Population Inversion • in Thermal Equilibrium Lower Level Always Greater Population

Total Page:16

File Type:pdf, Size:1020Kb

Population Inversion • in Thermal Equilibrium Lower Level Always Greater Population What are Lasers? What are Lasers? • Light Amplification by Stimulated Emission of Radiation LASER • Light emitted at very narrow wavelength bands (monochromatic) • Light emitted in a directed beam • Light is coherenent (in phase) • Light often Polarized • Diode lasers much smaller but operate on similar principals Why Study Lasers: Market & Applications • Market $6.0 billion (2006) (just lasers) Major areas: • Market Divided in laser Diodes (56%) & Non diode lasers (44%) Traditional Non Diode Laser • Materials Processing (30%) • Medicine (8%) Diode Lasers • Entertainment/CD/DVD/Printers (~21%) • Telecommunications (21%) Why Study Lasers: Laser Types Traditional Lasers • Solid State laser (Infra Red to Visible) • CO2 Gas laser (Far Infra Red) • Eximer Lasers (UV light) • These mostly used in material processing Diode Lasers • Near Infra Red diodes dominate • Mostly used in telecommunications and CD’s • Visible diode use is increasing • DVD’s driving this History of the Laser • 1917: Einstein's paper showing "Stimulated Emission" • 1957: MASER discovered: Townes & Schawlow • 1960: First laser using Ruby rods: Maiman first solid state laser • 1961: gas laser • 1962: GaAs semiconductor laser • 1964: CO2 laser • 1972: Fiber optics really take off • 1983: Laser CD introduced • 1997: DVD laser video disks World’s First Laser: Ruby Laser Dr. Maiman: Inventor of the World’s First Laser (on left) Electromagnetic Spectrum Light and Atoms • Light: created by the transition between quantized energy states c =νλ hc E = hν = λ c = speed of light ν = frequency hc = 1.24 x 10-6 eV m • Energy is measured in electron volts 1 eV = 1.602 x 10 -19 J • Atomic Energy levels have a variety of letter names (complicated) • Energy levels also in molecules: Bending, stretching, rotation Black Body Emitters • Most normal light emitted by hot "Black bodies" • Classical radiation follows Plank's Law 2π hc2 1 E( λ,T ) = W m3 λ 5 ⎡ ⎛ hc ⎞ ⎤ ⎢exp⎜ ⎟ − 1⎥ ⎣ ⎝ λ KT ⎠ ⎦ h = Plank's constant = 6.63 x 10-34 J s c = speed of light (m/s) λ = wavelength (m) T = Temperature (oK) K = Boltzman constant 1.38 x 10-23 J/K = 8.62 x 10-5 eV/K Black Body Emitters: Peak Emission • Peak of emission Wien's Law 2897 λ = μ m max T T = degrees K • Total Radiation Stefan-Boltzman Law E(T ) = σ T 4 W m2 σ = Stefan-Boltzman constant = 5.67 x 10-8 W m-2 K-4 Example of the Sun • Sun has a surface temperature of 6100 oK • What is its peak wavelength? • How much power is radiated from its surface 2897 2897 λ = = = 0.475μ m max T 6100 • or Blue green colour E(T ) = σ T 4 = 5.67x10-8 x 61004 = 7.85x107 W m2 • ie 78 MW/m2 from the sun's surface Black Body, Gray Body and Emissivity • Real materials are not perfectly Black – they reflect some light • Called a Gray body • Impact of this is to reduce the energy emitted • Reason is reflection at the surface reduces the energy emitted • Measure this as the Emissivity ε of a material ε = fraction energy emitted relative to prefect black body E ε = material Eblack body • Thus for real materials energy radiated becomes E(T ) = εσ T 4 W m2 • Emissivity is highly sensitive to material characteristics & T • Ideal material has ε = 1 (perfect Black Body) • Highly reflective materials are very poor emitters Electro-Magnetic Nature of Light • Classic light in vacuum has Electric field and magnetic field at 90o • Obtained from Maxwell’s Equations • Electric wave ⎡ ⎛ x ⎞⎤ ⎛ ⎡ 2π ⎤⎞ Ey ()x,t = E0 cos⎢ω⎜t − ⎟⎥ = E0 exp()i[]ω t − kx = E0 exp⎜i ω t − x ⎟ ⎣ ⎝ c ⎠⎦ ⎝ ⎣⎢ λ ⎦⎥⎠ 2π Where k = Wave vector k = λ c = velocity of light t = time (sec) λ = wavelength 2π ω= angular frequency (radians/sec) ω = 2πf = τ E0 ⎡ ⎛ x ⎞⎤ • Magnetic wave Bz ()x,t = cos⎢ω⎜t − ⎟⎥ c ⎣ ⎝ c ⎠⎦ hc • Photons are quantized wave packets with energy = λ • Coherent light: all the photons have waves aligned • Photons waves are behaving as sections of the continuous wave • Phase and E field direction are aligned but are discrete packets Irradiance or Light Intensity • What we see is the time averaged energy S, not E or B field t +T / 2 S()t = ∫ S(t)dt t −T / 2 • Where T is the period of the wave • Called the irradiance I in Watts/unit area/unit time 2 c 2 I == ε0c E = B μ0 • For sin waves this results in cε I = S = ε c E 2 = 0 E 2 0 2 • Not true in absorbing materials because • E & B have different relationship & phase there • If just a black body light expands in all directions • Thus intensity falls with inverse square of distance • Consider a sphere radius r0 with intensity I0 at surface • Then at distance r from the center of the sphere get I I(r) = 0 r 2 • Laser sources, or sources with optics behave differently Equilibrium Energy Populations • Laser are quantum devices • Assume gas in thermal equilibrium at temperature T • Some atoms in a Gas are in an excited state • Quantization means discrete energy levels -3 • Atoms Ni (atoms/m ) at a given energy level Ei • E0 is the ground state (unexcited) • Fraction at a given energy follows a Boltzmann distribution N ⎛ [E − E ]⎞ i = exp⎜− i 0 ⎟ N0 ⎝ KT ⎠ T = degrees K K = Boltzman constant 1.38 x 10-23 J/K = 8.62 x 10-5 eV/K Spontaneous and Stimulated Emission • Consider 2 energy levels E0 (ground state) and E1 (excited state) • Photon can cause Stimulated Absorption E0 to E1 • Excited state has some finite lifetime, τ10 (average time to change from state 1 to state 0) • Spontaneous Emission of photon when transition occurs • Randomly emitted photons when change back to level 0 • Passing photon of same λ can cause "Stimulated Emission" • Stimulated photon is emitted in phase with causal photon • Stimulated emission the foundation of laser operation Einstein's Rate Equations • Between energy levels 2 and 1 the rate of change from 2 to 1 is dN 21 = −A N dt 21 2 -1 • where A21 is the Einstein Coefficient (s ) • After long time energy follows a Boltzmann distribution N ⎛ [E − E ]⎞ 2 = exp⎜− 2 1 ⎟ N1 ⎝ KT ⎠ • If (E2 - E1) >> KT then over a long time N2( t ) = N2( 0 ) exp(A21t) • Thus in terms of the lifetime of the level τ21 sec, 1 A21 = τ 21 • illuminated by light of energy density ρ = nhν (J/m3) 3 (n= number of photons/m ) of frequency ν12 the absorption is • At frequency ν12 the absorption is dN 1 = N B ρ()ν emissions dt 1 12 12 m3s • B12 is the Einstein absorption coefficient (from 1 to 2) • Similarly stimulated emission rate (with B21=B12) is dN 2 = N B ρ()ν emissions dt 2 21 21 m3s Two level system: Population Inversion • In thermal equilibrium lower level always greater population • N1 >> N2 • Can suddenly inject energy into system - pumping • Now not a equilibrium condition • If pumped hard enough get "Population Inversion" • Upper level greater than lower level: N2 >> N1 • Population Inversion is the foundation of laser operation Creates the condition for high stimulated emission • In practice difficult to get 2 level population inversion • Best pumping with light gives is equal levels • Reason is Einstein’s rate equations dN dN 2 = N B ρ()ν = N B ρ ()ν = 1 emissions dt 2 21 21 1 12 21 dt m3s • Since B21=B12 then N1=N2 with light pumping • Need more levels to get population inversion Three level systems • Pump to E0 level E2, but require E2 to have short lifetime • Rapid decay to E1 • E1 must have very long lifetime: called Metastable • Now population inversion readily obtained with enough pumping • Always small amount of spontaneous emission (E1 to E0) • Spontaneous create additional stimulated emission to E0 • If population inversion: stimulated emission dominates: Lasing • Common example Nd:Yag laser • Problem: E0 often very full Four Level Systems • Pump to level E3, but require E3 to have short lifetime • Rapid decay to E2 • E2 must have very long lifetime: metastable • Also require E1 short lifetime for decay to E0 • Now always have E1 empty relative to E2 • Always small amount of spontaneous emission (E2 to E1) • Spontaneous photons create additional stimulated emission to E1 • If population inversion: stimulated emission dominates: Lasing • In principal easier to get population inversion • Problem: energy losses at E3 to E2 and E1 to E0 Absorption in Homogeneous Mediums • Monochromatic beam passing through absorbing medium homogeneous medium • Change in light intensity I is ΔI = I(x + Δx)− I(x) ΔI = −αΔxI(x) where α = the absorption coefficient (cm-1) • In differential form dI(x) = −αI(x) dx • This differential equation solves as I(x) = I0 exp(−αx) Gain in Homogeneous Mediums • If we have a population inversion increase I • Stimulated emission adds to light: gain I(x) = I0 exp(gx) g = small signal gain coefficient (cm-1) • In practice get both absorption and gain I(x) = I0 exp([g − a]x) • Gain is related directly to the population inversion g = g0 (N1 − N0 ) g0 = a constant for a given system • This seen in the Einstein B Coefficients • Thus laser needs gain medium to amplify signal .
Recommended publications
  • An Application of the Theory of Laser to Nitrogen Laser Pumped Dye Laser
    SD9900039 AN APPLICATION OF THE THEORY OF LASER TO NITROGEN LASER PUMPED DYE LASER FATIMA AHMED OSMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics. UNIVERSITY OF KHARTOUM FACULTY OF SCIENCE DEPARTMENT OF PHYSICS MARCH 1998 \ 3 0-44 In this thesis we gave a general discussion on lasers, reviewing some of are properties, types and applications. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw. It was noticed that the produced radiation possesses ^ characteristic^ different from those of other types of laser. This' characteristics determine^ the tunability i.e. the possibility of choosing the appropriately required wave-length of radiation for various applications. DEDICATION TO MY BELOVED PARENTS AND MY SISTER NADI A ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Dr. AH El Tahir Sharaf El-Din, for his continuous support and guidance. I am also grateful to Dr. Maui Hammed Shaded, for encouragement, and advice in using the computer. Thanks also go to Ustaz Akram Yousif Ibrahim for helping me while conducting the experimental part of the thesis, and to Ustaz Abaker Ali Abdalla, for advising me in several respects. I also thank my teachers in the Physics Department, of the Faculty of Science, University of Khartoum and my colleagues and co- workers at laser laboratory whose support and encouragement me created the right atmosphere of research for me. Finally I would like to thank my brother Salah Ahmed Osman, Mr.
    [Show full text]
  • Population Inversion X-Ray Laser Oscillator
    Population inversion X-ray laser oscillator Aliaksei Halavanaua, Andrei Benediktovitchb, Alberto A. Lutmanc , Daniel DePonted, Daniele Coccoe , Nina Rohringerb,f, Uwe Bergmanng , and Claudio Pellegrinia,1 aAccelerator Research Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; bCenter for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany; cLinac & FEL division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; dLinac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; eLawrence Berkeley National Laboratory, Berkeley, CA 94720; fDepartment of Physics, Universitat¨ Hamburg, Hamburg 20355, Germany; and gStanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 Contributed by Claudio Pellegrini, May 13, 2020 (sent for review March 23, 2020; reviewed by Roger Falcone and Szymon Suckewer) Oscillators are at the heart of optical lasers, providing stable, X-ray free-electron lasers (XFELs), first proposed in 1992 transform-limited pulses. Until now, laser oscillators have been (8, 9) and developed from the late 1990s to today (10), are a rev- available only in the infrared to visible and near-ultraviolet (UV) olutionary tool to explore matter at the atomic length and time spectral region. In this paper, we present a study of an oscilla- scale, with high peak power, transverse coherence, femtosecond tor operating in the 5- to 12-keV photon-energy range. We show pulse duration, and nanometer to angstrom wavelength range, that, using the Kα1 line of transition metal compounds as the but with limited longitudinal coherence and a photon energy gain medium, an X-ray free-electron laser as a periodic pump, and spread of the order of 0.1% (11).
    [Show full text]
  • Rate Equations
    Ultrafast Optical Physics II (SoSe 2019) Lecture 4, May 3, 2019 (1) Laser rate equations (2) Laser CW operation: stability and relaxation oscillation (3) Q-switching: active and passive 1 Possible laser cavity configurations The laser (oscillator) concept explained using a circuit model. 2 Self-consistent in steady state V.A. Lopota and H. Weber, fundamentals of the semiclassical laser theory 3 Laser rate equations Interaction cross section: [Unit: cm2] !") ") Spontaneous = −*") = − !$ τ21 emission § Interaction cross section is the probability that an interaction will occur between EM !" field and the atomic system. # = −'" ( !$ # § Interaction cross section only depends Absorption on the dipole matrix element and the linewidth of the transition !" ) Stimulated = −'")( !$ emission 4 How to achieve population inversion? relaxation relaxation rate relaxation Induced transitions Pumping rate relaxation Pumping by rate absorption relaxation relaxation rate Four-level gain medium 5 Laser rate equations for three-level laser medium If the relaxation rate is much faster than and the number of possible stimulated emission events that can occur , we can set N1 = 0 and obtain only a rate equation for the upper laser level: This equation is identical to the equation for the inversion of the two-level system: upper level lifetime equilibrium upper due to radiative and level population w/o non-radiative photons present processes 6 More on laser rate equations Laser gain material V:= Aeff L Mode volume fL: laser frequency I: Intensity vg: group velocity
    [Show full text]
  • Terahertz Sources
    Terahertz sources Pavel Shumyatsky Robert R. Alfano Downloaded from SPIE Digital Library on 22 Mar 2011 to 128.59.62.83. Terms of Use: http://spiedl.org/terms Journal of Biomedical Optics 16(3), 033001 (March 2011) Terahertz sources Pavel Shumyatsky and Robert R. Alfano City College of New York, Institute for Ultrafast Spectroscopy and Lasers, Physics Department, MR419, 160 Convent Avenue, New York, New York 10031 Abstract. We present an overview and history of terahertz (THz) sources for readers of the biomedical and optical community for applications in physics, biology, chemistry, medicine, imaging, and spectroscopy. THz low-frequency vibrational modes are involved in many biological, chemical, and solid state physical processes. C 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3554742] Keywords: terahertz sources; time domain terahertz spectroscopy; pumps; probes. Paper 10449VRR received Aug. 10, 2010; revised manuscript received Jan. 19, 2011; accepted for publication Jan. 25, 2011; published online Mar. 22, 2011. 1 Introduction Yajima et al.4 first reported on tunable far-infrared radiation by One of the most exciting areas today to explore scientific and optical difference-frequency mixing in nonlinear crystals. These engineering phenomena lies in the terahertz (THz) spectral re- works have laid the foundation and were used for a decade and gion. THz radiation are electromagnetic waves situated between initiated the difference-frequency generation (DFG), parametric the infrared and microwave regions of the spectrum. The THz amplification, and optical rectification methods. frequency range is defined as the region from 0.1 to 30 THz. The The THz region became more attractive for investigation active investigations of the terahertz spectral region did not start owing to the appearance of new methods for generating T-rays until two decades ago with the advent of ultrafast femtosecond based on picosecond and femtosecond laser pulses.
    [Show full text]
  • A Fundamental Approach to Phase Noise Reduction in Hybrid Si/III-V Lasers
    A fundamental approach to phase noise reduction in hybrid Si/III-V lasers Thesis by Scott Tiedeman Steger In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2014 (Defended May 14, 2014) ii © 2014 Scott Tiedeman Steger All Rights Reserved iii Contents Acknowledgements ix Abstract xi 1 Introduction1 1.1 Narrow-linewidth laser sources in coherent communication......1 1.2 Low phase noise Si/III-V lasers.....................4 2 Phase noise in laser fields7 2.1 Optical cavities..............................8 2.1.1 Loss................................8 2.1.2 Gain................................9 2.1.3 Quality factor........................... 10 2.1.4 Threshold condition....................... 11 2.2 Interaction of carriers with cavity modes................ 11 2.2.1 Spontaneous transitions into the lasing mode.......... 12 2.2.2 Spontaneous transitions into all modes............. 17 2.2.3 The spontaneous emission coupling factor........... 19 2.2.4 Stimulated transitions...................... 19 2.3 A phenomenological calculation of spontaneous emission into a lasing mode above threshold........................... 21 2.3.1 Number of carriers........................ 21 2.3.2 Total spontaneous emission rate................. 21 2.4 Phasor description of phase noise in a laser............... 23 iv 2.4.1 Spontaneous photon generation................. 25 2.4.2 Photon storage.......................... 27 2.4.3 Spectral linewidth of the optical field.............. 29 2.4.4 Phase noise power spectral density............... 30 2.4.5 Linewidth enhancement factor.................. 32 2.4.6 Total linewidth.......................... 34 3 Phase noise in hybrid Si/III-V lasers 35 3.1 The advantages of hybrid Si/III-V...................
    [Show full text]
  • Arxiv:1410.6667V2 [Physics.Optics]
    Self-starting stable coherent mode-locking in a two-section laser R. M. Arkhipova, M. V. Arkhipovb, I. Babushkinc,d a ITMO University, Kronverkskiy prospekt, 49, 197101 St. Petersburg, Russia, b Faculty of Physics, St. Petersburg State University, Ulyanovskaya 1, Petrodvoretz, St. Petersburg 198504, Russia c Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1 30167, Hannover, Germany d Max Born Institute, Max Born Str. 2a, 12489 Berlin, Germany Coherent mode-locking (CML) uses self-induced transparency (SIT) soliton formation to achieve, in contrast to conventional schemes based on absorption saturation, the pulse durations below the limit allowed by the gain line width. Despite of the great promise it is difficult to realize it experimentally because a complicated setup is required. In all previous theoretical considerations CML is believed to be non-self-starting. In this article we show that if the cavity length is selected properly, a very stable (CML) regime can be realized in an elementary two-section ring-cavity geometry, and this regime is self-developing from the non-lasing state. The stability of the pulsed regime is the result of a dynamical stabilization mechanism arising due to finite-cavity-size effects. I. INTRODUCTION Development of ultrashort laser pulse sources with high repetition rates and peak power is an area of principal in- terest in optics. Such lasers have applications in a high- bit-rate optical communications, real time-monitoring of ultrafast processes in matter etc. A well-known method for generating high power ultrashort optical pulses is a passive mode-locking (PML) [1–6]. In order to achieve PML, a nonlinear saturable absorbing medium is placed into the laser cavity.
    [Show full text]
  • Chapter 6. Laser: Theory and Applications
    Chapter 6. Laser: Theory and Applications Reading: Sigman, Chapter 6, 7, and 26 Bransden & Joachain, Chapter 15 Laser Basics Light Amplification by Stimulated Emission of Radiation hν = E − E E1 1 0 Stimulated emission hν E0 Population inversion (N1 > N0) ⇒ laser, maser 2 2 4π ⎛ e ⎞ I(ω ) 2 Transition rate W = ⎜ ⎟ 01 M (ω ) ∝ I(ω ) for stimulated emission 01 2 ⎜ ⎟ 2 01 01 01 m c ⎝ 4πε0 ⎠ ω01 Incident light intensity Pumping (optical, electrical, etc.) for population inversion Gain medium High reflector Out coupler Optical cavity Longitudinal Modes in an Optical Cavity EM wave in a cavity Boundary condition: λ cτ πc L = m = m = m m = 1, 2, 3, … 2 2 ω 2L c π c ⇒ λ = ,ν = m, ω = m m 2L L 2L Round-trip time of flight: T = = mτ c Typical laser cavity: L = 1.5 m, λ = 0.75 µm 2L 3 m : T = = =10−8 sec =10 nsec : c 3×108 m / sec 1 ⇒ ν = =108 Hz =100 MHz R T 2L 3 m L m = = = 4×106 = 4 milion !! λ 0.75×10−6 m Single mode 2 2 I(t) = cosω0t = cost Spectrum Intensity 1 Frequency Intensity -100 -50 0 50 100 Time Cavity Quality Factors, Qc End mirror L Out coupler R ≈ 1 T = 1 ~ 5 % Energy loss by reflection, transmission, etc. ∞ −δct /T −iω0t E(ω) = E0e e dt ∫0 E e−δct /T e−iω0t 0 E = 0 i(ω −ω0 ) +δc /T t E(ω) 2 Lorentzian Emission spectrum 2 2 E δ c ω E(ω) = 0 ~ = 2 2 2 T Q (ω −ω ) +δ /T c 0 c ω ω0 Energy of circulating EM wave, Icirc(t) ⎡ t ⎤ 2L T = Icirc (t) = Icirc (0)×exp⎢−δ c ⎥, : round-trip time of flight ⎣ T ⎦ c Number of round trips in t ⎡ ω ⎤ ⇒ Icirc (t) = Icirc (0)×exp⎢− t⎥ ⎣ Qc ⎦ Q-factor of a RLC circuit ωT 4π L 1 ω ωL Q = = Q = = where
    [Show full text]
  • Step-Pulse Modulation of Gain-Switched Semiconductor Pulsed Laser
    applied sciences Article Step-Pulse Modulation of Gain-Switched Semiconductor Pulsed Laser Bin Li , Changyan Sun, Yun Ling *, Heng Zhou and Kun Qiu School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; [email protected] (B.L.); [email protected] (C.S.); [email protected] (H.Z.); [email protected] (K.Q.) * Correspondence: [email protected] Received: 12 December 2018; Accepted: 8 February 2019; Published: 12 February 2019 Featured Application: The proposed novel approach presented in this paper offers a highly effective modulated method for a gain-switched semiconductor laser. As a result, we can acquire the output pulse with a higher peak power (the limit can be reached) and shorter width and can be incorporated as a practical and cost-effective approach for many fields which need high extinction ratio short pulse, such as the optical time domain reflectometry. Abstract: To improve the peak power and extinction ratio and produce ultra-short pulses, a novel approach is presented in this paper offers a highly effective modulated method for a gain-switched semiconductor laser by using step-pulse signal modulation. For the purpose of single pulse output, then the effects on the output from the gain-switched semiconductor laser are studied by simulating single mode rate equation when changing the amplitude and width of the modulated signal. The results show that the proposed method can effectively accelerate the accumulation speed of the population inversion and we can acquire the output pulse with higher peak power and shorter width. Compared with the traditional rectangular wave modulation, this method is advantageous to obtain a high gain switching effect by increasing the second modulation current and reduce the pulse width to saturation at the best working point.
    [Show full text]
  • 23. Lasers II Four-Level Systems Are the Best for Lasers
    23. Lasers II Four-level systems are the best for lasers Steady-state conditions: - threshold - longitudinal modes Some laser examples “The teleforce ray will send concentrated beams of particles through the free air, of such tremendous energy that they will bring down a fleet of 10,000 enemy airplanes at a distance of 250 miles from the defending nation's border and will cause armies of millions to drop dead in their tracks.” - Nikolai Tesla, 1937 Two-, three-, and four-level systems Two-level Three-level Four-level system system system Fast decay Fast decay Pump Pump Laser Transition Laser Transition Transition Transition Laser Pump Transition Transition Fast decay At best, you get If you hit it hard, equal populations. Lasing is easy! you get lasing. No lasing. II/ sat always NN negative 1/ I Isat Gain must exceed loss Having a population inversion (N < 0) isn’t enough. Additional losses in intensity occur, due to absorption, scattering, and reflections. Also there is an output beam… L I1 I0 output I2 a laser medium with gain, I3 G = exp(gL) Mirror with Mirror with R < 100% R = 100% The laser will lase if the beam maintains Gain = Loss its intensity after one round trip, that is, if: This means: I3 = I0. Here, it means a condition on I3: II30 exp(gLR ) exp(gLI ) 0 In this expression, we are ignoring sources of loss other than the mirror reflectivity R. This is an approximation, because there are always other sources of loss. N < 0 is necessary, but not sufficient. Solving for g, we find: 1 gRln(1/ ) 2L There is a minimum value of the gain which is required in order to turn on a laser.
    [Show full text]
  • Amplified Spontaneous Emission at 5.23 Μm in Two-Photon Excited Rb Vapour
    Amplified spontaneous emission at 5.23 μm in two-photon excited Rb vapour A.M. Akulshin1, N. Rahaman1, S.A. Suslov2 and R.J. McLean1 1Centre for Quantum and Optical Science, Swinburne University of Technology, PO Box 218, Melbourne 3122, Australia 2Department of Mathematics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne 3122, Australia Abstract. Population inversion on the 5D5/2-6P3/2 transition in Rb atoms produced by cw laser excitation at different wavelengths has been analysed by comparing the generated mid-IR radiation at 5.23 μm originating from amplified spontaneous emission (ASE) and isotropic blue fluorescence at 420 nm. Using a novel method for detection of two photon excitation via ASE, we have observed directional co- and counter-propagating emission at 5.23 μm. Evidence of a threshold-like characteristic is found in the ASE dependences on laser detuning and Rb number density. We find that the power dependences of the backward- and forward- directed emission can be very similar and demonstrate a pronounced saturation characteristic, however their spectral dependences are not identical. The presented observations could be useful for enhancing efficiency of frequency mixing processes and new field generation in atomic media. 1. Introduction The interest in frequency conversion of resonant light and laser-like new field generation in atomic media specially prepared by resonant laser light is driven by a number of possible applications [1, 2, 3, 4]. The transfer of population to excited levels, particularly to create population inversion on strong transitions in the optical domain, is an essential part of the nonlinear process of frequency up- and down-conversion [5, 6, 7].
    [Show full text]
  • Study of the Population Inversion Mechanisms and Superradiance on Ion Transitions of Molecular Nitrogen in the Filament
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic archive of Tomsk Polytechnic University Study of the population inversion mechanisms and superradiance on ion transitions of molecular nitrogen in the filament N.G. Ivanov1, V.F. Losev1,2, V.E. Prokop’ev1,3 1Institute of High Current Electronics SB RAS, Akademichesky Avenue 2/3, 634055, Tomsk, Russia, [email protected] 2National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russia 3National Research Tomsk State University, 36, Lenina Ave., 634050, Tomsk, Russia ABSTRACT 3 3 + The experimental results of the inversion population mechanisms study in the resonant electronic transition B Пg–A Σu of nitrogen ions by optically pumped of air and pure nitrogen by femtosecond laser pulse at a wavelength of 950 nm are + 2 + presented. It is shown that the inversion results from selective settling of N2 (B Σu , v' =0) excited state by multiphoton excitation of the autoionization states of the nitrogen molecule with energy of 18.7 eV. Seed photon for superradiance at transitions of molecular nitrogen ions are photons the axial supercontinuum occurring in the filament on the respective wavelengths. The mode of the superradiance at a wavelength λ = 358.4 nm referred to the transition of the CN molecules was realized. Keywords: inversion population, mechanisms, filament, femtosecond laser pulse, multiphoton ionization, molecular, nitrogen 1. INTRODUCTION For the first time lasing in nitrogen it was obtained in 1963 in a pulsed discharge plasma of low pressure in the 3 3 + 3 3 transitions of first (B Пg – A Σu , the wavelength λ = 1046.9) and second (С Пu - B Пg, λ =337.1 nm) positive systems of molecular nitrogen [1].
    [Show full text]
  • Introduction to Laser Physics
    Introduction to Laser Physics Laura Corner Cockcroft Institute for Accelerator Science Liverpool University, UK CERN Accelerator School High Gradient Wakefield Accelerators Sesimbra, Portugal, March 2019 1 Outline • What is a laser? • Basic laser physics • Different types of laser systems. • High power lasers Suggested reading: • ‘Lasers’, A.E. Siegman, University Science Books • ‘Principles of Lasers’, O. Svelto, Springer • ‘Laser Physics’, S. Hooker & C. Webb, Oxford University Press • ‘Optical Electronics in Modern Communications’, A. Yariv, Oxford University Press CERN High Gradient Accelerator School, Sesimbra Portugal, March 2019 2 LASER Light Amplification by Stimulated Emission of Radiation CERN High Gradient Accelerator School, Sesimbra Portugal, March 2019 3 What makes lasers special? • They produce a directional beam. •They have a narrow spectrum (or bandwidth). •They are coherent. Slide courtesy Prof. S. Hooker CERN High Gradient Accelerator School, Sesimbra Portugal, March 2019 4 Einstein model • Einstein identified 3 ways in which atoms exchange energy with a radiation field • Absorption • Spontaneous emission spontaneousstimulatedabsorption emission emission • Stimulated emission • Rate of absorption/stimulated emission dependent on no of photons & number of atoms in lower/upper state. ‣ photon needs to have correct energy Albert Einstein ‣ the number of photons can be amplified Slide courtesy Prof. S. Hooker CERN High Gradient Accelerator School, Sesimbra Portugal, March 2019 5 Lasers: the basic idea We want lots of this...
    [Show full text]