Prevention of Base Excision Repair by TRC102 (Methoxyamine) Potentiates the Anti-Tumor Activity of Pemetrexed in Vitro and in Vivo L

Total Page:16

File Type:pdf, Size:1020Kb

Prevention of Base Excision Repair by TRC102 (Methoxyamine) Potentiates the Anti-Tumor Activity of Pemetrexed in Vitro and in Vivo L Prevention of Base Excision Repair by TRC102 (Methoxyamine) Potentiates the Anti-Tumor Activity of Pemetrexed in vitro and in vivo L. Liu, A. Bulgar, J. Donze, B. Adams, C.P. Theuer, S.L. Gerson Case Comprehensive Cancer Center, Cleveland, Ohio and TRACON Pharmaceuticals ABSTRACT RESULTS PURPOSE: TRC102 (methoxyamine) reverses resistance to alkylating agents by AP Sites Detected in H460 Cells inhibiting base excision repair (BER; a mechanism of DNA repair), thereby increasing TRC102 Bound AP Sites are Refractory to the Repair The Combination of Pemetrexed and TRC102 Enhances After Treatment with Pemetrexed and TRC102 DNA strand breaks and potentiating the anti-tumor activity of alkylating agents without by AP Endonuclease DNA Double Strand Breaks and Apoptosis additional toxicity. Based on these data, TRC102 is currently being studied in that is Independent of the Bcl2 Pathway Pemetrexed A. B. combination with temozolomide in a Phase 1 trial. We hypothesized that nucleotide 35 14 Control APE Pemetrexed + TRC102 (6 mM) Pemetrexed (200 µM) imbalances caused by the anti-folate pemetrexed would also produce AP sites 30 12 Pemetrexed+TRC102 + - + - recognized and repaired by BER, and that inhibition of BER by TRC102 would TRC102 (6 mM) C P P+T P P+T P P+T T 25 10 U therefore improve the anti-tumor activity of pemetrexed. METHODS: Pemetrexed- UDG 20 8 40 mer Cleaved PARP induced apurinic/apyrimidinic (AP) sites and BER inhibition were quantified using an AP Site 15 6 AP site assay in vitro. Single and double DNA strand breaks were quantified by the TRC102 20 mer H2AX Comet assay in vitro, apoptosis was quantified by Annexin V staining, and anti-tumor 10 4 AP sites (arbitrary unit) sites (arbitrary AP AP sites (arbitrary unit) sites (arbitrary AP Bax TRC102-AP Site activity was assessed in an in vivo xenograft study of subcutaneously implanted 5 2 AP Site TRC102-AP Site human lung, colorectal and breast cancer cells. RESULTS: AP sites increased Bcl-2 0 0 proportionally with dose in pemetrexed–treated H460 lung cancer cells in vitro. 0 100 200 400 24 48 72 Tubulin TRC102 reduced the number of available AP sites in pemetrexed-treated cells (by 60- Pemetrexed (µM) Time (hrs) A. Schematic diagram indicate the preparation of a position specific oligonucleotide 80%), indicating successful inhibition of BER. TRC102 treatment increased DNA substrates containing an AP site or an TRC102 bound AP site. BER Protein Levels in H460 Cells B. APE has the ability to cleave the AP site but not the TRC102 bound AP site, P 100 µM P 200 µM P 400 µM strand breaks (2 fold increase versus treatment with pemetrexed alone) and apoptosis. Before and After Treatment with Pemetrexed or the Combination indicating that TRC102 bound AP site is refractory to the repair by APE. TRC102 increased the activity of pemetrexed in vivo (tumor growth delay of 2 days in Cells were treated with TRC102 at 6 mM and collected at 24 hr mice bearing H460 or A549 lung cancer xenografts treated with 150mg/kg C P P+T P P+T P P+T T pemetrexed alone versus 9 days in mice treated with 150mg/kg pemetrexed + 4mg/kg UDG TRC102 Enhances Antitumor Effect of Pemetrexed in Nude Mice Carrying Human Tumors TRC102; p<0.05); in vivo systemic toxicity was not increased and TRC102 alone had C = Control no effect in vitro or in vivo. TRC102 also increased pemetrexed activity on HCT116 FEN1 T = TRC102 H460 A549 colorectal and MDA-MB-468 breast cancer xenografts. Moreover, the combination P = Pemetrexed β-pol 2500 2500 selectively up-regulated the BER proteins, uracil DNA glycosylase and polymerase β, APE Control Control ) ) 3 which provides strong evidence that DNA damage induced by the drug combination 3 2000 2000 Pemetrexed Pemetrexed induces BER. CONCLUSION: TRC102 effectively inhibits BER in cancer cells treated Tubulin Pemetrexed +TRC102 Pemetrexed+TRC102 TRC102 with pemetrexed. Inhibition of BER by TRC102 results in an increase in DNA strand 1500 1500 TRC102 breaks and apoptosis, and improved anti-tumor activity versus treatment with P 100 µM P 200 µM P 400 µM 1000 1000 pemetrexed alone. Given its preclinical safety and efficacy profile, clinical study of Cells were treated with TRC102 at 6 mM and collected at 24 hr TRC102 combined with pemetrexed is warranted. Tumor volume(mm Tumor volume(mm * 500 * 500 Base Excision Repair Pathway 0 0 Neutral Comet 0246810121416 0 5 10 15 20 25 30 Days Days Base Excision Glycosylase * P < 0.05 Repair pathway HCT116 MDA-MB-468 AP site 1800 800 PARP Alkali Comet 1600 Control 700 Control pol β Pemetrexed Pemetrexed ) 1400 APE 3 600 Pemetrexed + TRC102 ) Pemetrexed+ TRC102 3 1200 TRC102 Pemetrexed Pemetrexed+TRC102 TRC102 500 TRC102 1000 PNCA 400 pol β Polδ/ε 800 * DNA Strand Breaks Measured by Comet Assay 300 600 in H460 Cells 4 hours after Treatment 200 Tumor volume(mm 400 Tumor volume(mm * 100 pol β XRCC1 200 FEN1 Alkaline comet assay Neutral comet assay 0.8 1.2 0 0 0 10 20 30 40 50 60 70 80 90 100 0.7 0 5 10 15 20 25 LigIII 1 Days Days * P < 0.05 Lig I Lig I 0.6 0.5 0.8 0.4 0.6 SUMMARY 0.3 0.4 Hypotheses: (arbitrary units) (arbitrary units) 1) Pemetrexed induces the incorporation of abnormal bases that are removed by DNA Glycosylases as part of base excision repair (BER), 0.2 thereby producing AP sites. 1) Pemetrexed inhibits several key enzymes in the de novo pathways of pyrimidine 0.2 DNA single strand breaks and purine biosynthesis, leading to nucleotide pool imbalances, which favor the 0.1 breaks DNA strand double Incorporation of mismatched bases to initiate base excision repair (BER). 0 0 2) TRC102 binds to AP sites to efficiently block BER and increase DNA strand breaks. Control Pemetrexed P+T TRC102 Control Pemetrexed P+T TRC102 3) Inhibition of BER by TRC102 enhances pemetrexed antitumor activity against several human solid tumors, including lung, breast and 2) TRC102 blocks BER and enhances cytotoxicity of pemetrexed. colorectal cancers..
Recommended publications
  • Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases
    cells Review Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases Paulina Prorok 1 , Inga R. Grin 2,3, Bakhyt T. Matkarimov 4, Alexander A. Ishchenko 5 , Jacques Laval 5, Dmitry O. Zharkov 2,3,* and Murat Saparbaev 5,* 1 Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; [email protected] 2 SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; [email protected] 3 Center for Advanced Biomedical Research, Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia 4 National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; [email protected] 5 Groupe «Mechanisms of DNA Repair and Carcinogenesis», Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, F-94805 Villejuif, France; [email protected] (A.A.I.); [email protected] (J.L.) * Correspondence: [email protected] (D.O.Z.); [email protected] (M.S.); Tel.: +7-(383)-3635187 (D.O.Z.); +33-(1)-42115404 (M.S.) Abstract: It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the Citation: Prorok, P.; Grin, I.R.; major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field Matkarimov, B.T.; Ishchenko, A.A.; and alkylating metabolic radicals added to these threats.
    [Show full text]
  • Mechanism and Regulation of DNA Damage Recognition in Nucleotide Excision Repair
    Kusakabe et al. Genes and Environment (2019) 41:2 https://doi.org/10.1186/s41021-019-0119-6 REVIEW Open Access Mechanism and regulation of DNA damage recognition in nucleotide excision repair Masayuki Kusakabe1, Yuki Onishi1,2, Haruto Tada1,2, Fumika Kurihara1,2, Kanako Kusao1,3, Mari Furukawa1, Shigenori Iwai4, Masayuki Yokoi1,2,3, Wataru Sakai1,2,3 and Kaoru Sugasawa1,2,3* Abstract Nucleotide excision repair (NER) is a versatile DNA repair pathway, which can remove an extremely broad range of base lesions from the genome. In mammalian global genomic NER, the XPC protein complex initiates the repair reaction by recognizing sites of DNA damage, and this depends on detection of disrupted/destabilized base pairs within the DNA duplex. A model has been proposed that XPC first interacts with unpaired bases and then the XPD ATPase/helicase in concert with XPA verifies the presence of a relevant lesion by scanning a DNA strand in 5′-3′ direction. Such multi-step strategy for damage recognition would contribute to achieve both versatility and accuracy of the NER system at substantially high levels. In addition, recognition of ultraviolet light (UV)-induced DNA photolesions is facilitated by the UV-damaged DNA-binding protein complex (UV-DDB), which not only promotes recruitment of XPC to the damage sites, but also may contribute to remodeling of chromatin structures such that the DNA lesions gain access to XPC and the following repair proteins. Even in the absence of UV-DDB, however, certain types of histone modifications and/or chromatin remodeling could occur, which eventually enable XPC to find sites with DNA lesions.
    [Show full text]
  • Role of Apurinic/Apyrimidinic Nucleases in the Regulation of Homologous Recombination in Myeloma: Mechanisms and Translational S
    Kumar et al. Blood Cancer Journal (2018) 8:92 DOI 10.1038/s41408-018-0129-9 Blood Cancer Journal ARTICLE Open Access Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance Subodh Kumar1,2, Srikanth Talluri1,2, Jagannath Pal1,2,3,XiaoliYuan1,2, Renquan Lu1,2,PuruNanjappa1,2, Mehmet K. Samur1,4,NikhilC.Munshi1,2,4 and Masood A. Shammas1,2 Abstract We have previously reported that homologous recombination (HR) is dysregulated in multiple myeloma (MM) and contributes to genomic instability and development of drug resistance. We now demonstrate that base excision repair (BER) associated apurinic/apyrimidinic (AP) nucleases (APEX1 and APEX2) contribute to regulation of HR in MM cells. Transgenic as well as chemical inhibition of APEX1 and/or APEX2 inhibits HR activity in MM cells, whereas the overexpression of either nuclease in normal human cells, increases HR activity. Regulation of HR by AP nucleases could be attributed, at least in part, to their ability to regulate recombinase (RAD51) expression. We also show that both nucleases interact with major HR regulators and that APEX1 is involved in P73-mediated regulation of RAD51 expression in MM cells. Consistent with the role in HR, we also show that AP-knockdown or treatment with inhibitor of AP nuclease activity increases sensitivity of MM cells to melphalan and PARP inhibitor. Importantly, although inhibition 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; of AP nuclease activity increases cytotoxicity, it reduces genomic instability caused by melphalan. In summary, we show that APEX1 and APEX2, major BER proteins, also contribute to regulation of HR in MM.
    [Show full text]
  • DNA Repair with Its Consequences (E.G
    Cell Science at a Glance 515 DNA repair with its consequences (e.g. tolerance and pathways each require a number of apoptosis) as well as direct correction of proteins. By contrast, O-alkylated bases, Oliver Fleck* and Olaf Nielsen* the damage by DNA repair mechanisms, such as O6-methylguanine can be Department of Genetics, Institute of Molecular which may require activation of repaired by the action of a single protein, Biology, University of Copenhagen, Øster checkpoint pathways. There are various O6-methylguanine-DNA Farimagsgade 2A, DK-1353 Copenhagen K, Denmark forms of DNA damage, such as base methyltransferase (MGMT). MGMT *Authors for correspondence (e-mail: modifications, strand breaks, crosslinks removes the alkyl group in a suicide fl[email protected]; [email protected]) and mismatches. There are also reaction by transfer to one of its cysteine numerous DNA repair pathways. Each residues. Photolyases are able to split Journal of Cell Science 117, 515-517 repair pathway is directed to specific Published by The Company of Biologists 2004 covalent bonds of pyrimidine dimers doi:10.1242/jcs.00952 types of damage, and a given type of produced by UV radiation. They bind to damage can be targeted by several a UV lesion in a light-independent Organisms are permanently exposed to pathways. Major DNA repair pathways process, but require light (350-450 nm) endogenous and exogenous agents that are mismatch repair (MMR), nucleotide as an energy source for repair. Another damage DNA. If not repaired, such excision repair (NER), base excision NER-independent pathway that can damage can result in mutations, diseases repair (BER), homologous recombi- remove UV-induced damage, UVER, is and cell death.
    [Show full text]
  • DNA Replication, Repair and Recombination
    DNA replication, repair and recombination Asst. Prof. Dr. Altijana Hromic-Jahjefendic SS2020 DNA Genetic material Eukaryotes: in nucleus Prokaryotes: as plasmid Mitosis Division and duplication of somatic cells Production of two identical daughter cells from a single parent cell 4 stages: Prophase: The chromatin condenses into chromosomes. Each chromosome has duplicated to tow sister chromatids. The nuclear envelope breaks down. Metaphase: The chromosomes align at the equatorial plate and are held by microtubules attached to the mitotic spindle and to part of the centromere Anaphase: Centromeres divide and sister chromatids separate and move to corresponding poles Telophase: Daughter chromosomes arrive at the poles and the microtubules disappear. The nuclear envelope reappears DNA replication & recombination Reproduction (Replication) of a DNA-double helix - semiconservative fashion demonstrated by Meselson & Stahl by using 15N-labeled ammonium chloride in the growth medium heavy nitrogen label was incorporated in the DNA of the bacteria shifted to normal 14N-medium giving rise to density band between the “heavy” and the “light” band in the 1st generation In the 2nd generation, in addition to the hybrid band a light band appears which contains only 14N- DNA Synthesis of a new DNA strand nucleoside triphosphates are selected ability to form Watson-Crick base pairs to the corresponding position in the template strand DNA replication occurs at replication forks For replication - two parental DNA-strands must separate from
    [Show full text]
  • Distribution of DNA Repair-Related Ests in Sugarcane
    Genetics and Molecular Biology, 24 (1-4), 141-146 (2001) Distribution of DNA repair-related ESTs in sugarcane W.C. Lima, R. Medina-Silva, R.S. Galhardo and C.F.M. Menck* Abstract DNA repair pathways are necessary to maintain the proper genomic stability and ensure the survival of the organism, protecting it against the damaging effects of endogenous and exogenous agents. In this work, we made an analysis of the expression patterns of DNA repair-related genes in sugarcane, by determining the EST (expressed sequence tags) distribution in the different cDNA libraries of the SUCEST transcriptome project. Three different pathways - photoreactivation, base excision repair and nucleotide excision repair - were investigated by employing known DNA repair proteins as probes to identify homologous ESTs in sugarcane, by means of computer similarity search. The results showed that DNA repair genes may have differential expressions in tissues, depending on the pathway studied. These in silico data provide important clues on the potential variation of gene expression, to be confirmed by direct biochemical analysis. INTRODUCTION (The Arabidopsis Genome Initiative, 2000), have provided huge amounts of data that still need to be processed, in or- The genome of all living beings is constantly subject der to enable us to understand the physiological mecha- to damage generated by exogenous and endogenous fac- nisms of these organisms. This is the case of the DNA tors, reducing DNA stability and leading to an increase of repair pathways. Although repair and damage tolerance mutagenesis, cancer, cell death, senescence and other dele- mechanisms have been well described in bacteria, yeast, terious effects to organisms (de Laat et al., 1999).
    [Show full text]
  • DNA Proofreading and Repair
    DNA proofreading and repair Mechanisms to correct errors during DNA replication and to repair DNA damage over the cell's lifetime. Key points: Cells have a variety of mechanisms to prevent mutations, or permanent changes in DNA sequence. During DNA synthesis, most DNA polymerases "check their work," fixing the majority of mispaired bases in a process called proofreading. Immediately after DNA synthesis, any remaining mispaired bases can be detected and replaced in a process called mismatch repair. If DNA gets damaged, it can be repaired by various mechanisms, including chemical reversal, excision repair, and double-stranded break repair. Introduction What does DNA have to do with cancer? Cancer occurs when cells divide in an uncontrolled way, ignoring normal "stop" signals and producing a tumor. This bad behavior is caused by accumulated mutations, or permanent sequence changes in the cells' DNA. Replication errors and DNA damage are actually happening in the cells of our bodies all the time. In most cases, however, they don’t cause cancer, or even mutations. That’s because they are usually detected and fixed by DNA proofreading and repair mechanisms. Or, if the damage cannot be fixed, the cell will undergo programmed cell death (apoptosis) to avoid passing on the faulty DNA. Mutations happen, and get passed on to daughter cells, only when these mechanisms fail. Cancer, in turn, develops only when multiple mutations in division-related genes accumulate in the same cell. In this article, we’ll take a closer look at the mechanisms used by cells to correct replication errors and fix DNA damage, including: Proofreading, which corrects errors during DNA replication Mismatch repair, which fixes mispaired bases right after DNA replication DNA damage repair pathways, which detect and correct damage throughout the cell cycle Proofreading DNA polymerases are the enzymes that build DNA in cells.
    [Show full text]
  • Redox Regulation of DNA Repair: Implications for Human Health and Cancer Therapeutic Development
    ANTIOXIDANTS & REDOX SIGNALING Volume 12, Number 11, 2010 C OMPREHENSIVE INVITED REVIEW © Mary Ann Liebert, Inc. DOI: 10.1089/ ars.2009.2698 Redox Regulation of DNA Repair: Implications for Human Health and Cancer Therapeutic Development 2 2 Meihua Luo~ Hongzhen He, Mark R. Ke l ley ~ -3 and Millie M. Georgiadis .4 Abstract Red.ox reactions are known to regulate many important cellular processes. In this revievv, v.re focus on the role of redox regulation in DNA repair both in direct regulation of specific DNA repair proteins as well as indirect transcriptional regulation. A key player in the redox regulation of DNA repair is the base excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APEl) in its role as a redox factor. APEl is reduced by the general redox factor thioredoxin, and in turn reduces several important transcription factors that regulate expression of DNA repair proteins. Finally, we consider the potential for chemotherapeutic development through the modulation of APEl's redox activity and its impact on DNA repair. Antioxid. Redox Signal. 12, 1247-1269. l. Introduction 1248 II. DNA-Repair Pathways 1248 A. Mammalian d irect repair: 0 6-alkylguanine-DNA methyltransferase or 0 6-methylguanine-DNA methyltransferase 1249 B. Base-excision repair 1249 C. Nucleotide-excision repair 1249 D. Mismatch repair 1250 E. Nonhomologous DNA end-joining and homologous recombiJ.1ation 1250 ITT. General Redox Systems 1251 A. The thioredoxin system 1251 B. The glutaredoxin/glutathione system 1252 C. l~oles of general redox systems 1252 N. The Redox Activity of APEl 1252 A. Evolution of the redox function of APEl 1252 B.
    [Show full text]
  • The Consequences of Rad51 Overexpression for Normal and Tumor Cells
    dna repair 7 (2008) 686–693 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/dnarepair Mini review The consequences of Rad51 overexpression for normal and tumor cells Hannah L. Klein ∗ Department of Biochemistry, New York University School of Medicine, NYU Medical Center, 550 First Avenue, New York, NY 10016, United States article info abstract Article history: The Rad51 recombinase is an essential factor for homologous recombination and the Received 11 December 2007 repair of DNA double strand breaks, binding transiently to both single stranded and double Accepted 12 December 2007 stranded DNA during the recombination reaction. The use of a homologous recombination Published on line 1 February 2008 mechanism to repair DNA damage is controlled at several levels, including the binding of Rad51 to single stranded DNA to form the Rad51 nucleofilament, which is controlled through Keywords: the action of DNA helicases that can counteract nucleofilament formation. Overexpression Rad51 protein of Rad51 in different organisms and cell types has a wide assortment of consequences, rang- Overexpression of Rad51 ing from increased homologous recombination and increased resistance to DNA damaging Genomic instability agents to disruption of the cell cycle and apoptotic cell death. Rad51 expression is increased Tumor cell drug resistance in p53-negative cells, and since p53 is often mutated in tumor cells, there is a tendency for Homologous recombination Rad51 to be overexpressed in tumor cells, leading to increased resistance to DNA damage Gene targeting and drugs used in chemotherapies. As cells with increased Rad51 levels are more resis- tant to DNA damage, there is a selection for tumor cells to have higher Rad51 levels.
    [Show full text]
  • DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces Cerevisiae
    YEASTBOOK GENOME ORGANIZATION & INTEGRITY DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae Serge Boiteux* and Sue Jinks-Robertson†,1 *Centre National de la Recherche Scientifique UPR4301 Centre de Biophysique Moléculaire, 45071 Orléans cedex 02, France, and yDepartment of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710 ABSTRACT DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mech- anisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion.
    [Show full text]
  • Defective DNA Repair and Chromatin Organization in Patients with Quiescent Systemic Lupus Erythematosus Vassilis L
    Souliotis et al. Arthritis Research & Therapy (2016) 18:182 DOI 10.1186/s13075-016-1081-3 RESEARCH ARTICLE Open Access Defective DNA repair and chromatin organization in patients with quiescent systemic lupus erythematosus Vassilis L. Souliotis1,2*, Konstantinos Vougas3, Vassilis G. Gorgoulis3,4 and Petros P. Sfikakis2 Abstract Background: Excessive autoantibody production characterizing systemic lupus erythematosus (SLE) occurs irrespective of the disease’s clinical status and is linked to increased lymphocyte apoptosis. Herein, we tested the hypothesis that defective DNA damage repair contributes to increased apoptosis in SLE. Methods: We evaluated nucleotide excision repair at the N-ras locus, DNA double-strand breaks repair and apoptosis rates in peripheral blood mononuclear cells from anti-dsDNA autoantibody-positive patients (six with quiescent disease and six with proliferative nephritis) and matched healthy controls following ex vivo treatment with melphalan. Chromatin organization and expression levels of DNA repair- and apoptosis-associated genes were also studied in quiescent SLE. Results: Defective nucleotide excision repair and DNA double-strand breaks repair were found in SLE, with lupus nephritis patients showing higher DNA damage levels than those with quiescent disease. Melphalan-induced apoptosis rates were higher in SLE than control cells and correlated inversely with DNA repair efficiency. Chromatin at the N-ras locus was more condensed in SLE than controls, while treatment with the histone deacetylase inhibitor vorinostat resulted in hyperacetylation of histone H4, chromatin decondensation, amelioration of DNA repair efficiency and decreased apoptosis. Accordingly, genes involved in DNA damage repair and signaling pathways, such as DDB1, ERCC2, XPA, XPC, MRE11A, RAD50, PARP1, MLH1, MLH3, and ATM were significantly underexpressed in SLE versus controls, whereas PPP1R15A, BARD1 and BBC3 genes implicated in apoptosis were significantly overexpressed.
    [Show full text]
  • Potentially Functional Single Nucleotide Polymorphisms in the Core Nucleotide Excision Repair Genes and Risk of Squamous Cell Carcinoma of the Head and Neck
    1633 Potentially Functional Single Nucleotide Polymorphisms in the Core Nucleotide Excision Repair Genes and Risk of Squamous Cell Carcinoma of the Head and Neck Jiaze An,1 Zhensheng Liu,1 Zhibin Hu,1 Guojun Li,1 Li-E Wang,1 Erich M. Sturgis,1,2 AdelK. El-Naggar, 2,3 Margaret R. Spitz,1 and Qingyi Wei1 Departments of 1Epidemiology, 2Head and Neck Surgery, and 3Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas Abstract Susceptibility to cancer has been associated with DNA SCCHN risk (adjusted odds ratio, 1.65; 95% confidence repair capacity, a global reflection of all functional variants, interval, 1.16-2.36). In analysis of the joint effects, the most of which are relatively rare. Among the 1,098 single number of observed risk genotypes was associated with nucleotide polymorphisms (SNP) identified in the eight SCCHN risk in a dose-response manner (P for trend = 0.017) core nucleotide excision repair genes, only a few are and those who carried four or more risk genotypes exhibited common nonsynonymous or regulatory SNPs that are a borderline significant 1.23-fold increased SCCHN risk potentially functional. We tested the hypothesis that seven (adjusted odds ratio, 1.23; 95% confidence interval, 0.99-1.53). selected common nonsynonymous and regulatory variants In the stratified analysis, the dichotomized combined effect in the nucleotide excision repair core genes are associated of the seven SNPs was slightly more evident among older with risk of squamous cell carcinoma of the head and neck subjects, women, and laryngeal cancer. These findings (SCCHN) in a hospital-based, case-control study of 829 suggest that these potentially functional SNPs may collec- SCCHN cases and 854 cancer-free controls.
    [Show full text]