Effects of Climate Change on the Arctic and Out-Of-The-Box Approaches for Dealing with Them

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Climate Change on the Arctic and Out-Of-The-Box Approaches for Dealing with Them Effects of Climate Change on the Arctic and Out-of-the-Box Approaches for Dealing with Them Mark Parrino Introduction Human-induced climate change is becoming an increasing threat. The rate of warming in the 21st century is greater than in the second half of the 20th century.i ii iii The most pronounced effects are happening in the Arctic, where the surface air temperature is warming about twice as fast as the global average rate of warming.iv The warming is leading to an increase in global sea level as a result of melting ice sheets and glaciers and through thermal expansion. Warming is also linked to an observed weakening in the zonal component of the jet stream and an increase of severe weather in mid- and high latitudes.v vi Given the urgency of the situation, reducing emissions alone will not be enough to avoid devastating outcomes and so increasing attention is being paid to unusual, out-of-the-box approaches. These less-conventional approaches might include recreating an ecosystem from a previous glacial period to help prevent permafrost melt, adding particles to the atmosphere or bubbles to the oceans to reflect sunlight, or constructing buttresses to delay the collapse of glaciers. The Current Arctic In its 2019 Arctic Report Card, the National Oceanic and Atmospheric Association (NOAA) reported that the surface air temperature north of 60o N for October 2018-August 2019 was the second warmest since 1900. Furthermore, the air in the Arctic continued to warm at a rate double the global average rate of warming. Sea ice is younger, thinner, and covers less of the Arctic Ocean than in the past – the most recent 13 years represent the 13 lowest extents of summertime minimum sea ice in the satellite record that goes back almost 50 years. The amplified atmospheric warming also is driving more rapid rates of decline in snow cover, melting of the Greenland ice sheet, increased summer Arctic river discharge, and northward movement of Arctic vegetation zones.vii Other studies have reported similarly concerning findings. Analyses by the National Snow and Ice Data Center reveal that summer melting of Arctic sea ice and the Greenland ice sheet in 2019 was the second most extensive in the satellite record (due to the variability of the weather, the greatest amount of melting to date occurred in 2012).viii A significant contributor to 2019’s melting was warm air from the heat wave that also covered Europe in late July. During a five- day period, melting occurred over 90% of the ice sheet’s surface area, resulting in 55 billion metric tons of runoff, 40 billion metric tons more than the 1981 to 2100 average.ix A recent study published in Nature found that receding glaciers in the Canadian Arctic are exposing landscapes that have been continuously frozen for at least 40,000 years.x Another report reveals that Greenland’s ice loss is tracking the IPCC’s high-end climate warming scenario, meaning that its ice loss will contribute to about seven centimeters of warming which will affect around 40 million people in coastal areas.xi Arctic warming is expected to continue to increase, continuing to occur at roughly twice the global-average rate of warming. This Arctic Amplification (AA) of the temperature change is a main contributor to the rapid rates of change observed in the Arctic. AA occurs mainly because of an albedo effect. Snow is the most highly reflective type of surface cover, and when the snow melts, exposing the ice or ground surface, the reflectivity is reduced and a larger fraction of incoming solar radiation is absorbed, creating a positive feedback loop that leads to the additional absorption of solar leading to greater melting. Large amounts of carbon stored in the permafrost of the tundra contribute to another positive feedback. Research highlighted in the 2019 Arctic Report Card indicates that about twice as much organic carbon is stored in northern permafrost soils as is currently contained in the atmosphere.xii As warming occurs, there is faster thawing of permafrost; this exposes greater amounts of frozen material to the atmosphere, leading to release of greater amounts of CO2, and perhaps even CH4, into the atmosphere. The resulting increases in the atmospheric concentrations of these greenhouse gases leads in turn to increased rates of heating and thawing of the permafrost as part of a positive feedback process that will lead to further releases of CO2 and CH4. Impacts of Arctic Change The warming temperatures and changing climate of the Arctic have already begun to have noticeable effects, not only in the region, but also affecting the entire world. Mechanisms through which global effects occur include contributions to rising global sea level, making the mid-latitude jet stream wavier, increasing the frequency of severe winter weather in mid- latitudes, and more. Global sea level has risen 8-9 inches (21-24 centimeters) since 1880, with almost half of that amount occurring since 1993. xiii xiv A recent study estimates that roughly a third of the water contributing to sea level rise originated in the Arctic, with Greenland and Alaska being the two largest contributors in the Arctic region.xv xvi Relative to the year 2000, the 2018 National Climate Assessment cited a study projecting that global average sea level would be roughly 0.3-0.6 feet (9-18 cm) above its preindustrial level by 2030, 0.5-1.2 feet (15-38 cm) by 2050, and 1-4 feet (30-130 cm) by 2100. A report by Climate Central lists the top 25 cities in the US that are endangered by sea level rise, with New York City and Miami taking the top two places on the list.xvii Another effect of Arctic warming has been its effect on the polar jet stream that carries storms around the mid-latitudes. The jet stream is essentially a river of wind high in the atmosphere that, although it generally flows west to east, is a component of the atmospheric circulation that transports very large amounts of absorbed solar energy from the equator to the poles, where it is radiated back out to space. The jet stream arises as a result of a combination of the spherical shape of the Earth, the latitudinal gradients in incoming solar radiation and temperature that exist between Earth’s mid and high latitudes, and the spin of the Earth. Because the Arctic is warming much faster than lower latitudes, the reduction in the temperature gradient is allowing greater meandering of the jet stream.xviii As a result of the increased waviness of and the slower west to east shifting of the waves in the jet stream, the frequency and intensity of severe mid-latitude winter weather episodes are increasing.xix Out-of-the-box Approaches Given the increasing disruptions caused by ongoing climate change, in addition to reducing emissions and other more conventional methods of mitigation, which are absolutely critical (and not discussed further in this note), increasing attention is being paid to out-of-the box approaches that might also be needed to moderate the increasing warming. As just a couple of examples, the following approaches have been suggested as ways to moderate specific arctic impacts such as ice melt and amplified surface warming. If successfully implemented, these approaches would have the potential to moderate the impacts of climate change in the Arctic and help slow global change as well. Glacial Geoengineering: In March 2018, John Moore, head of China’s geoengineering research program and chief scientist at Beijing Normal University’s College of Global Change and Earth System Science, published an article in Nature describing three potential geoengineering techniques that might be implemented locally to slow glacier melt and global sea level rise.xx I. Sea walls: To block warm water that is flowing from the Atlantic through the Labrador Sea and then accelerating sub-surface melting of the Jakobshavn glacier in Greenland, construction of a 100-meter-high wall across the fjord in front of the glacier by dredging gravel and sand from Greenland’s continental shelf has been suggested. The scale of the wall would be comparable to other large civil-engineering projects, requiring movement of about a tenth of the material that was excavated to construct the Suez Canal. Although the project would create jobs, albeit in a remote area of Greenland, outside experts would have to be brought in to supplement local workers and it would need to be recognized that local ecosystems would be affected. II. Underwater buttresses: When ice sheets reach the sea, the ice tends to spread out to form an ice shelf. Shelves have been thinning as a result of rising ocean temperatures, leading to more frequent breaking off of ice bergs and acceleration of loss of glacial ice mass. A number of large buttresses could conceivably be built to support the ice shelves and prevent them from crumbling. Although this approach could, in theory, help, more testing, modeling, and feasibility trials would be needed before action could be contemplated, especially given the scale of effort that would be required. III. Dry subglacial streams: Ice is constantly moving and flowing. The friction between the moving ice and the glacier bed creates heat, which stimulates more melting, basically better lubricating the ice stream movement. This lubricating water at the ice- ground interface could either be pumped directly to the ocean or frozen in place using cooled brines beneath the sediment at the glacier’s base. Block Arctic Passages: Stanford lecturer Dr. Leslie Field has proposed another approach to slowing Arctic warming.
Recommended publications
  • This Article Appeared in a Journal Published by Elsevier
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Quaternary Science Reviews 57 (2012) 26e45 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Mammoth steppe: a high-productivity phenomenon S.A. Zimov a,*, N.S. Zimov a, A.N. Tikhonov b, F.S. Chapin III c a Northeast Science Station, Pacific Institute for Geography, Russian Academy of Sciences, Cherskii 678830, Russia b Zoological Institute, Russian Academy of Sciences, Saint Petersburg 199034, Russia c Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA article info abstract Article history: At the last deglaciation Earth’s largest biome, mammoth-steppe, vanished. Without knowledge of the Received 11 January 2012 productivity of this ecosystem, the evolution of man and the glacialeinterglacial dynamics of carbon Received in revised form storage in Earth’s main carbon reservoirs cannot be fully understood.
    [Show full text]
  • Rewilding North America Set Aside to Become the Would See the Introduction of Giant Introduction of Giant Wilderness Again
    Focus: Brave New World REWILDING NORTH One elephant AMERICA at a By Alexandra Mushegian round sloths occupy a small but was the major cause of these extinctions. time Gbeloved role in the collective Without exception, the timing of major imagination. These five-ton, seventeen- biodiversity reductions on all continents foot hamster-like herbivores, which and large islands coincides with the ar- went extinct somewhere around 10,000 rival of early humans, with many species years ago, are commonly found as dying out within a few hundred years skeletons posing in natural history mu- after humans arrived (1). seums. Populations of these animals The only continents still possessing were thriving in North America when noteworthy megafaunal diversity— humans first arrived over the Bering Africa, and to a lesser extent, Asia—are Land Bridge along with mammoths, the continents where humans coevolved lions, saber-toothed cats, twenty-pound with animals for the longest time. Now, beavers, and several species of giant due to political and socioeco- tortoise, not to mention a multitude of nomic instability in those deer and ox-like species. Shortly after regions, they are in danger humans arrived, they all died out. there too. The Pleistocene epoch, which ended Some scientists believe 10,000 years ago (in archaeological that the loss of large ver- terms, the end of the Paleolithic), was tebrate biodiversity has a golden age of animal exoticism world- graver consequences than wide. Why it ended—why this geologi- merely a reduction in worldwide cal period saw a series of massive global biodiversity. Ecological studies suggest collapses of large animal biodiversity— that large herbivores and predators are is a contentious topic.
    [Show full text]
  • Pleistocene Park
    Welcome to Pleistocene Park Welcome to Pleistocene Park In Arctic Siberia, Russian scientists are working to turn back time by resurrecting an Ice Age environment complete with lab- grown woolly mammoths. Pleistocene Park is a radical geoengineering scheme whose goal is to combat climate change. It’s named for the geological epoch often known as the Ice Age, which ended 12,000 years ago. At that time, huge sections of the earth were covered in grasslands. When the Ice Age ended, many of the grasslands disappeared, along with most of the giant species who called them home. The purpose of Pleistocene Park is to slow the thawing of the permafrost. Research suggests that grasslands reflect more sunlight than forests, which causes the Arctic to absorb less heat. In winter, the short grass enables the season’s freeze to extend deeper into the Earth’s crust, cooling the frozen soil. Large herbivores are needed to test these landscape-cooling effects. While Pleistocene Park is currently home to bison, musk oxen and wild horses, hundreds of thousands of woolly mammoths are necessary to keep the trees back. Mammoths are cold-adapted members of the elephant family. Geneticist George Church is working on editing the genomes of Asian elephants and switching in mammoth traits. In 2016, he had succeeded in editing 45 of the Asian elephant’s genes, and he hopes to deliver the first woolly mammoth to Pleistocene Park within a decade. While it might seem like the stuff of mythology, Pleistocene Park provides us with the chance to bring another era back to the Arctic and may even have a shot at saving the planet.
    [Show full text]
  • Compilation of U.S. Tundra Biome Journal and Symposium Publications
    COMPILATION OF U.S • TUNDRA BIOME JOURNAL .Alm SYMPOSIUM PUBLICATIONS* {April 1975) 1. Journal Papers la. Published +Alexander, V., M. Billington and D.M. Schell (1974) The influence of abiotic factors on nitrogen fixation rates in the Barrow, Alaska, arctic tundra. Report Kevo Subarctic Research Station 11, vel. 11, p. 3-11. (+)Alexander, V. and D.M. Schell (1973) Seasonal and spatial variation of nitrogen fixation in the Barrow, Alaska, tundra. Arctic and Alnine Research, vel. 5, no. 2, p. 77-88. (+)Allessio, M.L. and L.L. Tieszen (1974) Effect of leaf age on trans­ location rate and distribution of Cl4 photoassimilate in Dupontia fischeri at Barrow, Alaska. Arctic and Alnine Research, vel. 7, no. 1, p. 3-12. (+)Barsdate, R.J., R.T. Prentki and T. Fenchel (1974) The phosphorus cycle of model ecosystems. Significance for decomposer food chains and effect of bacterial grazers. Oikos, vel. 25, p. 239-251. 0 • (+)Batzli, G.O., N.C. Stenseth and B.M. Fitzgerald (1974) Growth and survi­ val of suckling brown lemmings (Lemmus trimucronatus). Journal of Mammalogy, vel. 55, p. 828-831. (+}Billings,. W.D. (1973) Arctic and alpine vegetations: Similarities, dii'­ ferences and susceptibility to disturbance. Bioscience, vel. 23, p. 697-704. (+)Braun, C.E., R.K. Schmidt, Jr. and G.E. Rogers (1973) Census of Colorado white-tailed ptarmigan with tape-recorded calls. Journal of Wildlife Management, vel. 37, no. 1, p. 90-93. (+)Buechler, D.G. and R.D. Dillon (1974) Phosphorus regeneration studies in freshwater ciliates. Journal of Protozoology, vol. 21, no. 2,· P• 339-343.
    [Show full text]
  • Effects of Large Herbivore Grazing on Relics of the Presumed Mammoth
    www.nature.com/scientificreports OPEN Efects of large herbivore grazing on relics of the presumed mammoth steppe in the extreme climate of NE‑Siberia Jennifer Reinecke1,2*, Kseniia Ashastina3,4, Frank Kienast3, Elena Troeva5 & Karsten Wesche1,2,6 The Siberian mammoth steppe ecosystem changed dramatically with the disappearance of large grazers in the Holocene. The concept of Pleistocene rewilding is based on the idea that large herbivore grazing signifcantly alters plant communities and can be employed to recreate lost ecosystems. On the other hand, modern rangeland ecology emphasizes the often overriding importance of harsh climates. We visited two rewilding projects and three rangeland regions, sampling a total of 210 vegetation relevés in steppe and surrounding vegetation (grasslands, shrublands and forests) along an extensive climatic gradient across Yakutia, Russia. We analyzed species composition, plant traits, diversity indices and vegetation productivity, using partial canonical correspondence and redundancy analysis. Macroclimate was most important for vegetation composition, and microclimate for the occurrence of extrazonal steppes. Macroclimate and soil conditions mainly determined productivity of vegetation. Bison grazing was responsible for small‑scale changes in vegetation through trampling, wallowing and debarking, thus creating more open and disturbed plant communities, soil compaction and xerophytization. However, the magnitude of efects depended on density and type of grazers as well as on interactions with climate and site conditions. Efects of bison grazing were strongest in the continental climate of Central Yakutia, and steppes were generally less afected than meadows. We conclude that contemporary grazing overall has rather limited efects on vegetation in northeastern Siberia. Current rewilding practices are still far from recreating a mammoth steppe, although large herbivores like bison can create more open and drier vegetation and increase nutrient availability in particular in the more continental Central Yakutian Plain.
    [Show full text]
  • Climate Change Policy and Canada's Inuit Population: the Importance of and Opportunities for Adaptation For: Global Environme
    Climate change policy and Canada’s Inuit population: The importance of and opportunities for adaptation For: Global Environmental Change James D. Ford 1, Tristan Pearce2, Frank Duerden3, Chris Furgal4, and Barry Smit5 1 Dept. of Geography, McGill University, 805 Sherbrooke St W, Montreal, Quebec, H3A 2K6 CA, Mobile: 514-462-1846, Email: [email protected] 2Dept. of Geography, University of Guelph, Guelph, Ontario, CA, Email: [email protected] 3Frank Duerden Consulting, 117 Kingsmount park Rd., Toronto, Ontario, CA 4Indigenous Environmental Studies Program, Trent University, Peterborough, Ontario, CA 5Dept. of Geography, University of Guelph, Guelph, Ontario, CA Acknowledgements We would like to thank Inuit of Canada for their continuing support of this research. This article benefited from contributions from Christina Goldhar, Tanya Smith, and Lea Berrang-Ford, and figure 1 was produced by Adam Bonnycastle. Funding for the research was provided by ArcticNet, SSHRC, Aurora Research Institute fellowship and research assistant programmes, Association of Canadian Universities for Northern Studies (ACUNS), Canadian Polar Commission Scholarship, the International Polar Year CAVIAR project, and the Nasivvik Centre for Inuit Health and Changing Environments. Abstract For Canada’s Inuit population, climate change is challenging internationally established human rights and the specific rights of Inuit as stated in the Canadian Charter of Rights and Freedoms. Mitigation can help avoid ‘runaway’ climate change, adaptation can help reduce the negative effects of current and future climate change for Inuit populations, take advantage of new opportunities, and can be integrated into existing decision-making processes and policy goals. Adaptation is emerging as a priority area for Canadian and international action on climate change, and can help Inuit adapt to changes in climate that are now inevitable.
    [Show full text]
  • Spring 2016 ᐅᐱᕐᖔᖅ Nunavut Arctic College Media Spring 2016 ᓄᓇᕗᑦ ᓯᓚᑦᑐᖅᓴᕐᕕᖕᒥ ᑐᓴᖃᑦᑕᐅᑎᓕᕆᔩᑦ Spring 2016
    Spring 2016 ᐅᐱᕐᖔᖅ Nunavut Arctic College Media Spring 2016 ᓄᓇᕗᑦ ᓯᓚᑦᑐᖅᓴᕐᕕᖕᒥ ᑐᓴᖃᑦᑕᐅᑎᓕᕆᔩᑦ Spring 2016 LOOK UP! • AARLURIT ! • ᐋᕐᓗᕆᑦ! FRONTLIST Nunavut Arctic College has been publishing for almost three decades. Our press predates the political creation of Nunavut, but not the historical reality of a distinct Inuit land. We have been around for some time, yet we are new on the landscape of Canadian publishing. Most people across Canada (and the world) are not familiar with our books. There is a good reason for this. Our books were purposefully published to serve students, Willem Rasing teachers, and community members in the Eastern Arctic. These works were not intended for wide distribution, enviable sales, or awards; they exist as urgent, at times rough-hewn manifestations of intimate and collaborative efforts to archive the ISBN: 978-1-897568-40-8 knowledge and history of unique generations. The narrators in our pages are often $27.95 Inuit who weathered the bewildering movement from the land to static settlements in May 2016 the mid-20th century, and those who entered residential schools. 6” x 9” | 312 pages Notwithstanding our territorial obligation to date, our work has benefitted from the Trade paperback engagement and initiative of outsiders. Alongside Inuit Elders, leaders, educators, English students, and translators, a perusal of our books reveals the thoughtful participation of southern and international writers, editors, and scholars. These encounters blur the binaries of Inuit and Qallunaaq (southerner) ways of knowing, doing, and telling. They Cultural studies; Native studies; History arouse the tension, possibility, and limitation in the fusion of Western written custom and Inuit oral tradition.
    [Show full text]
  • Climate Geoengineering Options: Practical, Powerful, and to Be Avoided If Possible Report on the 2Nd Permafrost Carbon Feedback Intervention Roadmap Dialogue
    AVOIDING PERMAFROST THAW: MANAGING TEMPERATURE Climate geoengineering options: practical, powerful, and to be avoided if possible Report on the 2nd Permafrost Carbon Feedback Intervention Roadmap Dialogue To avoid catastrophic risk from climate change, we need to limit global warming to 1.5° Celsius. And given how close we are to that limit, even the most ambitious conventional decarbonization efforts will not be enough. Negative-emission technologies or other geoengineering methods will be necessary to compensate for emissions that push us beyond that manageable limit. That statement, paraphrased from Leiden University researcher and guest presenter Oscar Rueda, probably best captures the consensus of a sometimes-fractious second dialogue (March 11, 2021) facilitated by the privately sponsored Permafrost Carbon Feedback Action Group – part of a four-session virtual symposia addressing the science, technology, economics, policy, social and ethical implications of permafrost thaw. The first dialogue (March 4, 2021) surveyed Why Permafrost Carbon Matters and garnered easy agreement: global permafrost is charged with twice as much carbon as that in all the earth’s atmosphere and, as it thaws, natural processes trigger a dangerous release of that carbon in the form of the greenhouse gases CO2 and methane, thereby reinforcing atmospheric warming. The second dialogue, Avoiding Permafrost Thaw: Managing Temperature, considered whether we have the capacity to intervene to limit permafrost thaw – and whether we should. Even the first question provoked argument. The second, however, inspired a fiercer debate, among panelists and among more than 150 leading academics, government policy makers, technology investors, climate change activists and media who had tuned in online.
    [Show full text]
  • Targeted Geoengineering: Conserving the Cryosphere
    Targeted Geoengineering: Conserving the Cryosphere Permafrost conservation through land-use modification - are potential solutions practicable and scalable? John Moore Photo T. Kumpula Mitigation The 3 standard Adaptation paradigms Solar Geoengineering Can anything else be done? • In some cases Targeted Geoengineering might provide partial solutions • Land surface albedo: Pleistocene Park in Siberia for permafrost • Arctic ice management for sea ice • Glacier geoengineering for sea level – by far the most realistic Pleistocene Park Courtesy N. Zimov www. https://pleistocenepark.ru/ Courtesy N. Zimov www. https://pleistocenepark.ru/ Courtesy N. Zimov www. https://pleistocenepark.ru/ The albedo of the steppe grassland is much higher than the forest or shrub lands, especially in winter Hence the Permafrost is cooler Courtesy N. Zimov www. https://pleistocenepark.ru/ Pleistocene Park Courtesy N. Zimov www. https://pleistocenepark.ru/ Pleistocene Park Target MEG density. Assuming that animal density in the mammoth steppe can be estimated from the number of bones found in the permafrost, an estimated average of 1 mammoth, 5 bison, 7.5 horses, 15 reindeer, 0.25 cave lions, and 1 wolf per 1km2 1 MEG costs $383,000 MEG growth rate. 10% / yr Assuming a constant animal introduction rate of 10 MEG/yr after 30 years, an area of 3100 km2 would be converted to grassland. 0.03% of permafrost area Conversion of 1 million km2 of Arctic tundra (10% of the Arctic permafrost zone) in 30 years would require an introduction rate of 7,000 MEGs /yr which is unrealistic. Pleistocene Park Target MEG density. Assuming that animal density in the mammoth steppe can be estimated from the number of bones found in the permafrost, an estimated average of 1 mammoth, 5 bison, 7.5 horses, 15 reindeer, 0.25 cave lions, and 1 wolf per 1km2 1 MEG costs $383,000 MEG growth rate.
    [Show full text]
  • Arctic Viewpoints to the Governance of Climate-Altering Approaches
    Arctic viewpoints to the governance of climate-altering approaches C2GLearn: Climate-altering approaches and the Arctic Visiting researcher Ilona Mettiäinen M.Sc., PhD Candidate Arctic Centre, University of Lapland What is governance? • IPCC 2018: ”a comprehensive and inclusive concept of the full range of means for deciding, managing, implementing and monitoring policies and measures” • Many levels from local to global; multilevel governance • Governments, scientific community, media, business, civil society • Rules, regulations and laws; international cooperation; market instruments; incentives, funding and support; guidelines and codes of conduct; unwritten norms The Arctic as a region • The Arctic is a home to 4-4,5 million inhabitants • 8 countries and several indigenous peoples • 10-20 % indigenous population • The Arctic has <0,05 % of the global population (7,4 billion) The Arctic Portal Google Image Search 5.9.2020 All photos on this slide © Ilona Mettiäinen ”What happens in the Arctic doesn’t stay in the Arctic” • The Arctic is warming 2-3 times faster than the global average • The impacts of climate change are seen first in the Arctic • Keeping the global warming at 1.5 degrees would help to alleviate or avoid some negative impacts, but that would still mean 5,5 degrees warming in the Arctic (NASA) • Several tipping points in the Arctic with global consequences • Melting of the Greenland ice sheet can cause several meters’ sea level rise • Saving the Arctic by climate-altering techniques for the Arctic or for global reasons?
    [Show full text]
  • Rewilding John Carey, Science Writer
    CORE CONCEPTS CORE CONCEPTS Rewilding John Carey, Science Writer America’s vast forests and plains, Siberia’s tundra, or Such a restoration would bring back vital but lost Romania’s Carpathian Mountains may seem wild and ecological processes and benefits, Martin and others full of life. But they’re all missing something big: the large came to believe. Without mammoths and millions of animals that vanished by the end of the Pleistocene Ep- aurochs and other grazers (and wolves and big cats to och, roughly 10,000 years ago. In the United States, only keep the herbivores in check), the enormously pro- bones and echoing footsteps remain of the mammoths, ductive grasslands of the Pleistocene turned into camels, massive armadillo-like glyptodonts, lions, dire today’s far less productive forest, shrub land, and wolves, and saber-toothed cats that roamed for millennia. mossy tundra, with a major loss of ecosystem com- “Without knowing it, Americans live in a land of ghosts,” plexity and diversity. “Paul realized there was a big wrote the late University of Arizona scientist Paul Martin missing ecosystem component—the megafauna,” ex- in his 2005 book, Twilight of the Mammoths: Ice Age plains Harry Greene, professor of ecology and evolu- Extinctions and the Rewilding of America (1). tionary biology at Cornell. “Everything in North Some scientists and others now argue that we America evolved with about 58 to 60 big mammals should be bringing some of those ghosts back, part of that went extinct.” a controversial movement to “rewild” parts of Europe That realization sparked a growing effort to recre- and North America, whether by reintroducing extant ate the lost past, especially in Europe.
    [Show full text]
  • Lliverse 1.Pdf
    Multi‐Scale Detection and Characterization of Physical and Ecological Change in the Arctic Using Satellite Remote Sensing by Liza Kay Jenkins A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Environment and Sustainability) in The University of Michigan 2019 Doctoral Committee: Professor William S. Currie, Chair Adjunct Professor Nancy H.F. French, Michigan Technological University Professor Guy A. Meadows Adjunct Professor Robert A. Shuchman, Michigan Technological University Professor Michael J. Wiley Liza Kay Jenkins [email protected] ORCID iD: 0000‐0002‐8309‐5396 © Liza Kay Jenkins 2019 DEDICATION This dissertation is dedicated to the next generation – especially my children Mackenzie Kay Jenkins and Calder Michael Jenkins. ii ACKNOWLEDGEMENTS This work was supported in party by NASA Terrestrial Ecology Grants # NNX15AT79A, #NNX10AF41G, and #NNX13AK44G and the Conservation of Arctic Flora and Fauna (CAFF), Biodiversity Working Group of the Arctic Council, Advancement of the Arctic Land Cover Initiative through Applied Remote Sensing Award No: CAFF PROJECT NO. 000060. I would like to acknowledge my dissertation committee for all their help guiding the research design, implementation, analysis, and writing of this dissertation. I would especially like to thank my Committee Chair, Dr. Currie, for believing in me and pushing me to be a better scholar and scientist. I would also like to thank my co‐authors of the published version of Chapter II: Laura Bourgeau‐Chavez, Nancy French, Tatiana Loboda, and Brian Thelen; and the in‐press version of Chapter III: Tom Barry, Karl Bosse, William Currie, Tom Christensen, Sara Longan, Robert Shuchman, Danielle Tanzer, and Jason Taylor.
    [Show full text]