revised form 10 January 2008; accepted 11 January 2008 Available online 2 February 2008 Abstract Tyre and Alexandria's coastlines are today characterised by wave-dominated tombolos, peculiar sand isthmuses that link former islands to the adjacent continent. Paradoxically, despite a long history of inquiry into spit and barrier formation, understanding of the dynamics and sedimentary history of tombolos over the Holocene timescale is poor. At Tyre and Alexandria we demonstrate that these rare coastal features are the heritage of a long history of natural morphodynamic forcing and human impacts. In 332 BC, following a protracted seven-month siege of the city, Alexander the Great's engineers cleverly exploited a shallow sublittoral sand bank to seize the island fortress; Tyre's causeway served as a prototype for Alexandria's Heptastadium built a few months later. We report stratigraphic and geomorphological data from the two sand spits, proposing a chronostratigraphic model of tombolo evolution. © 2008 Elsevier B.V. All rights reserved. Keywords: Tombolo; Spit; Tyre; Alexandria; Mediterranean; Holocene 1. Introduction Courtaud, 2000; Browder and McNinch, 2006); (2) establishing a typology of shoreline salients and tombolos (Zenkovich, 1967; The term tombolo is used to define a spit of sand or shingle Sanderson and Eliot, 1996); and (3) modelling the geometrical linking an island to the adjacent coast. -
GEOG 101 PLACE NAME LIST for EXAM THREE
GEOG 101 PLACE NAME LIST for EXAM THREE Each exam will have a place name location map section based on the list below, plus countries and political units. Consult the appropriate maps in the atlas and textbook to locate these places. The atlas has a detailed INDEX. Exam III will focus on place names from Asia and Oceania. This section of the exam will be in the form of a matching question. You will match the names to numbers on a map. ________________________________________________________________________________ I. CONTINENTS Australia Asia ________________________________________________________________________________ II. OCEANS Pacific Indian Arctic ________________________________________________________________________________ III. ASIA Seas/Gulfs/Bays/Lakes: Caspian Sea Sea of Japan Arabian Sea South China Sea Red Sea Aral Sea Lake Baikal East China Sea Bering Sea Persian Gulf Bay of Bengal Sea of Okhotsk ________________________________________________________________________________ Islands: New Guinea Taiwan Sri Lanka Singapore Maldives Sakhalin Sumatra Borneo Java Honshu Philippines Luzon Mindanao Cyprus Hokkaido ________________________________________________________________________________ Straits/Canals: Str. of Malacca Bosporas Dardanelles Suez Canal Str. of Hormuz ________________________________________________________________________________ Rivers: Huang Yangtze Tigris Euphrates Amur Ob Mekong Indus Ganges Brahmaputra Lena _______________________________________________________________________________ Mountains, Plateaus, -
Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future
Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future As more and more states are incorporating projections of sea-level rise into coastal planning efforts, the states of California, Oregon, and Washington asked the National Research Council to project sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account the many factors that affect sea-level rise on a local scale. The projections show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections; north of that point, sea-level rise is projected to be less than global projections because seismic strain is pushing the land upward. ny significant sea-level In compliance with a rise will pose enor- 2008 executive order, mous risks to the California state agencies have A been incorporating projec- valuable infrastructure, devel- opment, and wetlands that line tions of sea-level rise into much of the 1,600 mile shore- their coastal planning. This line of California, Oregon, and study provides the first Washington. For example, in comprehensive regional San Francisco Bay, two inter- projections of the changes in national airports, the ports of sea level expected in San Francisco and Oakland, a California, Oregon, and naval air station, freeways, Washington. housing developments, and sports stadiums have been Global Sea-Level Rise built on fill that raised the land Following a few thousand level only a few feet above the years of relative stability, highest tides. The San Francisco International Airport (center) global sea level has been Sea-level change is linked and surrounding areas will begin to flood with as rising since the late 19th or to changes in the Earth’s little as 40 cm (16 inches) of sea-level rise, a early 20th century, when climate. -
The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 8-8-2007 The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands Lon Boudreaux Jr. University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Boudreaux, Lon Jr., "The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands" (2007). University of New Orleans Theses and Dissertations. 564. https://scholarworks.uno.edu/td/564 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Urban Studies By Lon J. Boudreaux Jr. B.S. Our Lady of Holy Cross College, 1992 M.S. University of New Orleans, 2007 August, 2007 Table of Contents Abstract............................................................................................................................. -
Subsurface Geology of Cenozoic Deposits, Gulf Coastal Plain, South-Central United States
REGIONAL STRATIGRAPHY AND _^ SUBSURFACE GEOLOGY OF CENOZOIC DEPOSITS, GULF COASTAL PLAIN, SOUTH-CENTRAL UNITED STATES V U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1416-G AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications re leased prior to the current year are listed in the most recent annual "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" may no longer be available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices listed below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, all of general interest (such as leaflets, pamphlets, booklets), single of which are authorized agents of the Superintendent of Docu copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from ANCHORAGE, Alaska-Rm. -
Atlantic and Gulf Coastal Plain Region SUMMARY of FINDINGS
WETLAND DETERMINATION DATA FORM – Atlantic and Gulf Coastal Plain Region Project/Site: City/County: Sampling Date: Applicant/Owner: State: Sampling Point: Investigator(s): Section, Township, Range: Landform (hillslope, terrace, etc.): Local relief (concave, convex, none): Slope (%): Subregion (LRR or MLRA): Lat: Long: Datum: Soil Map Unit Name: NWI classification: Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.) Are Vegetation , Soil , or Hydrology significantly disturbed? Are “Normal Circumstances” present? Yes No Are Vegetation , Soil , or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes No Is the Sampled Area Hydric Soil Present? Yes No within a Wetland? Yes No Wetland Hydrology Present? Yes No Remarks: HYDROLOGY Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) Surface Water (A1) Aquatic Fauna (B13) Sparsely Vegetated Concave Surface (B8) High Water Table (A2) Marl Deposits (B15) (LRR U) Drainage Patterns (B10) Saturation (A3) Hydrogen Sulfide Odor (C1) Moss Trim Lines (B16) Water Marks (B1) Oxidized Rhizospheres along Living Roots (C3) Dry-Season Water Table (C2) Sediment Deposits (B2) Presence of Reduced Iron (C4) Crayfish Burrows (C8) Drift Deposits (B3) Recent Iron Reduction -
Coastal Erosion in Cape Cod, Massachusetts: Finding Sustainable Solutions Michael D
University of Massachusetts Amherst ScholarWorks@UMass Amherst Student Showcase Sustainable UMass 2015 Coastal Erosion in Cape Cod, Massachusetts: Finding Sustainable Solutions Michael D. Roberts University of Massachusetts - Amherst, [email protected] Lauren Bullard University of Massachusetts - Amherst Shaunna Aflague University of Massachusetts - Amherst Kelsi Sleet University of Massachusetts - Amherst Follow this and additional works at: https://scholarworks.umass.edu/ sustainableumass_studentshowcase Part of the Environmental Policy Commons, and the Environmental Studies Commons Roberts, Michael D.; Bullard, Lauren; Aflague, Shaunna; and Sleet, Kelsi, "Coastal Erosion in Cape Cod, Massachusetts: indF ing Sustainable Solutions" (2015). Student Showcase. 6. Retrieved from https://scholarworks.umass.edu/sustainableumass_studentshowcase/6 This Article is brought to you for free and open access by the Sustainable UMass at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Student Showcase by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Coastal Erosion in Cape Cod 1 Coastal Erosion in Cape Cod, Massachusetts: Finding Sustainable Solutions Michael Roberts, Lauren Bullard, Shaunna Aflague, and Kelsi Sleet NRC 576 Water Resources Management and Policy Fall 2014 Coastal Erosion in Cape Cod 2 ABSTRACT The Massachusetts Office of Coastal Zone Management (CZM) and the Cape Cod Planning Commission have identified coastal erosion, flooding, and shoreline change as the number one risk affecting the heavily populated 1,068 square kilometers that constitute Cape Cod (CZM, 2013 and Cape Cod Commission 2010). This paper investigates natural and anthropogenic causes for coastal erosion and their relationship with established social and economic systems. Sea level rise, climate change, and other anthropogenic changes increase the rate of coastal erosion. -
THE CAPE MAY PENINSULA Is Not Like the Rest of New Jersey
U.S. Fish & Wildlife Service THE CAPE MAY PENINSULA Is Not Like the Rest of New Jersey Fall migration of monarch butterflies Photographs: USFWS Unique Ecosystems Key Migratory Corridor If you have noticed something The Cape May Peninsula is well-known “different” about the Cape May as a migratory route for raptors such Peninsula, particularly in regard to as the sharp-shinned hawk (Accipiter its vegetation types, of course you striatus), osprey (Pandion haliaetus), are right! The Cape May Peninsula and northern harrier (Circus cyaneus), is not like the rest of New Jersey. The as well as owl species in great numbers. primary reason is climatic: nestled at The peninsula’s western beaches within Piping plover chick low elevation between the Atlantic Delaware Bay provide the largest Ocean and the Delaware Bay, the spawning area for horseshoe crabs peninsula enjoys approximately 225 (Limulus polyphemus) in the world frost-free days at its southern tip and, as a result, sustain a remarkable compared to 158 days at its northern portion of the second largest spring end. The vegetation, showing strong concentration of migrating shorebirds characteristics of the Pinelands flora in in North America. The increasingly the northern portion of the peninsula, rare red knot (Calidris canutus; a displays closer affinities to the mixed candidate for federal listing) as well hardwood forest of our country’s as the sanderling (C. alba), least southern Coastal Plain. Southern tree sandpiper (C. minutilla), dowitcher species such as the swamp chestnut oak (Limnodromus spp.), and ruddy (Quercus michauxii) and loblolly pine turnstone (Arenaria interpres) are (Pinus taeda) reach their northernmost some of the many bird species that distribution in Cape May County, while feed on horseshoe crab eggs to gain the common Pinelands trees such as weight for migration to their summer Swamp pink pitch pine (P. -
Coastal Plain of Georgia
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIBECTOK WATER-SUPPLY PAPER UNDERGROUND WATERS OF THE COASTAL PLAIN OF GEORGIA BY L. W. STEPHENSON AND J. 0. VEATCH AND A DISCUSSION OP THE QUALITY OF THE WATERS BY R. B. DOLE Prepared in cooperation with the Geological Survey of Georgia WASHINGTON GOVERNMENT PRINTING OFFICE 1915 CONTENTS. __ Page. Introduction.............................................................. 25 Physiography.............................................................. 26 Cumberland Plateau.................................................... 26 Appalachian Valley.................................................... 27 Appalachian Mountains................................................ 27 Piedmont Plateau..................................................... 27 Coastal Plain........................................................... 28 General features................................................... 28 Physiographic subdivisions......................................... 29 Fall-line Mils................................................. 29 Dougherty plain............................................... 31 Altamaha upland............................................... 32 Southern limesink region...................................... 34 Okefenokee plain.............................................. 35 Satilla coastal lowland ......................................... 36 Minor features..................................................... 38 Terraces...................................................... -
Rocky Intertidal, Mudflats and Beaches, and Eelgrass Beds
Appendix 5.4, Page 1 Appendix 5.4 Marine and Coastline Habitats Featured Species-associated Intertidal Habitats: Rocky Intertidal, Mudflats and Beaches, and Eelgrass Beds A swath of intertidal habitat occurs wherever the ocean meets the shore. At 44,000 miles, Alaska’s shoreline is more than double the shoreline for the entire Lower 48 states (ACMP 2005). This extensive shoreline creates an impressive abundance and diversity of habitats. Five physical factors predominantly control the distribution and abundance of biota in the intertidal zone: wave energy, bottom type (substrate), tidal exposure, temperature, and most important, salinity (Dethier and Schoch 2000; Ricketts and Calvin 1968). The distribution of many commercially important fishes and crustaceans with particular salinity regimes has led to the description of “salinity zones,” which can be used as a basis for mapping these resources (Bulger et al. 1993; Christensen et al. 1997). A new methodology called SCALE (Shoreline Classification and Landscape Extrapolation) has the ability to separate the roles of sediment type, salinity, wave action, and other factors controlling estuarine community distribution and abundance. This section of Alaska’s CWCS focuses on 3 main types of intertidal habitat: rocky intertidal, mudflats and beaches, and eelgrass beds. Tidal marshes, which are also intertidal habitats, are discussed in the Wetlands section, Appendix 5.3, of the CWCS. Rocky intertidal habitats can be categorized into 3 main types: (1) exposed, rocky shores composed of steeply dipping, vertical bedrock that experience high-to- moderate wave energy; (2) exposed, wave-cut platforms consisting of wave-cut or low-lying bedrock that experience high-to-moderate wave energy; and (3) sheltered, rocky shores composed of vertical rock walls, bedrock outcrops, wide rock platforms, and boulder-strewn ledges and usually found along sheltered bays or along the inside of bays and coves. -
West Gulf Coastal Plain Pine
Rapid Assessment Reference Condition Model The Rapid Assessment is a component of the LANDFIRE project. Reference condition models for the Rapid Assessment were created through a series of expert workshops and a peer-review process in 2004 and 2005. For more information, please visit www.landfire.gov. Please direct questions to [email protected]. Potential Natural Vegetation Group (PNVG) R5GCPP West Gulf Coastal Plain Pine -- Uplands + Flatwoods General Information Contributors (additional contributors may be listed under "Model Evolution and Comments") Modelers Reviewers Maria Melnechuk [email protected] In worshop review Mike Melnechuk [email protected] Doug Zollner [email protected] Doug Zollner [email protected] Vegetation Type General Model Sources Rapid AssessmentModel Zones Forested Literature California Pacific Northwest Local Data Great Basin South Central Dominant Species* Expert Estimate Great Lakes Southeast Northeast S. Appalachians PITA LANDFIRE Mapping Zones PIEC Northern Plains Southwest 37 N-Cent.Rockies QUER 44 ANDR 45 Geographic Range This PNVG lies in Arkansas, Louisiana, Texas, and SE Oklahoma. The West Gulf Coastal Plain Pine- Hardwood Forest type is found over a large area of the South Central model zone. It is the predominate vegetation system over most of the Upper West Gulf Coastal Plain ecoregion with smaller incursions into the southern Interior Highlands (Ecological Classification CES203.378). The flatwoods communities represent predominately dry flatwoods of limited areas of the inland portions of West Gulf Coastal Plain. (Ecological Classification CES203.278) Biophysical Site Description This PNVG was historically present on nearly all uplands in the region except on the most edaphically limited sites (droughty sands, calcareous clays, and shallow soil barrens/rock outcrops). -
A Lost Biome: Part I
AA lostlost biome:biome: AA taletale ofof thethe SouthSouth AfricanAfrican coastalcoastal floraflora AA lostlost biome:biome: AA taletale ofof thethe SouthSouth AfricanAfrican coastalcoastal floraflora Alastair Potts, Adriaan Grobler & Richard Cowling Linda’s House of Crazy Linda’s House of Crazy Here be dragons... A lost biome: Part I Species richness? Compared with the CFR? Lombard&Cowling 2002 Compared with the CFR? Lombard&Cowling 2002 Compared with the CFR? Compared with the CFR? Coastal Dune Flora: Global Comparison Coastal Dune Flora: Global Comparison Coastal Dune Flora: Global Comparison Coastal Dune Flora: Global Comparison Coastal Dune Flora: Global Comparison 10 x 10 m >45 species Coastal Dune Vegetation: ~1200 species (Excluding widespread “guests”) With “guests”: ~2400 species Coastal Dune endemics: ~300 species (work in progress) Why is this linear, fragmented flora so rich? Full Interglacial Full Glacial Fisher et al. 2010 Quaternary Science Reviews Cawthra et al (in prep) Coastal Dune Vegetation: <<<1% of “historic” distribution Coastal Dune Vegetation: <<<1% of “historic” distribution But... “Least Concern” A lost biome: Part II A lost biome: Part II A rose by any other name...? A summary of the overall problem (in the vegmap) The current state of “coastal dunes” Overberg Dune Strandveld Algoa Dune Strandveld Agulhas Sand Fynbos Blombos Dune Strandveld Groot Brak Dune Strandveld Albany Dune Strandveld Agulhas Limestone Fynbos Albertinia Sand Fynbos Knysna Sand Fynbos Southern Cape Dune Fynbos De Hoop Limestone Fynbos Canca Limestone Fynbos Southern Cape Dune Fynbos Algoa Sandstone Fynbos Cape Seashore Vegetation Azonal Dune Strandveld Limestone Fynbos Sand Fynbos Sandstone Fynbos Cape Seashore Vegetation Overberg Dune Strandveld Agulhas Limestone Fynbos Agulhas Sand Fynbos Algoa Sandstone Fynbos Algoa Dune Strandveld Blombos Dune Strandveld De Hoop Limetsone Fynbos Albertinia Sand Fynbos Albany Dune Strandveld Groot Brak Dune Strandveld Canca Limestone Fynbos Knysna Sand Fynbos S.