Oceanic Drivers of Sei Whale Distribution in the North Atlantic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modelling Growth of Northern Krill (Meganyctiphanes Norvegica) Using an Energy-Budget Approach?
Modelling growth of northern krill (Meganyctiphanes norvegica) using an energy-budget approach? Tjalling Jagera,, Elisa Ravagnanb aDEBtox Research, De Bilt, the Netherlands bIRIS Environment, International Research Institute of Stavanger, Postboks 8046, N-4068 Stavanger, Norway Abstract Northern krill (Meganyctiphanes norvegica) is an important species in the North Atlantic and the Mediterranean Sea, but very little life-history infor- mation is available under controlled (laboratory) conditions. Here, we use the DEBkiss model to piece together the available data into a quantitative energy budget. We use this model to analyse larval growth curves, and to re- construct the feeding history for field populations from their (reconstructed) multi-year growth patterns. The resulting model parameters are also used to provide estimates for respiration, feeding and reproduction rates that are consistent with measured values. Many uncertainties remain, but this anal- ysis demonstrates how simple and generic energy-budget models have the potential to integrate observations on different traits, to interpret growth as a function of food and temperature, and to compare different species in a meaningful manner. Keywords: Dynamic Energy Budget, DEBkiss, Meganyctiphanes norvegica, life-history traits, growth modeling, krill ?©2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. The paper was pub- lished as: Jager T, Ravagnan E. 2016. Modelling growth of northern krill (Meganyc- tiphanes norvegica) using an energy-budget approach. Ecological Modelling 325:28-34.. http://dx.doi.org/10.1016/j.ecolmodel.2015.12.020. Email address: [email protected] (Tjalling Jager) URL: http://www.debtox.nl/ (Tjalling Jager) Preprint submitted to Ecological Modelling March 14, 2021 1. -
Egg Production Rates of the Copepod Calanus Marshallae in Relation To
Egg production rates of the copepod Calanus marshallae in relation to seasonal and interannual variations in microplankton biomass and species composition in the coastal upwelling zone off Oregon, USA Peterson, W. T., & Du, X. (2015). Egg production rates of the copepod Calanus marshallae in relation to seasonal and interannual variations in microplankton biomass and species composition in the coastal upwelling zone off Oregon, USA. Progress in Oceanography, 138, 32-44. doi:10.1016/j.pocean.2015.09.007 10.1016/j.pocean.2015.09.007 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Progress in Oceanography 138 (2015) 32–44 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Egg production rates of the copepod Calanus marshallae in relation to seasonal and interannual variations in microplankton biomass and species composition in the coastal upwelling zone off Oregon, USA ⇑ William T. Peterson a, , Xiuning Du b a NOAA-Fisheries, Northwest Fisheries Science Center, Hatfield Marine Science Center, Newport, OR, United States b Cooperative Institute for Marine Resources Studies, Oregon State University, Hatfield Marine Science Center, Newport, OR, United States article info abstract Article history: In this study, we assessed trophic interactions between microplankton and copepods by studying Received 15 May 2015 the functional response of egg production rates (EPR; eggs femaleÀ1 dayÀ1) of the copepod Calanus Received in revised form 1 August 2015 marshallae to variations in microplankton biomass, species composition and community structure. Accepted 17 September 2015 Female C. marshallae and phytoplankton water samples were collected biweekly at an inner-shelf station Available online 5 October 2015 off Newport, Oregon USA for four years, 2011–2014, during which a total of 1213 female C. -
Cetacean Fact Sheets for 1St Grade
Whale & Dolphin fact sheets Page CFS-1 Cetacean Fact Sheets Photo/Image sources: Whale illustrations by Garth Mix were provided by NOAA Fisheries. Thanks to Jonathan Shannon (NOAA Fisheries) for providing several photographs for these fact sheets. Beluga: http://en.wikipedia.org/wiki/File:Beluga03.jpg http://upload.wikimedia.org/wikipedia/commons/4/4b/Beluga_size.svg Blue whale: http://upload.wikimedia.org/wikipedia/commons/d/d3/Blue_Whale_001_noaa_body_color.jpg; Humpback whale: http://www.nmfs.noaa.gov/pr/images/cetaceans/humpbackwhale_noaa_large.jpg Orca: http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/killerwhale_photos.htm North Atlantic right whale: http://www.nmfs.noaa.gov/pr/images/cetaceans/narw_flfwc-noaa.jpg Narwhal: http://www.noaanews.noaa.gov/stories2010/images/narwhal_pod_hires.jpg http://upload.wikimedia.org/wikipedia/commons/a/ac/Narwhal_size.svg Pygmy sperm whale: http://swfsc.noaa.gov/textblock.aspx?ParentMenuId=230&id=1428 Minke whale: http://www.birds.cornell.edu/brp/images2/MinkeWhale_NOAA.jpg/view Gray whale: http://upload.wikimedia.org/wikipedia/commons/b/b8/Gray_whale_size.svg Dall’s porpoise: http://en.wikipedia.org/wiki/File:Dall%27s_porpoise_size.svg Harbor porpoise: http://www.nero.noaa.gov/protected/porptrp/ Sei whale: http://upload.wikimedia.org/wikipedia/commons/thumb/a/a1/Sei_whale_size.svg/500px- Sei_whale_size.svg.png Whale & Dolphin fact sheets Page CFS-2 Beluga Whale (buh-LOO-guh) Photo by Greg Hume FUN FACTS Belugas live in cold water. They swim under ice. They are called white whales. They are the only whales that can move their necks. They can move their heads up and down and side to side. Whale & Dolphin fact sheets Page CFS-3 Baby belugas are gray. -
213 Subpart I—Taking and Importing Marine Mammals
National Marine Fisheries Service/NOAA, Commerce Pt. 218 regulations or that result in no more PART 218—REGULATIONS GOV- than a minor change in the total esti- ERNING THE TAKING AND IM- mated number of takes (or distribution PORTING OF MARINE MAM- by species or years), NMFS may pub- lish a notice of proposed LOA in the MALS FEDERAL REGISTER, including the asso- ciated analysis of the change, and so- Subparts A–B [Reserved] licit public comment before issuing the Subpart C—Taking Marine Mammals Inci- LOA. dental to U.S. Navy Marine Structure (c) A LOA issued under § 216.106 of Maintenance and Pile Replacement in this chapter and § 217.256 for the activ- Washington ity identified in § 217.250 may be modi- fied by NMFS under the following cir- 218.20 Specified activity and specified geo- cumstances: graphical region. (1) Adaptive Management—NMFS 218.21 Effective dates. may modify (including augment) the 218.22 Permissible methods of taking. existing mitigation, monitoring, or re- 218.23 Prohibitions. porting measures (after consulting 218.24 Mitigation requirements. with Navy regarding the practicability 218.25 Requirements for monitoring and re- porting. of the modifications) if doing so cre- 218.26 Letters of Authorization. ates a reasonable likelihood of more ef- 218.27 Renewals and modifications of Let- fectively accomplishing the goals of ters of Authorization. the mitigation and monitoring set 218.28–218.29 [Reserved] forth in the preamble for these regula- tions. Subpart D—Taking Marine Mammals Inci- (i) Possible sources of data that could dental to U.S. Navy Construction Ac- contribute to the decision to modify tivities at Naval Weapons Station Seal the mitigation, monitoring, or report- Beach, California ing measures in a LOA: (A) Results from Navy’s monitoring 218.30 Specified activity and specified geo- graphical region. -
FC Inshore Cetacean Species Identification
Falklands Conservation PO BOX 26, Falkland Islands, FIQQ 1ZZ +500 22247 [email protected] www.falklandsconservation.com FC Inshore Cetacean Species Identification Introduction This guide outlines the key features that can be used to distinguish between the six most common cetacean species that inhabit Falklands' waters. A number of additional cetacean species may occasionally be seen in coastal waters, for example the fin whale (Balaenoptera physalus), the humpback whale (Megaptera novaeangliae), the long-finned pilot whale (Globicephala melas) and the dusky dolphin (Lagenorhynchus obscurus). A full list of the species that have been documented to date around the Falklands can be found in Appendix 1. Note that many of these are typical of deeper, oceanic waters, and are unlikely to be encountered along the coast. The six species (or seven species, including two species of minke whale) described in this document are observed regularly in shallow, nearshore waters, and are the focus of this identification guide. Questions and further information For any questions about species identification then please contact the Cetaceans Project Officer Caroline Weir who will be happy to help you try and identify your sighting: Tel: 22247 Email: [email protected] Useful identification guides If you wish to learn more about the identification features of various species, some comprehensive field guides (which include all cetacean species globally) include: Handbook of Whales, Dolphins and Porpoises by Mark Carwardine. 2019. Marine Mammals of the World: A Comprehensive Guide to Their Identification by Thomas A. Jefferson, Marc A. Webber, and Robert L. Pitman. 2015. Whales, Dolphins and Seals: A Field Guide to the Marine Mammals of the World by Hadoram Shirihai and Brett Jarrett. -
The Secret Lives of JELLYFISH Long Regarded As Minor Players in Ocean Ecology, Jellyfish Are Actually Important Parts of the Marine Food Web
The secret lives of JELLYFISH Long regarded as minor players in ocean ecology, jellyfish are actually important parts of the marine food web. BY GARRY HAMILTON ennifer Purcell watches intently as the boom of the research ship Moon jellyfish (Aurelia Skookum slowly eases a 3-metre-long plankton net out of Puget Sound aurita) contain more Jnear Olympia, Washington. The marine biologist sports a rain suit, calories than some which seems odd for a sunny day in August until the bottom of the net other jellyfish. is manoeuvred in her direction, its mesh straining from a load of moon jellyfish (Aurelia aurita). Slime drips from the bulging net, and long ten- tacles dangle like a scene from an alien horror film. But it does not bother Purcell, a researcher at Western Washington University’s marine centre in Anacortes. Pushing up her sleeves, she plunges in her hands and begins to count and measure the messy haul with an assuredness borne from nearly 40 years studying these animals. 432 | NATURE | VOL 531 | 24 MARCH 2016 © 2016 Macmillan Publishers Limited. All rights reserved FEATURE NEWS Most marine scientists do not share her enthusiasm for the creatures. also inaccessible, living far out at sea or deep below the light zone. They Purcell has spent much of her career locked in a battle to find funding often live in scattered aggregations that are prone to dramatic popula- and to convince ocean researchers that jellyfish deserve attention. But tion swings, making them difficult to census. Lacking hard parts, they’re she hasn’t had much luck. -
Enormous Carnivores, Microscopic Food, and a Restaurant That's Hard to Find
Enormous Carnivores, Microscopic Food, and a Restaurant That's Hard to Find MARK F. BAUMGARTNER, CHARLES A. MAYO, AND ROBERT D. KENNEY April 1986 Cape Cod Bay We'd known for a long time that there were places east of Cape Cod where pow+l tidal impulses meet the sluggiih southward-moving coastal cur- rent, places where right whales lined up along the rips where plankton con- centrate. On a windless day in early April 1986, we decided to see ifright whales hadfoundsuch an area. The winter season, when right whales come to Cape Cod, had been a hard one, and calm hys like this were few, so we could at last get to the more distant convergence and, as localjshermen do, see what we could catch. It was gloomy and nearly dzrk when we lefi the port. For those of us who study whales, expectations are usually tempered by realip; we were lookingfor one of the rarest of all mammals in the shroud of the ocean. To- day, however, spirits were high as the hybreak was filed with springtime promise. Along the great outer beach of the Cape, so close to shore that we couldsmell the land nearb, thefist right whale was spotted working along one of those current rips. And as the sun climbed out of the haze, the whale rose and opened that great and odd mouth and skimmed the su$ace in a silence broken only ly the sizzle of water passing through its huge filtering Enormous Carnivores, Microscopic Food 139 apparatus. Our earlier optimism was warranted, andfor several hours we drzFedjust clear of the linear rip that the whale was working, recording the complex pattern of its movements. -
Trophic Relationships and the Role of Calanus in the Oceanic Ecosystems South and North of Iceland
ICES CM 2013/F:09 Trophic relationships and the role of Calanus in the oceanic ecosystems south and north of Iceland Hildur Petursdottir Marine Research Institute, Skúlagata 4, PO Box 1390, 121 Reykjavík, Iceland. Presenter contact details: [email protected] , Phone +354 5752059 Summary The aim of this study was to increase the knowledge on the role of Calanus copepods and trophic relations of the key components of the oceanic ecosystems south-west (Atlantic waters) and north (Arctic and sub-Arctic waters) of Iceland. The trophic relationships and energy transfer to higher trophic levels were estimated by using fatty acid trophic markers and by applying stable isotopes of carbon and nitrogen. The energy rich Calanus species are key links between primary producers and higher trophic levels in the Icelandic waters. The Calanus species dominate the zooplankton biomass around Iceland and their markers (20:1n9 and 22:1n11) are found in high amount in animals at higher trophic levels. Calanus finmarchicus plays important role as a forage species in the Atlantic water south-west of Iceland while its high importance is replaced by the larger lipid rich C. hyperboreus in the Arctic and sub-Arctic waters north of Iceland. Even though Calanus based food-web is the main driver in both areas, there exist a pathway where Calanus species are of less importance and the energy is channeled via euphausiids to higher trophic levels. This study presents novel important knowledge on the food web structures and carbon flow in Icelandic waters. Introduction The waters south and north of Iceland vary greatly both oceanographically and biologically with the rather stable and warm Atlantic waters south and west of Iceland and the more variable and cold Arctic and sub-Arctic waters, north and east of Iceland. -
The Forgotten Whale: a Bibliometric Analysis and Literature Review of the North Atlantic Sei Whale Balaenoptera Borealis
The forgotten whale: a bibliometric analysis and literature review of the North Atlantic sei whale Balaenoptera borealis Rui PRIETO* Departamento de Oceanografia e Pescas da Universidade dos Açores & Centro do IMAR da Universidade dos Açores, 9901-862 Horta, Portugal. E-mail: [email protected] *Correspondence author. David JANIGER Natural History Museum, Los Angeles County, 900 Exposition Blvd., Los Angeles, California 90007, USA. E-mail: [email protected] Mónica A. SILVA Departamento de Oceanografia e Pescas da Universidade dos Açores & Centro do IMAR da Universidade dos Açores, 9901-862 Horta, Portugal, and Biology Department, MS#33, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA. E-mail: [email protected] Gordon T. WARING NOAA Fisheries, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, Massachusetts 02543-1026, USA. E-mail: [email protected] João M. GONÇALVES Departamento de Oceanografia e Pescas da Universidade dos Açores & Centro do IMAR da Universidade dos Açores, 9901-862 Horta, Portugal. E-mail: [email protected] ABSTRACT 1. A bibliometric analysis of the literature on the sei whale Balaenoptera borealis is presented. Research output on the species is quantified and compared with research on four other whale species. The results show a significant increase in research for all species except the sei whale. Research output is characterized chronologically and by oceanic basin. 2. The species’ distribution, movements, stock structure, feeding, reproduction, abundance, acoustics, mortality and threats are reviewed for the North Atlantic, and the review is complemented with previously unpublished data. 3. Knowledge on the distribution and movements of the sei whale in the North Atlantic is still mainly derived from whaling records. -
Life Cycle and Distribution of Calanus Finmarchicus in Deep Basins on the Nova Scotia Shelf and Seasonal Changes in Calanus Spp
MARINE ECOLOGY PROGRESS SERIES Vol. 66: 225-237, 1990 Published September 6 Mar. Ecol. Prog. Ser. Life cycle and distribution of Calanus finmarchicus in deep basins on the Nova Scotia shelf and seasonal changes in Calanus spp. ' Biological Sciences Branch, Department of Fisheries and Oceans. Bedford Institute of Oceanography, PO Box 1006, Dartmouth, Nova Scotia, Canada B2Y 4A2 Physical/Chemical Sciences Branch, Department of Fisheries and Oceans. Bedford Institute of Oceanography, PO Box 1006, Dartmouth. Nova Scotia. Canada B2Y 4A2 ABSTRACT: The deep basins on the Nova Scotia shelf contain high concentrations of Calanus finmarchicus, C. glacialis, and C. hyperboreus at depths below 200 m. From May to late fall these were as high as 20 000 m-3. The dominant specles by numbers was C. finmarchicus; however, its biomass was equalled or exceeded by C. hyperboreus. The life cycle of C. finmarchicus in the region of 2 of the largest basins showed that breeding started late in winter with a peak in April. High concentrations of Calanus suggested that the basins had higher levels of C. finmarchicus production than the adjacent shelf with mean depths less than 100 m. All 3 species of Calanus started to accumulate below 200 m in May as Stages CIV and CV C. glacialisand C. hyperboreusdid not reproduce in significant numbers on the NW half of the shelf but did accumulate in the basins as they were advected from the NE shelf region. Resting stages of Calanus resided at depths below 200 m in water at between 8.5 and 11 "C for an estimated 7 to 8 mo. -
North Atlantic Warming Over Six Decades Drives Decreases in Krill
ARTICLE https://doi.org/10.1038/s42003-021-02159-1 OPEN North Atlantic warming over six decades drives decreases in krill abundance with no associated range shift ✉ Martin Edwards 1 , Pierre Hélaouët2, Eric Goberville 3, Alistair Lindley2, Geraint A. Tarling 4, Michael T. Burrows5 & Angus Atkinson 1 In the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, 1234567890():,; however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Conse- quently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic. 1 Plymouth Marine Laboratory, Plymouth PL13DH, UK. -
The Scientific Reports of the Whales Research Institute, Tokyo, Japan
THE SCIENTIFIC REPORTS OF THE WHALES RESEARCH INSTITUTE, TOKYO, JAPAN NUMBER I, JUNE 1948 Akiya, S. and Tejima, S. Studies on digestive enzymf" in whale. 3-7 Akiya, S., Ishikawa, Y., Tejima, S. and Tanzawa, T. Studies on tryptas!" from a whale (Balaenoptera borealis L. ). 8-10 Akiya, S., Tejima, S. and Ishikawa, Y. Studit>s on the utilization of whale m<'at by the use of pan creatic tryptase of whales. 11-14 Akiya, S. and Kobo, F. The test culture of some microorganisms with whale meat peptone. 15-16 Nakai, T. Chemical studies on the freshness of whale meat. I. Evaluation of freshness and changes in quantity of several kinds of nitrogen in whale meat following deterioration of freshness. 17-26 Nakai, T. Chemical studies on the freshness of whale meat. II. On comparison between whale meat and beef on deterioration of freshnf"SS and autolysis. 27-30 Tawara, T. On the simultaneous extraction of vitamin A-D and vitamin B2 complex from the liver of a fin whale (Nagasu-Kujira, Balaenoptera physalus L.). 31-37 Tawara, T. Studies on whale blood. I. On the separation of histidine from whal<' blood. 38-40 Nakai, J. and Shida, T. Sinus-hairs of the sei-whale (Balaenoptera borealis). 41-47 NUMBER 2, DECEMBER 1948 Ogawa, T. and Arifuku, S. On the acoustic system in the cetacean brains. 1-20 Yamada, M. Auditory organ of the whalebone whales. (Preliminary rt>port). 21-30 Nakai, T. Chemical studies on the freshness of whale meat. III. Effect of hydrogen-ion concentration on decrease in freshness and titration curve of whale meat with HCl and Na2C08• 31-34 Ishikawa, S., Omote, Y.