Requirements of the Smart Factory System: a Survey and Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Industrial Revolution in America
DO NOT EDIT--Changes must be made through “File info” CorrectionKey=TX-A SECTION 1 The Industrial TEKS 5B, 5D, 7A, 11A, 12C, 12D, 13A, Revolution in 13B, 14A, 14B, 27A, 27D, 28B What You Will Learn… America Main Ideas 1. The invention of new machines in Great Britain If YOU were there... led to the beginning of the You live in a small Pennsylvania town in the 1780s. Your father is a Industrial Revolution. 2. The development of new blacksmith, but you earn money for the family, too. You raise sheep machines and processes and spin their wool into yarn. Your sisters knit the yarn into warm brought the Industrial Revolu- tion to the United States. wool gloves and mittens. You sell your products to merchants in the 3. Despite a slow start in manu- city. But now you hear that someone has invented machines that facturing, the United States made rapid improvements can spin thread and make cloth. during the War of 1812. Would you still be able to earn the same amount The Big Idea of money for your family? Why? The Industrial Revolution trans- formed the way goods were produced in the United States. BUILDING BACKOU GR ND In the early 1700s making goods depend- ed on the hard work of humans and animals. It had been that way for Key Terms and People hundreds of years. Then new technology brought a change so radical Industrial Revolution, p. 385 that it is called a revolution. It began in Great Britain and soon spread to textiles, p. -
Machine Tools and Mass Production in the Armaments Boom: Germany and the United States, 1929–441 by CRISTIANO ANDREA RISTUCCIA and ADAM TOOZE*
bs_bs_banner Economic History Review, 66, 4 (2013), pp. 953–974 Machine tools and mass production in the armaments boom: Germany and the United States, 1929–441 By CRISTIANO ANDREA RISTUCCIA and ADAM TOOZE* This article anatomizes the ‘productivity race’ between Nazi Germany and the US over the period from the Great Depression to the Second World War in the metal- working industry.We present novel data that allow us to account for both the quantity of installed machine tools and their technological type. Hitherto, comparison of productive technologies has been limited to case studies and well-worn narratives about US mass production and European-style flexible specialization. Our data show that the two countries in fact employed similar types of machines combined in different ratios. Furthermore, neither country was locked in a rigid technological paradigm. By 1945 Germany had converged on the US both in terms of capital- intensity and the specific technologies employed. Capital investment made a greater contribution to output growth in Germany, whereas US growth was capital-saving. Total factor productivity growth made a substantial contribution to the armaments boom in both countries. But it was US industry, spared the war’s most disruptive effects, that was in a position to take fullest advantage of the opportunities for wartime productivity growth. This adds a new element to familiar explanations for Germany’s rapid catch-up after 1945. earmament in the 1930s followed by the industrial effort for the Second RWorld War unleashed an unprecedented boom in worldwide metalworking production. Over the entire period from the early 1930s to the end of the Second World War, the combatants between them produced in excess of 600,000 military aircraft and many times that number of highly sophisticated aero- engines. -
Mental Strain As Field of Action in the 4Th Industrial Revolution
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 17 ( 2014 ) 100 – 105 Variety Management in Manufacturing. Proceedings of the 47th CIRP Conference on Manufacturing Systems Mental strain as field of action in the 4th industrial revolution Uwe DOMBROWSKI, Tobias WAGNER* Institute for Advanced Industrial Management (IFU), Technische Universität Braunschweig, Langer Kamp 19, 38106 Braunschweig * Corresponding author. Tel.: "+49 531 391-2725" ; Fax: +49 531 391-8237. E-mail address: [email protected] Abstract Industrial revolutions have changed the society by a development of key-technologies. The vision of the 4th industrial revolution is triggered by technological concepts and solutions to realize a combination of the economy of scale with the economy of scope. This aim is also known as mass customization and is characterized by handling a high level of complexity with a total network integration of products and production processes. These technology-driven changes also lead to new fields of activity in the industrial science and the occupational psychology. The 4th industrial revolution intends to implement the collaboration between humans and machines. At the same time, processes are locally controlled and planned. For humans, this results to new work items. Resulting psychological effects should be investigated. This paper classifies the 4th industrial revolution systematically and describes future changes for employees. It derives the necessity of labor- psychological analysis of new key technologies like cyber physical systems. A theoretical foundation of a psychological work requirement analysis by using the VERA method is given. -
The Industrial Revolution!!! Ɯ Ɯ 1750
The Industrial Revolution!!! Ɯ Ɯ 1750 - Today The Industrial Revolution was a period during which predominantly agricultural, rural societies in Europe and America became industrial and more people lived in cities. Prior to the Industrial Revolution, which began in Britain in the late 1700s, manufacturing** was often done in people’s homes, using hand tools or basic machines. Industrialization marked a shift to powered, special-purpose machinery, factories and mass production. The iron and textile industries, along with the development of the steam engine, played central roles in the Industrial Revolution, which also saw improved systems of transportation, communication and banking. While industrialization brought about an increased volume and variety of manufactured goods and an improved standard of living** for some, it also resulted in often grim employment and living conditions for the poor and working classes. Manufacturing = Making and producing things! Standard of living = How most people live their lives BRITAIN: BIRTHPLACE OF THE INDUSTRIAL REVOLUTION Before the advent of the Industrial Revolution, most people resided in small, rural communities where their daily existences revolved around farming. Life for the average person was difficult, as incomes were meager, and malnourishment and disease were common. People produced the bulk of their own food, clothing, furniture and tools. Most manufacturing was done in homes or small, rural shops, using hand tools or simple machines. A number of factors contributed to Britain’s role as the birthplace of the Industrial Revolution. For one, it had great deposits of coal and iron ore, which proved essential for industrialization. Additionally, Britain was a politically stable society, as well as the world’s leading colonial power, which meant its colonies could serve as a source for raw materials, as well as a marketplace for manufactured goods. -
What Was the Assembly Line ?
59 WHAT WAS THE ASSEMBLY LINE ? DAVID E. NYE INTRODUCTION Today, ”assembly line” immediately suggests Asian or Latin-American factories where poorly-paid workers make consumer goods for export to the West. For example, many US corporations shifted jobs to northern Mexico beginning in 1965 as part of the Border Industrialization Program. This process accelerated dramatically after January 1, 1994, when the North American Free Trade Agreement (NAFTA) went into effect. It abolished tariffs and made re-importation of assembly line goods easy. By 2000, 1.2 million US jobs had been relocated to Mexico. Most of the Mexicans hired were semi-skilled women, preferred both for their manual dexterity and their willingness to accept low wages.1 Corporations built factories where environmental legislation was lax and unions were weak or non-existent. In such places, “the danger is that repression rather than innovation becomes a competitive advantage.”2 Yet if the assembly line of today is often part of a global production system for offshore, semi-skilled work, at its inception in 1913 the Americans saw the assembly line as the guarantor of high wages and domestic prosperity. This essay reviews the origins of the assembly line, what exactly it was as a technology, and how it was initially understood. In hindsight, it was less a beginning than a mid-point in long- term developments that are still underway. Historians frequently refer to the assembly line as an historical stage, in a sequence from Taylorism to Fordism to “post-Fordism,” with additional stages sometimes included such as “lexible production,” “lean production” and most recently “post- lean production.”3 As convenient as these historical stages once seemed, their proliferation suggests that the whole notion of a sequence was mistaken to begin with. -
Technology, Labor, and Mechanized Bodies in Victorian Culture
Syracuse University SURFACE English - Dissertations College of Arts and Sciences 12-2012 The Body Machinic: Technology, Labor, and Mechanized Bodies in Victorian Culture Jessica Kuskey Syracuse University Follow this and additional works at: https://surface.syr.edu/eng_etd Part of the English Language and Literature Commons Recommended Citation Kuskey, Jessica, "The Body Machinic: Technology, Labor, and Mechanized Bodies in Victorian Culture" (2012). English - Dissertations. 62. https://surface.syr.edu/eng_etd/62 This Dissertation is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in English - Dissertations by an authorized administrator of SURFACE. For more information, please contact [email protected]. ABSTRACT While recent scholarship focuses on the fluidity or dissolution of the boundary between body and machine, “The Body Machinic” historicizes the emergence of the categories of “human” and “mechanical” labor. Beginning with nineteenth-century debates about the mechanized labor process, these categories became defined in opposition to each other, providing the ideological foundation for a dichotomy that continues to structure thinking about our relation to technology. These perspectives are polarized into technophobic fears of dehumanization and machines “taking over,” or technological determinist celebrations of new technologies as improvements to human life, offering the tempting promise of maximizing human efficiency. “The Body Machinic” argues that both sides to this dichotomy function to mask the ways the apparent body-machine relation is always the product of human social relations that become embedded in the technologies of the labor process. Chapter 1 identifies the emergence of this dichotomy in the 1830s “Factory Question” debates: while critics of the factory system described workers as tools appended to monstrous, living machines, apologists claimed large-scale industrial machinery relieved human toil by replicating the laboring body in structure and function. -
Design for Manufacture
Design for Manufacture Mass Production, Assembly & Manufacturing Guidelines Author: Andrew Taylor BSc MA FRSA – Design‐Bites Design for Manufacture Mass Production Prior to about 1840, durables were essentially hand crafted. After 1840, mechanized production techniques gradually spread throughout the manufacturing community. First to take up the production of standardized parts were the armories (see Design for Maintainability), followed by sewing machine makers, and then textile, farm machinery, lock, clock, locomotive and bicycle makers. By the dawn of the 20th century, all the elements were in place to allow Henry Ford to establish his first factory and start production of the model A motor car. Many of his insights and innovations still form the backbone of best practice in volume manufacturing. For example, the production ‘line,’ the delivery of parts to assembly stations, unskilled assembly, and minimization of variants were Ford innovations, achieving huge improvements in throughput while reducing the manual labor required for assembly. Manufacturing ideals To fully exploit the techniques of mass production requires the design of products sympathetic to the production process. The production engineer’s ideal product is one that… • Employs as few different materials as possible. • Requires minimum processing of the materials. • Uses existing machines, tools, jigs and processes, either in house or subcontracted. • Complies fully with existing design guidelines. • Contains the least number of component parts, and uses as many off-the-shelf and standardized parts as possible. • Is proof against errors in assembly. • Uses processing and assembly skills already established in the workforce. • Is fully specified, and testable against specifications. Most production engineers and managers appreciate that capturing new markets requires innovation, and innovation sometimes brings unfamiliar materials and processes. -
The Cottage Industry
The Cottage Industry • The Cottage Industry – A family or small group of workers made products from their homes to sell, usually just to earn extra money (not to make a living). Before the Industrial Revolution, this was how products were manufactured. – Merchants (business people) delivered materials to the house – The workers in the house turned the materials into a product to be sold – The merchants returned to collect the product and pay the workers. – The merchants sold the product in other markets. The Cottage Industry The Cottage Industry • Modern Examples: – www.etsy.com – Fredericton Farmers Market – http://www.youtube.com/watch?v=i5UbII_Q0_c – http://www.youtube.com/watch?v=C7vElymyRDQ &feature=related The Factory System • The Factory System – Machines did work that was once done by hand. Workers were paid to operate the machines. – Faster – Cheaper – One machine could do the work of 50 or more people. – Machines were powered by coal, steam or water. The Factory System Cottage Industry Factory System Source of Power Hand Machines Place of Production In the home In the factories Scale of Production Small Scale Large Scale (Large-scale? Small-scale?) Cost of finished product Expensive Cheap Production Capacity Few Many How much could be made? Worker Safety Safe Dangerous Skill Requirements of Must be very skilled to Little or no skill required to Labourers craft products operate machines Speed of producing one Slow. One product made at Very fast. Multiple item a time. products made at once. Cottage vs. Factory Cottage Factory Hand-made products Machine-made products One person makes one One person makes one whole product part of a product Made in the home Made in a factory Expensive to produce Cheap to produce Time consuming Fast Review Slip • Answer the following question: – Why was the Factory System better for England’s economy than the Cottage Industry? . -
From Mass Production to Mass Customization
Volume 1, Issue 2, Winter 2001 FROM MASS PRODUCTION TO MASS CUSTOMIZATION Michael T. Fralix Textile/Clothing Technology Corporation [TC]2 Cary, NC ABSTRACT With the advent of the industrial revolution and interchangeable parts, manufacturing moved from the craft era to the mass production era. Today there is a new era emerging and it is called Mass Customization. Mass Customization takes the best of the craft era, when customers had products built to their specifications but only the elite could afford them, with the best of the mass production era, when everybody could get the same product because it was affordable. This presentation will highlight the development of Mass Customization and how the sewn products industry is positioned to capitalize on it. As progressive companies trade their traditional production concepts and practices for powerful mass customization techniques, this presentation will provide insight into the integration of information technology, mechanization, and team- based flexible manufacturing. Emerging technologies for mass customization such as three- dimensional non-contact body measurement and digital printing will also be discussed. KEYWORDS: Mass Customization, Body Scanning, Digital Printing Introduction: Another very interesting signal that merits Sometimes we get signals that it is time to some attention is that of the growth in change long before we respond to those worldwide population. If world population signals. In fact, we have been getting were separated into developed countries signals in the United States that it is time to versus developing or undeveloped countries, do something different, and we have been it would show that there is a significantly betting those signals for a long time. -
The Domestic System Vs. the Factory System by Sarah Collinge
The Domestic System vs. the Factory System By Sarah Collinge The Domestic System Before the 1700s, people manufactured products in their own homes. These people were considered artisans. They made products by hand, often taking a long time to make each object. While this work was slow, the finished products were of high quality. During the time of the domestic system, it took a great deal of time to produce fabric that could be made into clothing. First, wool was sheared from the sheep and cleaned. It was then spun by spinners and made into yarn. Finally, a skilled weaver wove the yarn using a handloom. It took a significant amount of time and skill to make a single piece of fabric. With the population growing, the need for a large production of goods, especially textiles, was needed. The domestic system was no longer able to provide enough goods to meet the demand. The Factory System In the late 1700s, machines were invented that allowed textiles to be made faster and in larger quan- tities. These new machines replaced hand weavers. The new machines were too large to be housed in one’s home. They also required a power source to make them run. Factories, or mills, were built along rivers, which supplied power. Workers now had to leave their homes each day and travel to a factory to work. Some workers lived too far away from a factory to trav- el back and forth each day. They stayed in tenements or apartments in order to be close to their work. -
Practical Application of the Industry 4.0 Concept in a Steel Company
sustainability Article Practical Application of the Industry 4.0 Concept in a Steel Company Radosław Mi´skiewicz and Radosław Wolniak * Faculty of Organisation and Management, Silesian University of Technology, 44-100 Gliwice, Poland; [email protected] * Correspondence: [email protected] Received: 10 June 2020; Accepted: 14 July 2020; Published: 17 July 2020 Abstract: The primary aim of this paper was to present and analyze practical solutions of Industry 4.0 as applied in the Re Alloys company. The research question was whether the implementation of the digitization process based on Industry 4.0 resulted in changes to the organizational structure of the company and whether this brought about an improvement in the energy and material efficiency of the company. The research method used in the paper was the case study method. In view of the project’s results, we concluded that implementation of the new solution based on digitalization caused increased energy and material efficiency, often forced by external factors stemming from the operation of competitive markets. Technological changes also require the application of IT technologies and communication systems in managing production. Access to this information is also a chance to gain a competitive advantage. Keywords: Industry 4.0; manufacturing; metals and metal production; digitalization 1. Introduction Today, industrial production is driven by global competition and the need to quickly adapt to ever-changing market requirements [1–3]. Modern production was built on the experiences of the first industrial revolution, streamlining the operations of manufacturing plants; the second revolution, introducing electricity to industry; and the third revolution, automating uniform tasks for production workers [4–6]. -
Challenges and Opportunities of Digital Production Technologies for Developing Countries Department of Policy, Research and Statistics Working Paper 7/2019
Inclusive and Sustainable Industrial Development Working Paper Series WP 7 | 2019 A REVOLUTION IN THE MAKING? CHALLENGES AND OPPORTUNITIES OF DIGITAL PRODUCTION TECHNOLOGIES FOR DEVELOPING COUNTRIES DEPARTMENT OF POLICY, RESEARCH AND STATISTICS WORKING PAPER 7/2019 A revolution in the making? Challenges and opportunities of digital production technologies for developing countries Antonio Andreoni UCL Institute for Innovation and Public Purpose Guendalina Anzolin University of Urbino UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna, 2019 This is a Background Paper for the UNIDO Industrial Development Report 2020: Industrializing in the Digital Age The designations employed, descriptions and classifications of countries, and the presentation of the material in this report do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. The views expressed in this paper do not necessarily reflect the views of the Secretariat of the UNIDO. The responsibility for opinions expressed rests solely with the authors, and publication does not constitute an endorsement by UNIDO. Although great care has been taken to maintain the accuracy of information herein, neither UNIDO nor its member States assume any responsibility for consequences which may arise from the use of the material. Terms such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgment. Any indication of, or reference to, a country, institution or other legal entity does not constitute an endorsement.