Evaluating Open Source Malware Sandboxes with Linux Malware

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating Open Source Malware Sandboxes with Linux Malware Evaluating Open Source Malware Sandboxes with Linux malware OLABOYEJO OLOWOYEYE A thesis submitted to the Faculty of Design and Creative Technologies Auckland University of Technology In partial fulfilment of the requirements for the degree of Master of Information Security and Digital Forensics School of Engineering, Computer and Mathematical Sciences Auckland, New Zealand 2018 Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which, to a substantial extent, has been accepted for the qualification of any other degree or diploma of a University or other institution of higher learning, except where due acknowledgment is made in the acknowledgments. ------------------------------------ --------------------------------------- OLABOYEJO OLOWOYEYE (05-June-2018) ii Abstract Analysis of Linux binaries for indicators of compromise is an area of research gaining in interest due to the ubiquity of Internet connected embedded devices. These devices have also been the subject of high profile cybersecurity incidents as a result of the damage caused by their compromise. Malware analysis sandboxes are used to examine malware samples in an isolated environment. They provide a safe environment for the analysis of malware. Most of the discussion on malware analysis and associated tools have been devoted to the Windows operating system. This is because the Windows operating system is the dominant operating system in the desktop operating system space. This research examines the Linux operating system and evaluates the malware analysis sandboxes that are available for the examination of malware developed for the platform. These analysis sandboxes were tested against Linux malware binaries and the relative effectiveness of the sandboxes were observed. Malware samples were sourced from online repositories and a honeypot setup. The malware samples obtained from the repositories were restricted to those first submitted to the portals within the last four years. The honeypot was deployed to attract malware samples in the wild that are possibly unknown to existing portals. Four malware samples were extracted from the honeypot which were added to the two hundred and ninety-three (293) selected from VirusTotal and VirusShare. The five sandboxes tested were REMnux, Limon, Cuckoo, Detux and HaboMalhunter. The malware samples were examined and analysed on these platforms. The static and dynamic analysis features of these tools were observed as well as their support for automation and reporting. The consistency of the results where applicable were also noted. It was observed that despite the consistency of analysis noticed; collectively, the five sandboxes failed to detect indications of compromise in twenty-seven (27) of two hundred and ninety-seven (297) malware samples. HaboMalhunter was found to be the most effective during dynamic analysis in the detection of indications of compromise; however, its workflow required each analysis run to be done manually because it did not have in-built virtual machine orchestration like Limon, Detux and Cuckoo. During static analysis results, the results were observed to be similar with the exception of Limon which employed Yara rules to detect the packers used to mask the malware samples. Limon was also alone in its use of Context Triggered Piecewise Hashing (CTPH) to determine the similarity between malware samples by its maintenance of a master list of analysed samples. Cuckoo and HaboMalHunter generated output reports in HTML and JSON while Detux supported only JSON output. REMnux and Limon generated only plaintext output reports. The addition of virtual machine control to HaboMalhunter to restore virtual machine state before and after each analysis run was suggested as a recommended improvement to facilitate the automation of the analysis process. The need to develop more packing signatures for Yara rules was also mentioned for the automatic detection of packers. iii Contents Evaluating Open Source Malware Sandboxes with Linux malware ...................................................... i Declaration .............................................................................................................................................. ii Abstract .................................................................................................................................................. iii List of Figures ....................................................................................................................................... viii List of Tables ........................................................................................................................................... x List of Abbreviations .............................................................................................................................. xi 1. Introduction ........................................................................................................................................ 1 1.1 Background, motivation and objective ......................................................................................... 1 1.2 Organisation .................................................................................................................................. 2 2 Literature Review ................................................................................................................................. 3 2.1 Introduction .................................................................................................................................. 3 2.2 Malware and the Linux Operating System .................................................................................... 3 2.3 Linux Operating System Internals ................................................................................................. 4 2.3.1 Internals ................................................................................................................................. 4 2.3.2 Forensic Artefacts ................................................................................................................ 16 2.4 Malware Analysis ........................................................................................................................ 20 2.4.1 Static Analysis....................................................................................................................... 20 2.4.2 Dynamic Analysis ................................................................................................................. 21 2.5 Related Work .............................................................................................................................. 21 2.5.1 Survey of malware analysis solutions .................................................................................. 21 2.5.2 Analysis of Linux Malware Samples ..................................................................................... 26 2.6 Research Goals ............................................................................................................................ 27 3 Research Design ................................................................................................................................. 29 iv 3.1 Introduction ................................................................................................................................ 29 3.2 Review of malware analysis methodology ................................................................................. 29 3.2.1 Sourcing malware samples .................................................................................................. 29 3.2.2 Analysis methods ................................................................................................................. 30 3.3 Data Acquisition .......................................................................................................................... 32 3.3.1 Honeypot.............................................................................................................................. 32 3.3.2 Public Repositories ............................................................................................................... 35 3.4 Analysis methodology ................................................................................................................. 36 3.4.1 Honeypot setup.................................................................................................................... 38 3.4.2 Sandbox ................................................................................................................................ 39 3.5 Research Questions and Hypotheses .......................................................................................... 45 3.5.1 REMnux ................................................................................................................................ 45 3.5.2 Limon.................................................................................................................................... 45 3.5.3 Cuckoo .................................................................................................................................. 46 3.5.4 Detux .................................................................................................................................... 46 3.5.5 HaboMalHunter ..................................................................................................................
Recommended publications
  • A Story of an Embedded Linux Botnet
    A Moose Once Bit My Honeypot A Story of an Embedded Linux Botnet by Olivier Bilodeau (@obilodeau) $ apropos Embedded Linux Malware Moose DNA (description) Moose Herding (the Operation) What’s New? Take Aways $ whoami Malware Researcher at ESET Infosec lecturer at ETS University in Montreal Previously infosec developer, network admin, linux system admin Co-founder Montrehack (hands-on security workshops) Founder NorthSec Hacker Jeopardy Embedded Linux Malware What marketing likes to call "Internet of Things Malware" Malware Running On An Embedded Linux System Like consumer routers DVR Smart TVs IP Camera monitoring systems … Caracteristics of Embedded Linux Systems Small amount of memory Small amount of flash Non x86 architectures: ARM, MIPS Wide-variety of libc implementations / versions Same ABI-compatible Linux kernel (2.4 < x < 4.3) Support ELF binaries Rarely an integrated UI Networked Why Threats On These Systems Matters? Hard to detect Hard to remediate Hard to fix Low hanging fruit for bad guys It’s Real Several cases disclosed in the last two years A lot of same-old background noise (DDoSer) Things are only getting worse Wait, is IoT malware really about things? NNoo.. NNoott yyeett.. So what kind of malware can we find on such insecure devices? Linux/Aidra Linux/Bassobo ChinaZ family (XOR.DDoS, …) Linux/Dofloo Linux/DNSAmp (Mr Black, BillGates) Linux/Gafgyt (LizardStresser) Linux/Hydra Linux/Tsunami … LLeessssoonn LLeeaarrnneedd ##00 Statically-linked stripped binaries Static/stripped ELF primer No imports (library calls) present
    [Show full text]
  • Survivor: a Fine-Grained Intrusion Response and Recovery Approach for Commodity Operating Systems
    Survivor: A Fine-Grained Intrusion Response and Recovery Approach for Commodity Operating Systems Ronny Chevalier David Plaquin HP Labs HP Labs CentraleSupélec, Inria, CNRS, IRISA [email protected] [email protected] Chris Dalton Guillaume Hiet HP Labs CentraleSupélec, Inria, CNRS, IRISA [email protected] [email protected] ABSTRACT 1 INTRODUCTION Despite the deployment of preventive security mechanisms to pro- Despite progress in preventive security mechanisms such as cryp- tect the assets and computing platforms of users, intrusions even- tography, secure coding practices, or network security, given time, tually occur. We propose a novel intrusion survivability approach an intrusion will eventually occur. Such a case may happen due to to withstand ongoing intrusions. Our approach relies on an orches- technical reasons (e.g., a misconfiguration, a system not updated, tration of fine-grained recovery and per-service responses (e.g., or an unknown vulnerability) and economic reasons [39] (e.g., do privileges removal). Such an approach may put the system into a the benefits of an intrusion for criminals outweigh their costs?). degraded mode. This degraded mode prevents attackers to reinfect To limit the damage done by security incidents, intrusion re- the system or to achieve their goals if they managed to reinfect covery systems help administrators restore a compromised system it. It maintains the availability of core functions while waiting for into a sane state. Common limitations are that they do not preserve patches to be deployed. We devised a cost-sensitive response se- availability [23, 27, 34] (e.g., they force a system shutdown) or that lection process to ensure that while the service is in a degraded they neither stop intrusions from reoccurring nor withstand re- mode, its core functions are still operating.
    [Show full text]
  • Sureview® Memory Integrity Advanced Linux Memory Analysis Delivers Unparalleled Visibility and Verification
    SureView® Memory Integrity Advanced Linux Memory Analysis Delivers Unparalleled Visibility and Verification Promoting trustworthy and repeatable analysis of volatile system state Benefits Increased Usage of Linux in Forensics Field Guide for Linux Global Enterprises Systems2,” the apparent goal n Enables visibility into the state n Scans thousands of The use of Linux is everywhere of these attackers is to steal all systems with hundreds of of systems software while in the world. Linux is used in types of information. Perhaps of gigabytes of memory executing in memory our stock exchange transactions, greatest concern are the synchro- on Linux systems n Provides a configurable social media, network storage nized, targeted attacks against n Delivers malware detection using scanning engine for automated devices, smartphones, DVR’s, Linux systems. For several years, scans of remote systems an integrity verification approach online purchasing web sites, organized groups of attackers to verify that all systems software throughout an enterprise running is known and unmodified and in the majority of global (a.k.a. threat actors) have been n Incorporates an easy-to- Internet traffic. The Linux infiltrating Linux systems and to quickly identify threats use GUI to quickly assess Foundation’s 2013 Enterprise have been communicating with n Allows the integration and interpret results End User Report indicates that command and control (C2) of memory forensics into n Delivers output in a structured 80% of respondents planned servers and exfiltrating data enterprise security information data format (JSON) to to increase their numbers of from compromised Linux sys- and event management facilitate analytics systems (SIEMS) supporting Linux servers over the next five tems.
    [Show full text]
  • Malware Trends
    NCCIC National Cybersecurity and Communications Integration Center Malware Trends Industrial Control Systems Emergency Response Team (ICS-CERT) Advanced Analytical Laboratory (AAL) October 2016 This product is provided subject only to the Notification Section as indicated here:http://www.us-cert.gov/privacy/ SUMMARY This white paper will explore the changes in malware throughout the past several years, with a focus on what the security industry is most likely to see today, how asset owners can harden existing networks against these attacks, and the expected direction of developments and targets in the com- ing years. ii CONTENTS SUMMARY .................................................................................................................................................ii ACRONYMS .............................................................................................................................................. iv 1.INTRODUCTION .................................................................................................................................... 1 1.1 State of the Battlefield ..................................................................................................................... 1 2.ATTACKER TACTIC CHANGES ........................................................................................................... 2 2.1 Malware as a Service ...................................................................................................................... 2 2.2 Destructive Malware ......................................................................................................................
    [Show full text]
  • A Malicious Concept That Conquered the Elf Format
    DDOS TROJAN: A MALICIOUS fl ooding tools) that provides an attacker with the possibility of forming a malicious botnet. The framework consists of C&C CONCEPT THAT CONQUERED panels, bot builders, installation scripts, port scanners, SSH THE ELF FORMAT brute-forcers, etc. In our paper we provide a survey of current Linux DDoS bots and we sketch a wider context of usage of Peter Kálnai & Jaromír Hořejší the above-mentioned components. This topic has been covered Avast Software, Czech Republic by many independent security researchers, e.g. the MalwareMustDie! group summarised their series of blogposts Email {kalnai, horejsi}@avast.com in [2]. The authors presented its early development in [21]. 2. COMMON CHARACTERISTICS ABSTRACT DDoS threats have been around ever since the Internet took 2.1 About the ELF format over half of global communications, posing the real problem of ELF is short for ‘Executable and Linkable Format’, which is a denial of access to online service providers. Recently, a new common standard format for executables under Unix systems. trend has emerged in non-Windows DDoS attacks that has been The instruction set architecture (ISA) of the binary is stored at induced by code availability, lack of security and an abundance the offset e_machine, and we refer to this parameter using the of resources. The attack infrastructure has undergone prefi x ‘EM_’. Unix systems power not only desktop and server signifi cant changes in structure, function and complexity. machines, but are also the main operating systems for Malware has evolved into complex and relatively sophisticated embedded devices. Although Intel 80386 (EM_386) and pieces of code, employing compression, advanced encryption AMD64 (EM_x86_64) ISAs are the most common for desktops and even rootkit capabilities.
    [Show full text]
  • Russian GRU 85Th Gtsss Deploys Previously Undisclosed Drovorub Malware
    National Security Agency Federal Bureau of Investigation Cybersecurity Advisory Russian GRU 85th GTsSS Deploys Previously Undisclosed Drovorub Malware August 2020 Rev 1.0 U/OO/160679-20 PP-20-0714 Russian GRU 85th GTsSS Deploys Previously Undisclosed Drovorub Malware Notices and history Disclaimer of Warranties and Endorsement The information and opinions contained in this document are provided "as is" and without any warranties or guarantees. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. This guidance shall not be used for advertising or product endorsement purposes. Sources and Methods NSA and FBI use a variety of sources, methods, and partnerships to acquire information about foreign cyber threats. This advisory contains the information NSA and FBI have concluded can be publicly released, consistent with the protection of sources and methods and the public interest. Publication Information Purpose This advisory was developed as a joint effort between NSA and FBI in support of each agency’s respective missions. The release of this advisory furthers NSA’s cybersecurity missions, including its responsibilities to identify and disseminate threats to National Security Systems, Department of Defense information systems, and the Defense Industrial Base, and to develop and issue cybersecurity specifications and mitigations. This information may be shared broadly to reach all appropriate stakeholders. Contact Information Client Requirements / General Cybersecurity Inquiries: Cybersecurity Requirements Center, 410-854-4200, [email protected] Media Inquiries / Press Desk: Media Relations, 443-634-0721, [email protected] Trademark Recognition Linux® is a registered trademark of Linus Torvalds.
    [Show full text]
  • Linux Security Review 2015
    Linux Security Review 2015 www.av-comparatives.org AV-Comparatives Linux Security Review Language: English May 2015 Last revision: 26 th May 2015 www.av-comparatives.org -1- Linux Security Review 2015 www.av-comparatives.org Contents Introduction ....................................................................................................................... 3 Reviewed products ............................................................................................................... 4 Malware for Linux systems ..................................................................................................... 5 Linux security advice ............................................................................................................ 6 Items covered in the review .................................................................................................. 7 Avast File Server Security ...................................................................................................... 8 AVG Free Edition for Linux.................................................................................................... 11 Bitdefender Antivirus Scanner for Unices ................................................................................ 13 Clam Antivirus for Linux ....................................................................................................... 17 Comodo Antivirus for Linux .................................................................................................. 20 Dr.Web Anti-virus for
    [Show full text]
  • Analysis of SSH Executables
    Masaryk University Faculty of Informatics Analysis of SSH executables Bachelor’s Thesis Tomáš Šlancar Brno, Fall 2019 Masaryk University Faculty of Informatics Analysis of SSH executables Bachelor’s Thesis Tomáš Šlancar Brno, Fall 2019 This is where a copy of the official signed thesis assignment and a copy ofthe Statement of an Author is located in the printed version of the document. Declaration Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Tomáš Šlancar Advisor: RNDr. Daniel Kouřil, Ph.D. i Acknowledgements I want to thank a lot to my advisor RNDr. Daniel Kouřil, Ph.D., for his excellent guidance, patience, and time. I appreciate every advice he gave me. I would also like to thank him and ESET for the provided collection of the infected SSH executables. Last but not least important, I would like to thank my family for all the support. They gave me a great environment while writing the thesis, and I appreciate it very much. iii Abstract The thesis describes the dynamic analysis of SSH executables with the main focus on the client-side. There are also some small aspects relating to the server-side too. The examination is performed only on the level of system calls and using OS Linux. The purpose is to propose a series of steps and create tools that would help to determine whether an unknown SSH binary contains malicious code or is safe and whether it is possible to automate the decision.
    [Show full text]
  • Unix/Mac/Linux OS Malware 10/15/2020
    Unix/Mac/Linux OS Malware 10/15/2020 Report #: 202010151030 Agenda • Executive Summary • Origin of Modern Operating Systems • Overview of Operating Systems o Desktop o Servers o Super Computers o Mobile o Attack Surface and CVEs • Malware Case Studies o Drovorub o Hidden Wasp o Operation Windigo o MAC Malware Slides Key: • Defending Against Malware The picture can't be displayed. Non-Technical: Managerial, strategic and high- • Summary level (general audience) The picture can't be displayed. Technical: Tactical / IOCs; requiring in-depth knowledge (system admins, IRT) TLP: WHITE, ID# 202010151030 2 Executive Summary • Unix and Unix-like systems drive most of today's computer systems. • Vulnerabilities and malware • Threat mitigation o Comprehensive security policies o Access control o Regular updates and backups o Training employees o Improving posture and maturity TLP: WHITE, ID# 202010151030 3 Modern Operating Systems "Determining the operating system on which the server runs is the most important part of hacking. Mostly, hacking is breaking into the target's system to steal data or any such purpose. Hence, the security of the system becomes the thing of prime importance." Source: Parikh, K. (2020, August) The Hackers Library Functions of Operating Systems Timeline of the Origins of Operating Systems TLP: WHITE, ID# 202010151030 4 Overview of Operating Systems (Non-Mobile) Unix Chrome OS •Derived from Original AT&T Unix •Free and open-source •Command-line input •Graphical user interface •Very popular among scientific, •Based on Linux
    [Show full text]
  • What Is Linux?
    What is Linux? ● A computer operating system (OS). ● Based on the UNIX OS (a major server OS). ● Free and open source software (FOSS). ● Available free of cost. ● Runs on nearly every hardware platform: – mainframes, PCs, cell phones, embedded processors ● Heavily used for servers. ● Heavily used in devices with embedded processors. CS Day 2013: Linux Introduction © Norman Carver Computer Science Dept. SIUC Linux?? ● “But I have never heard of Linux, so it must not be very commonly used.” ● “Nobody uses Linux.” ● “Everyone runs Windows.” ● “Linux is too hard for anyone but computer scientists to use.” ● “There's no malware for Linux because Linux is so unimportant.” CS Day 2013: Linux Introduction © Norman Carver Computer Science Dept. SIUC Have You Used Linux? ● Desktop OS? – many distributions: Ubuntu, Red Hat, etc. CS Day 2013: Linux Introduction © Norman Carver Computer Science Dept. SIUC Have You Used Linux? ● Desktop OS? – many distributions: Ubuntu, Red Hat, etc. CS Day 2013: Linux Introduction © Norman Carver Computer Science Dept. SIUC Have You Used Linux? ● Cell phones or tablets or netbooks? – Android and Chrome OS are Linux based CS Day 2013: Linux Introduction © Norman Carver Computer Science Dept. SIUC Have You Used Linux? ● Routers? – many routers and other network devices run Linux – projects like DD-WRT are based on Linux CS Day 2013: Linux Introduction © Norman Carver Computer Science Dept. SIUC Have You Used Linux? ● NAS (Network Attached Storage) devices? – most run Linux CS Day 2013: Linux Introduction © Norman Carver Computer Science Dept. SIUC Have You Used Linux? ● Multimedia devices? – many run Linux CS Day 2013: Linux Introduction © Norman Carver Computer Science Dept.
    [Show full text]
  • Leveraging Advanced Linux Debugging Techniques for Malware Hunting
    Beyond Whitelisting: Fileless Attacks Against Linux Shlomi Boutnaru ./whomai • Currently: − CTO & Co-Founder, Rezilion • Previous: − Chief Technologist Cybersecurity, PayPal − CTO & Co-Founder, CyActive − Acquired by PayPal (2015) Fileless Malware - Definition “… a variant of computer related malicious software that exists exclusively as a computer memory-based artifact i.e. in RAM. It does not write any part of its activity to the computer's hard drive meaning that it's very resistant to existing Anti-computer forensic strategies that incorporate file-based whitelisting, signature detection, hardware verification, pattern-analysis, time-stamping, etc., and leaves very little by way of evidence that could be used by digital forensic investigators to identify illegitimate activity. As malware of this type is designed to work in-memory, its longevity on the system exists only until the system is rebooted…” https://en.wikipedia.org/wiki/Fileless_malware In the News… https://www.techradar.com/news/why-fileless-malware-is-the-biggest-new-threat-to-your-business https://securelist.com/fileless-attacks-against-enterprise-networks/77403/ https://threatpost.com/threatlist-ransomware-attacks-down-fileless-malware-up-in-2018/136962/ And More… Statistics https://www.barkly.com/ponemon-2018-endpoint-security-statistics-trends “…77% of attacks that successfully compromised organizations in 2017 utilized fileless techniques…” https://blog.barkly.com/2018-cybersecurity-statistics A third of all attacks are projected to utilize fileless techniques in 2018.
    [Show full text]
  • MMALE„A Methodology for Malware Analysis in Linux Environments
    Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.014596 Article MMALE—A Methodology for Malware Analysis in Linux Environments José Javier de Vicente Mohino1, Javier Bermejo Higuera1, Juan Ramón Bermejo Higuera1, Juan Antonio Sicilia Montalvo1,*, Manuel Sánchez Rubio1 and José Javier Martínez Herraiz2 1Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, Logroño, 26006, La Rioja, Spain 2Departamento de Ciencias de la Computación de la Escuela Politécnica Superior, Universidad de Alcalá de Henares, Alcalá de Henares, Madrid, Spain *Corresponding Author: Juan Antonio Sicilia Montalvo. Email: [email protected] Received: 01 October 2020; Accepted: 28 November 2020 Abstract: In a computer environment, an operating system is prone to malware, and even the Linux operating system is not an exception. In recent years, malware has evolved, and attackers have become more qualified compared to a few years ago. Furthermore, Linux-based systems have become more attractive to cybercriminals because of the increasing use of the Linux operating system in web servers and Internet of Things (IoT) devices. Windows is the most employed OS, so most of the research efforts have been focused on its malware protection rather than on other operating systems. As a result, hundreds of research articles, documents, and methodologies dedicated to malware analysis have been reported. However, there has not been much literature concerning Linux security and protection from malware. To address all these new challenges, it is necessary to develop a methodology that can standardize the required steps to perform the malware analysis in depth. A systematic analysis process makes the difference between good and ordinary malware analyses.
    [Show full text]