Representation Theory of Groups

Total Page:16

File Type:pdf, Size:1020Kb

Representation Theory of Groups MAT 445/1196 - INTRODUCTION TO REPRESENTATION THEORY CHAPTER 1 – Representation Theory of Groups - Algebraic Foundations 1.1 Basic definitions, Schur’s Lemma 1.2 Tensor products 1.3 Unitary representations 1.4 Characters of finite-dimensional representations CHAPTER 2 – Representations of Finite Groups 2.1 Unitarity, complete reducibility, orthogonality relations 2.2 Character values as algebraic integers, degree of an irreducible representation divides the order of the group 2.3 Decomposition of finite-dimensional representations 2.4 Induced Representations, Frobenius reciprocity, and Frobenius character formula CHAPTER 3 – Representations of SL2(Fq) CHAPTER 4 – Representations of Finite Groups of Lie Type CHAPTER 5 – Topological Groups, Representations, and Haar Measure 5.1 Topological spaces 5.2 Topological groups 5.3 General linear groups and matrix groups 5.4 Matrix Lie groups 5.5 Finite-dimensional representations of topological groups and matrix Lie groups 5.6 Groups of t.d. type 5.7 Haar measure on locally compact groups 5.8 Discrete series representations 5.9 Parabolic subgroups and representations of reductive groups CHAPTER 6 – Representations of Compact Groups 6.1 Examples of compact groups 6.2 Finite-dimensional representations of compact groups 6.3 The Peter-Weyl Theorem 6.4 Weyl’s character formula 1 CHAPTER 1 Representation Theory of Groups - Algebraic Foundations 1.1. Basic definitions, Schur’s Lemma We assume that the reader is familiar with the fundamental concepts of abstract group theory and linear algebra. A representation of a group G is a homomorphism from G to the group GL(V ) of invertible linear operators on V , where V is a nonzero complex vector space. We refer to V as the representation space of π. If V is finite-dimensional, we say that π is finite-dimensional, and the degree of π is the dimension of V . Otherwise, we say that π is infinite-dimensional. If π is one-dimensional, then V ' C and we view π as a homomorphism from G to the multiplicative group of nonzero complex numbers. In the above definition, G is not necessarily finite. The notation (π, V ) will often be used when referring to a representation. Examples: (1) If G is a group, we can define a one-dimensional representation of G by π(g) = 1, g ∈ G. This representation is called the trivial representation of G. (2) Let G = R and z ∈ C. The function t 7→ ezt defines a one-dimensional representation of G. If n is a positive integer and C is the field of complex numbers, let GLn(C) denote the group of invertible n × n matrices with entries in C. If (π, V ) is a finite-dimensional representation of G, then, via a choice of ordered basis β for V , the operator π(g) ∈ GL(V ) is identified with the element [π(g)]β of GLn(C), where n is the degree of π. Hence we may view a finite-dimensional representation of G as a homomorphism from G to the group GLn(C). Examples: (1) The self-representation of GLn(C) is the n-dimensional representation defined by π(g) = g. (2) The function g 7→ det g is a one-dimensional representation of GLn(C). (3) Let V be a space of functions from G to some complex vector space. Suppose that V has the property that whenever f ∈ V , the function g0 7→ f(g0g) also belongs to V for all g ∈ G. Then we may define a representation (π, V ) by (π(g)f)(g0) = f(gg0), f ∈ V , g, g0 ∈ G. For example, if G is a finite group, we may take V to be the space of all complex-valued functions on G. In this case, the resulting representation is called the right regular representation of G. Let (π, V ) be a representation of G. A subspace W of V is stable under the action of G, or G-invariant, if π(g)w ∈ W for all g ∈ G and w ∈ W . In this case, denoting the 2 restriction of π(g) to W by π |W (g), (π |W ,W ) is a representation of G, and we call it a subrepresentation of π (or a subrepresentation of V ). 0 If W ⊂ W are subrepresentations of π, then each π |W (g), g ∈ G, induces an in- 0 0 vertible linear operator πW/W 0 (g) on the quotient space W/W , and (πW/W 0 , W/W ) is a representation of G, called a subquotient of π. In the special case W = V , it is called a quotient of π. A representation (π, V ) of G is finitely-generated if there exist finitely many vectors v1, . , vm ∈ V such that V = Span{ π(g)vj | 1 ≤ j ≤ m, g ∈ G }. A representation (π, V ) of G is irreducible if {0} and V are the only G-invariant subspaces of V . If π is not irreducible, we say that π is reducible. Suppose that (πj,Vj), 1 ≤ j ≤ `, are representations of a group G. Recall that an element of the direct sum V = V1 ⊕ · · · ⊕ V` can be represented uniquely in the form v1 + v2 + ··· + v`, where vj ∈ Vj. Set π(g)(v1 + ··· + v`) = π1(g)v1 + ··· + π`(g)v`, g ∈ G, vj ∈ Vj, 1 ≤ j ≤ `. This defines a representation of G, called the direct sum of the representations π1, . , π`, sometimes denoted by π1 ⊕ · · · ⊕ π`. We may define infinite direct sums similarly. We say that a representation π is completely reducible (or semisimple) if π is (equivalent to) a direct sum of irreducible representations. Lemma. Suppose that (π, V ) is a representation of G. (1) If π is finitely-generated, then π has an irreducible quotient. (2) π has an irreducible subquotient. Proof. For (1), consider all proper G-invariant subspaces W of V . This set is nonempty and closed under unions of chains (uses finitely-generated). By Zorn’s Lemma, there is a maximal such W . By maximality of W , πV/W is irreducible. Part (2) follows from part (1) since of v is a nonzero vector in V , part (1) says that if W = Span{ π(g)v | g ∈ G }, then π |W has an irreducible quotient. qed Lemma. Let (π, V ) be a finite-dimensional representation of G. Then there exists an irreducible subrepresentation of π. Proof. If V is reducible, there exists a nonzero G-invariant proper subspace W1 of V . If π |W1 is irreducible, the proof is complete. Otherwise, there exists a nonzero G-invariant subspace W2 of W1. Note that dim(W2) < dim(W1) < dim(V ). Since dim(V ) < ∞, this process must eventually stop, that is there exist nonzero subspaces Wk ( Wk−1 ( ··· ( W1 ( V , where π |Wk is irreducible. qed Lemma. Let (π, V ) be a representation of G. Assume that there exists an irreducible subrepresentation of π. The following are equivalent: 3 (1) (π, V ) is completely reducible. (2) For every G-invariant subspace W ⊂ V , there exists a G-invariant subspace W 0 such that W ⊕ W 0 = V . Proof. Assume that π is completely reducible. Without loss of generality, π is reducible. Let W be a proper nonzero G-invariant subspace of V . Consider the set of G-invariant subspaces U of V such that U ∩W = {0}. This set is nonempty and closed under unions of chains, so Zorn’s Lemma implies existence of a maximal such U. Suppose that W ⊕U 6= V . Since π is completely reducible, there exists some irreducible subrepresentation U 0 such that U 0 6⊂ W ⊕U. By irreduciblity of U 0, U 0 ∩(W ⊕U) = {0}. This contradicts maximality of U. Suppose that (2) holds. Consider the partially ordered set of direct sums of families of P irreducible subrepresentations: α Wα = ⊕αWα. Zorn’s Lemma applies. Let W = ⊕αWα be the direct sum for a maximal family. By (2), there exists a subrepresentation U such that V = W ⊕ U. If U 6= {0}, according to a lemma above, there exists an irreducible subquotient: U ⊃ U1 ⊃ U2 such that πU1/U2 is is irreducible. By (2), W ⊕ U2 has a G-invariant complement U3: V = W ⊕ U2 ⊕ U3. Now U3 ' V/(W ⊕ U2) = (W ⊕ U)/(W ⊕ U2) ' U/U2 ⊃ U1/U2. Identifying πU1/U2 with an irreducible subrepresentation π |U4 of π |U3 , we have W ⊕ U4 contradicting maximality of the family Wα. qed Lemma. Subrepresentations and quotient representations of completely reducible repre- sentations are completely reducible. Proof. Let (π, V ) be a completely reducible representation of G. Suppose that W is a proper nonzero G-invariant subspace of W . Then, according to the above lemma, there exists a G-invariant subspace U of V such that V = W ⊕ U. It follows that the subrep- resentation π |W is equivalent to the quotient representation πV/U . Therefore it suffices to prove that any quotient representation of π is completely reducible. Let πV/U be an arbitrary quotient representation of π. We know that π = ⊕α∈I πα, where I is some indexing set, and each πα is irreducible. Let pr : V → V/U be the canonical map. Then V/U = pr(V ) = ⊕α∈I pr(Vα). Because pr(Vα) is isomorphic to a quotient of Vα (pr(Vα) ' Vα/ker (pr | Vα)) and πα is irreducible, we have that pr(Vα) is either 0 or irreducible. Hence πV/U is completely reducible. qed Exercises: (1) Show that the self-representation of GLn(C) is irreducible. 1 t (2) Verify that π : t 7→ defines a representation of , with space 2, that is a 0 1 R C two-dimensional representation of R. Show that there is exactly one one-dimensional 4 subrepresentation, hence π is not completely reducible.
Recommended publications
  • Physics.Hist-Ph] 15 May 2018 Meitl,Fo Hsadsadr Nepeainlprinciples
    Why Be Regular?, Part I Benjamin Feintzeig Department of Philosophy University of Washington JB (Le)Manchak, Sarita Rosenstock, James Owen Weatherall Department of Logic and Philosophy of Science University of California, Irvine Abstract We provide a novel perspective on “regularity” as a property of representations of the Weyl algebra. We first critique a proposal by Halvorson [2004, “Complementarity of representa- tions in quantum mechanics”, Studies in History and Philosophy of Modern Physics 35(1), pp. 45–56], who argues that the non-regular “position” and “momentum” representations of the Weyl algebra demonstrate that a quantum mechanical particle can have definite values for position or momentum, contrary to a widespread view. We show that there are obstacles to such an intepretation of non-regular representations. In Part II, we propose a justification for focusing on regular representations, pace Halvorson, by drawing on algebraic methods. 1. Introduction It is standard dogma that, according to quantum mechanics, a particle does not, and indeed cannot, have a precise value for its position or for its momentum. The reason is that in the standard Hilbert space representation for a free particle—the so-called Schr¨odinger Representation of the Weyl form of the canonical commutation relations (CCRs)—there arXiv:1805.05568v1 [physics.hist-ph] 15 May 2018 are no eigenstates for the position and momentum magnitudes, P and Q; the claim follows immediately, from this and standard interpretational principles.1 Email addresses: [email protected] (Benjamin Feintzeig), [email protected] (JB (Le)Manchak), [email protected] (Sarita Rosenstock), [email protected] (James Owen Weatherall) 1Namely, the Eigenstate–Eigenvalue link, according to which a system has an exact value of a given property if and only if its state is an eigenstate of the operator associated with that property.
    [Show full text]
  • REPRESENTATIONS of FINITE GROUPS 1. Definition And
    REPRESENTATIONS OF FINITE GROUPS 1. Definition and Introduction 1.1. Definitions. Let V be a vector space over the field C of complex numbers and let GL(V ) be the group of isomorphisms of V onto itself. An element a of GL(V ) is a linear mapping of V into V which has a linear inverse a−1. When V has dimension n and has n a finite basis (ei)i=1, each map a : V ! V is defined by a square matrix (aij) of order n. The coefficients aij are complex numbers. They are obtained by expressing the image a(ej) in terms of the basis (ei): X a(ej) = aijei: i Remark 1.1. Saying that a is an isomorphism is equivalent to saying that the determinant det(a) = det(aij) of a is not zero. The group GL(V ) is thus identified with the group of invertible square matrices of order n. Suppose G is a finite group with identity element 1. A representation of a finite group G on a finite-dimensional complex vector space V is a homomorphism ρ : G ! GL(V ) of G to the group of automorphisms of V . We say such a map gives V the structure of a G-module. The dimension V is called the degree of ρ. Remark 1.2. When there is little ambiguity of the map ρ, we sometimes call V itself a representation of G. In this vein we often write gv_ or gv for ρ(g)v. Remark 1.3. Since ρ is a homomorphism, we have equality ρ(st) = ρ(s)ρ(t) for s; t 2 G: In particular, we have ρ(1) = 1; ; ρ(s−1) = ρ(s)−1: A map ' between two representations V and W of G is a vector space map ' : V ! W such that ' V −−−−! W ? ? g? ?g (1.1) y y V −−−−! W ' commutes for all g 2 G.
    [Show full text]
  • Automorphic Forms on GL(2)
    Automorphic Forms on GL(2) Herve´ Jacquet and Robert P. Langlands Formerly appeared as volume #114 in the Springer Lecture Notes in Mathematics, 1970, pp. 1-548 Chapter 1 i Table of Contents Introduction ...................................ii Chapter I: Local Theory ..............................1 § 1. Weil representations . 1 § 2. Representations of GL(2,F ) in the non•archimedean case . 12 § 3. The principal series for non•archimedean fields . 46 § 4. Examples of absolutely cuspidal representations . 62 § 5. Representations of GL(2, R) ........................ 77 § 6. Representation of GL(2, C) . 111 § 7. Characters . 121 § 8. Odds and ends . 139 Chapter II: Global Theory ............................152 § 9. The global Hecke algebra . 152 §10. Automorphic forms . 163 §11. Hecke theory . 176 §12. Some extraordinary representations . 203 Chapter III: Quaternion Algebras . 216 §13. Zeta•functions for M(2,F ) . 216 §14. Automorphic forms and quaternion algebras . 239 §15. Some orthogonality relations . 247 §16. An application of the Selberg trace formula . 260 Chapter 1 ii Introduction Two of the best known of Hecke’s achievements are his theory of L•functions with grossen•¨ charakter, which are Dirichlet series which can be represented by Euler products, and his theory of the Euler products, associated to automorphic forms on GL(2). Since a grossencharakter¨ is an automorphic form on GL(1) one is tempted to ask if the Euler products associated to automorphic forms on GL(2) play a role in the theory of numbers similar to that played by the L•functions with grossencharakter.¨ In particular do they bear the same relation to the Artin L•functions associated to two•dimensional representations of a Galois group as the Hecke L•functions bear to the Artin L•functions associated to one•dimensional representations? Although we cannot answer the question definitively one of the principal purposes of these notes is to provide some evidence that the answer is affirmative.
    [Show full text]
  • Arithmetic Equivalence and Isospectrality
    ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY ANDREW V.SUTHERLAND ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion originally introduced in a number theoretic setting to refer to number fields with the same zeta function. Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic notion of equivalence that has since been exploited in several other areas of mathematics, most notably in the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some applications and generalizations. 1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series X s Y s 1 ζK (s) := N(I)− = (1 N(p)− )− I OK p − ⊆ where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the : P s Riemann zeta function ζ(s) = n 1 n− . As with the Riemann zeta function, the Dirichlet series (and corresponding Euler product) defining≥ the Dedekind zeta function converges absolutely and uniformly to a nonzero holomorphic function on Re(s) > 1, and ζK (s) extends to a meromorphic function on C and satisfies a functional equation, as shown by Hecke [25]. The Dedekind zeta function encodes many features of the number field K: it has a simple pole at s = 1 whose residue is intimately related to several invariants of K, including its class number, and as with the Riemann zeta function, the zeros of ζK (s) are intimately related to the distribution of prime ideals in OK .
    [Show full text]
  • NOTES on FINITE GROUP REPRESENTATIONS in Fall 2020, I
    NOTES ON FINITE GROUP REPRESENTATIONS CHARLES REZK In Fall 2020, I taught an undergraduate course on abstract algebra. I chose to spend two weeks on the theory of complex representations of finite groups. I covered the basic concepts, leading to the classification of representations by characters. I also briefly addressed a few more advanced topics, notably induced representations and Frobenius divisibility. I'm making the lectures and these associated notes for this material publicly available. The material here is standard, and is mainly based on Steinberg, Representation theory of finite groups, Ch 2-4, whose notation I will mostly follow. I also used Serre, Linear representations of finite groups, Ch 1-3.1 1. Group representations Given a vector space V over a field F , we write GL(V ) for the group of bijective linear maps T : V ! V . n n When V = F we can write GLn(F ) = GL(F ), and identify the group with the group of invertible n × n matrices. A representation of a group G is a homomorphism of groups φ: G ! GL(V ) for some representation choice of vector space V . I'll usually write φg 2 GL(V ) for the value of φ on g 2 G. n When V = F , so we have a homomorphism φ: G ! GLn(F ), we call it a matrix representation. matrix representation The choice of field F matters. For now, we will look exclusively at the case of F = C, i.e., representations in complex vector spaces. Remark. Since R ⊆ C is a subfield, GLn(R) is a subgroup of GLn(C).
    [Show full text]
  • Class Numbers of Totally Real Number Fields
    CLASS NUMBERS OF TOTALLY REAL NUMBER FIELDS BY JOHN C. MILLER A dissertation submitted to the Graduate School|New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Mathematics Written under the direction of Henryk Iwaniec and approved by New Brunswick, New Jersey May, 2015 ABSTRACT OF THE DISSERTATION Class numbers of totally real number fields by John C. Miller Dissertation Director: Henryk Iwaniec The determination of the class number of totally real fields of large discriminant is known to be a difficult problem. The Minkowski bound is too large to be useful, and the root discriminant of the field can be too large to be treated by Odlyzko's discriminant bounds. This thesis describes a new approach. By finding nontrivial lower bounds for sums over prime ideals of the Hilbert class field, we establish upper bounds for class numbers of fields of larger discriminant. This analytic upper bound, together with algebraic arguments concerning the divisibility properties of class numbers, allows us to determine the class numbers of many number fields that have previously been untreatable by any known method. For example, we consider the cyclotomic fields and their real subfields. Surprisingly, the class numbers of cyclotomic fields have only been determined for fields of small conductor, e.g. for prime conductors up to 67, due to the problem of finding the class number of its maximal real subfield, a problem first considered by Kummer. Our results have significantly improved the situation. We also study the cyclotomic Zp-extensions of the rationals.
    [Show full text]
  • Representations of the Symmetric Group and Its Hecke Algebra Nicolas Jacon
    Representations of the symmetric group and its Hecke algebra Nicolas Jacon To cite this version: Nicolas Jacon. Representations of the symmetric group and its Hecke algebra. 2012. hal-00731102v1 HAL Id: hal-00731102 https://hal.archives-ouvertes.fr/hal-00731102v1 Preprint submitted on 12 Sep 2012 (v1), last revised 10 Nov 2012 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Representations of the symmetric group and its Hecke algebra N. Jacon Abstract This paper is an expository paper on the representation theory of the symmetric group and its Hecke algebra in arbitrary characteristic. We study both the semisimple and the non semisimple case and give an introduction to some recent results on this theory (AMS Class.: 20C08, 20C20, 05E15) . 1 Introduction Let n N and let S be the symmetric group acting on the left on the set 1, 2, . , n . Let k be a field ∈ n { } and consider the group algebra kSn. This is the k-algebra with: k-basis: t σ S , • { σ | ∈ n} 2 multiplication determined by the following rule: for all (σ, σ′) S , we have t .t ′ = t ′ . • ∈ n σ σ σσ The aim of this survey is to study the Representation Theory of Sn over k.
    [Show full text]
  • REPRESENTATION THEORY WEEK 7 1. Characters of GL Kand Sn A
    REPRESENTATION THEORY WEEK 7 1. Characters of GLk and Sn A character of an irreducible representation of GLk is a polynomial function con- stant on every conjugacy class. Since the set of diagonalizable matrices is dense in GLk, a character is defined by its values on the subgroup of diagonal matrices in GLk. Thus, one can consider a character as a polynomial function of x1,...,xk. Moreover, a character is a symmetric polynomial of x1,...,xk as the matrices diag (x1,...,xk) and diag xs(1),...,xs(k) are conjugate for any s ∈ Sk. For example, the character of the standard representation in E is equal to x1 + ⊗n n ··· + xk and the character of E is equal to (x1 + ··· + xk) . Let λ = (λ1,...,λk) be such that λ1 ≥ λ2 ≥ ···≥ λk ≥ 0. Let Dλ denote the λj determinant of the k × k-matrix whose i, j entry equals xi . It is clear that Dλ is a skew-symmetric polynomial of x1,...,xk. If ρ = (k − 1,..., 1, 0) then Dρ = i≤j (xi − xj) is the well known Vandermonde determinant. Let Q Dλ+ρ Sλ = . Dρ It is easy to see that Sλ is a symmetric polynomial of x1,...,xk. It is called a Schur λ1 λk polynomial. The leading monomial of Sλ is the x ...xk (if one orders monomials lexicographically) and therefore it is not hard to show that Sλ form a basis in the ring of symmetric polynomials of x1,...,xk. Theorem 1.1. The character of Wλ equals to Sλ. I do not include a proof of this Theorem since it uses beautiful but hard combina- toric.
    [Show full text]
  • Matrix Coefficients and Linearization Formulas for SL(2)
    Matrix Coefficients and Linearization Formulas for SL(2) Robert W. Donley, Jr. (Queensborough Community College) November 17, 2017 Robert W. Donley, Jr. (Queensborough CommunityMatrix College) Coefficients and Linearization Formulas for SL(2)November 17, 2017 1 / 43 Goals of Talk 1 Review of last talk 2 Special Functions 3 Matrix Coefficients 4 Physics Background 5 Matrix calculator for cm;n;k (i; j) (Vanishing of cm;n;k (i; j) at certain parameters) Robert W. Donley, Jr. (Queensborough CommunityMatrix College) Coefficients and Linearization Formulas for SL(2)November 17, 2017 2 / 43 References 1 Andrews, Askey, and Roy, Special Functions (big red book) 2 Vilenkin, Special Functions and the Theory of Group Representations (big purple book) 3 Beiser, Concepts of Modern Physics, 4th edition 4 Donley and Kim, "A rational theory of Clebsch-Gordan coefficients,” preprint. Available on arXiv Robert W. Donley, Jr. (Queensborough CommunityMatrix College) Coefficients and Linearization Formulas for SL(2)November 17, 2017 3 / 43 Review of Last Talk X = SL(2; C)=T n ≥ 0 : V (2n) highest weight space for highest weight 2n, dim(V (2n)) = 2n + 1 ∼ X C[SL(2; C)=T ] = V (2n) n2N T X C[SL(2; C)=T ] = C f2n n2N f2n is called a zonal spherical function of type 2n: That is, T · f2n = f2n: Robert W. Donley, Jr. (Queensborough CommunityMatrix College) Coefficients and Linearization Formulas for SL(2)November 17, 2017 4 / 43 Linearization Formula 1) Weight 0 : t · (f2m f2n) = (t · f2m)(t · f2n) = f2m f2n min(m;n) ∼ P 2) f2m f2n 2 V (2m) ⊗ V (2n) = V (2m + 2n − 2k) k=0 (Clebsch-Gordan decomposition) That is, f2m f2n is also spherical and a finite sum of zonal spherical functions.
    [Show full text]
  • Fourier Analysis Using Representation Theory
    FOURIER ANALYSIS USING REPRESENTATION THEORY NEEL PATEL Abstract. In this paper, it is our goal to develop the concept of Fourier transforms by using Representation Theory. We begin by laying basic def- initions that will help us understand the definition of a representation of a group. Then, we define representations and provide useful definitions and the- orems. We study representations and key theorems about representations such as Schur's Lemma. In addition, we develop the notions of irreducible repre- senations, *-representations, and equivalence classes of representations. After doing so, we develop the concept of matrix realizations of irreducible represen- ations. This concept will help us come up with a few theorems that lead up to our study of the Fourier transform. We will develop the definition of a Fourier transform and provide a few observations about the Fourier transform. Contents 1. Essential Definitions 1 2. Group Representations 3 3. Tensor Products 7 4. Matrix Realizations of Representations 8 5. Fourier Analysis 11 Acknowledgments 12 References 12 1. Essential Definitions Definition 1.1. An internal law of composition on a set R is a product map P : R × R ! R Definition 1.2. A group G, is a set with an internal law of composition such that: (i) P is associative. i.e. P (x; P (y; z)) = P (P (x; y); z) (ii) 9 an identity; e; 3 if x 2 G; then P (x; e) = P (e; x) = x (iii) 9 inverses 8x 2 G, denoted by x−1, 3 P (x; x−1) = P (x−1; x) = e: Let it be noted that we shorthand P (x; y) as xy.
    [Show full text]
  • An Introduction to Lie Groups and Lie Algebras
    This page intentionally left blank CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 113 EDITORIAL BOARD b. bollobás, w. fulton, a. katok, f. kirwan, p. sarnak, b. simon, b. totaro An Introduction to Lie Groups and Lie Algebras With roots in the nineteenth century, Lie theory has since found many and varied applications in mathematics and mathematical physics, to the point where it is now regarded as a classical branch of mathematics in its own right. This graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. The material covered ranges from basic definitions of Lie groups, to the theory of root systems, and classification of finite-dimensional representations of semisimple Lie algebras. Written in an informal style, this is a contemporary introduction to the subject which emphasizes the main concepts of the proofs and outlines the necessary technical details, allowing the material to be conveyed concisely. Based on a lecture course given by the author at the State University of New York at Stony Brook, the book includes numerous exercises and worked examples and is ideal for graduate courses on Lie groups and Lie algebras. CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit: http://www.cambridge.org/series/ sSeries.asp?code=CSAM Already published 60 M. P. Brodmann & R. Y. Sharp Local cohomology 61 J. D. Dixon et al. Analytic pro-p groups 62 R. Stanley Enumerative combinatorics II 63 R. M. Dudley Uniform central limit theorems 64 J.
    [Show full text]
  • Groups for Which It Is Easy to Detect Graphical Regular Representations
    CC Creative Commons ADAM Logo Also available at http://adam-journal.eu The Art of Discrete and Applied Mathematics nn (year) 1–x Groups for which it is easy to detect graphical regular representations Dave Witte Morris , Joy Morris Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta. T1K 3M4, Canada Gabriel Verret Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Received day month year, accepted xx xx xx, published online xx xx xx Abstract We say that a finite group G is DRR-detecting if, for every subset S of G, either the Cayley digraph Cay(G; S) is a digraphical regular representation (that is, its automorphism group acts regularly on its vertex set) or there is a nontrivial group automorphism ' of G such that '(S) = S. We show that every nilpotent DRR-detecting group is a p-group, but that the wreath product Zp o Zp is not DRR-detecting, for every odd prime p. We also show that if G1 and G2 are nontrivial groups that admit a digraphical regular representation and either gcd jG1j; jG2j = 1, or G2 is not DRR-detecting, then the direct product G1 × G2 is not DRR-detecting. Some of these results also have analogues for graphical regular representations. Keywords: Cayley graph, GRR, DRR, automorphism group, normalizer Math. Subj. Class.: 05C25,20B05 1 Introduction All groups and graphs in this paper are finite. Recall [1] that a digraph Γ is said to be a digraphical regular representation (DRR) of a group G if the automorphism group of Γ is isomorphic to G and acts regularly on the vertex set of Γ.
    [Show full text]