When Does Predation Dominate Collusion?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Equilibrium Refinements
Equilibrium Refinements Mihai Manea MIT Sequential Equilibrium I In many games information is imperfect and the only subgame is the original game. subgame perfect equilibrium = Nash equilibrium I Play starting at an information set can be analyzed as a separate subgame if we specify players’ beliefs about at which node they are. I Based on the beliefs, we can test whether continuation strategies form a Nash equilibrium. I Sequential equilibrium (Kreps and Wilson 1982): way to derive plausible beliefs at every information set. Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 2 / 38 An Example with Incomplete Information Spence’s (1973) job market signaling game I The worker knows her ability (productivity) and chooses a level of education. I Education is more costly for low ability types. I Firm observes the worker’s education, but not her ability. I The firm decides what wage to offer her. In the spirit of subgame perfection, the optimal wage should depend on the firm’s beliefs about the worker’s ability given the observed education. An equilibrium needs to specify contingent actions and beliefs. Beliefs should follow Bayes’ rule on the equilibrium path. What about off-path beliefs? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 3 / 38 An Example with Imperfect Information Courtesy of The MIT Press. Used with permission. Figure: (L; A) is a subgame perfect equilibrium. Is it plausible that 2 plays A? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 4 / 38 Assessments and Sequential Rationality Focus on extensive-form games of perfect recall with finitely many nodes. An assessment is a pair (σ; µ) I σ: (behavior) strategy profile I µ = (µ(h) 2 ∆(h))h2H: system of beliefs ui(σjh; µ(h)): i’s payoff when play begins at a node in h randomly selected according to µ(h), and subsequent play specified by σ. -
Lecture Notes
GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies .................................. -
Stochastic Game Theory Applications for Power Management in Cognitive Networks
STOCHASTIC GAME THEORY APPLICATIONS FOR POWER MANAGEMENT IN COGNITIVE NETWORKS A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Master of Digital Science by Sham Fung Feb 2014 Thesis written by Sham Fung M.D.S, Kent State University, 2014 Approved by Advisor , Director, School of Digital Science ii TABLE OF CONTENTS LIST OF FIGURES . vi LIST OF TABLES . vii Acknowledgments . viii Dedication . ix 1 BACKGROUND OF COGNITIVE NETWORK . 1 1.1 Motivation and Requirements . 1 1.2 Definition of Cognitive Networks . 2 1.3 Key Elements of Cognitive Networks . 3 1.3.1 Learning and Reasoning . 3 1.3.2 Cognitive Network as a Multi-agent System . 4 2 POWER ALLOCATION IN COGNITIVE NETWORKS . 5 2.1 Overview . 5 2.2 Two Communication Paradigms . 6 2.3 Power Allocation Scheme . 8 2.3.1 Interference Constraints for Primary Users . 8 2.3.2 QoS Constraints for Secondary Users . 9 2.4 Related Works on Power Management in Cognitive Networks . 10 iii 3 GAME THEORY|PRELIMINARIES AND RELATED WORKS . 12 3.1 Non-cooperative Game . 14 3.1.1 Nash Equilibrium . 14 3.1.2 Other Equilibriums . 16 3.2 Cooperative Game . 16 3.2.1 Bargaining Game . 17 3.2.2 Coalition Game . 17 3.2.3 Solution Concept . 18 3.3 Stochastic Game . 19 3.4 Other Types of Games . 20 4 GAME THEORETICAL APPROACH ON POWER ALLOCATION . 23 4.1 Two Fundamental Types of Utility Functions . 23 4.1.1 QoS-Based Game . 23 4.1.2 Linear Pricing Game . -
Characterizing Solution Concepts in Terms of Common Knowledge Of
Characterizing Solution Concepts in Terms of Common Knowledge of Rationality Joseph Y. Halpern∗ Computer Science Department Cornell University, U.S.A. e-mail: [email protected] Yoram Moses† Department of Electrical Engineering Technion—Israel Institute of Technology 32000 Haifa, Israel email: [email protected] March 15, 2018 Abstract Characterizations of Nash equilibrium, correlated equilibrium, and rationaliz- ability in terms of common knowledge of rationality are well known (Aumann 1987; arXiv:1605.01236v1 [cs.GT] 4 May 2016 Brandenburger and Dekel 1987). Analogous characterizations of sequential equi- librium, (trembling hand) perfect equilibrium, and quasi-perfect equilibrium in n-player games are obtained here, using results of Halpern (2009, 2013). ∗Supported in part by NSF under grants CTC-0208535, ITR-0325453, and IIS-0534064, by ONR un- der grant N00014-02-1-0455, by the DoD Multidisciplinary University Research Initiative (MURI) pro- gram administered by the ONR under grants N00014-01-1-0795 and N00014-04-1-0725, and by AFOSR under grants F49620-02-1-0101 and FA9550-05-1-0055. †The Israel Pollak academic chair at the Technion; work supported in part by Israel Science Foun- dation under grant 1520/11. 1 Introduction Arguably, the major goal of epistemic game theory is to characterize solution concepts epistemically. Characterizations of the solution concepts that are most commonly used in strategic-form games, namely, Nash equilibrium, correlated equilibrium, and rational- izability, in terms of common knowledge of rationality are well known (Aumann 1987; Brandenburger and Dekel 1987). We show how to get analogous characterizations of sequential equilibrium (Kreps and Wilson 1982), (trembling hand) perfect equilibrium (Selten 1975), and quasi-perfect equilibrium (van Damme 1984) for arbitrary n-player games, using results of Halpern (2009, 2013). -
Deterministic and Stochastic Prisoner's Dilemma Games: Experiments in Interdependent Security
NBER TECHNICAL WORKING PAPER SERIES DETERMINISTIC AND STOCHASTIC PRISONER'S DILEMMA GAMES: EXPERIMENTS IN INTERDEPENDENT SECURITY Howard Kunreuther Gabriel Silvasi Eric T. Bradlow Dylan Small Technical Working Paper 341 http://www.nber.org/papers/t0341 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 August 2007 We appreciate helpful discussions in designing the experiments and comments on earlier drafts of this paper by Colin Camerer, Vince Crawford, Rachel Croson, Robyn Dawes, Aureo DePaula, Geoff Heal, Charles Holt, David Krantz, Jack Ochs, Al Roth and Christian Schade. We also benefited from helpful comments from participants at the Workshop on Interdependent Security at the University of Pennsylvania (May 31-June 1 2006) and at the Workshop on Innovation and Coordination at Humboldt University (December 18-20, 2006). We thank George Abraham and Usmann Hassan for their help in organizing the data from the experiments. Support from NSF Grant CMS-0527598 and the Wharton Risk Management and Decision Processes Center is gratefully acknowledged. The views expressed herein are those of the author(s) and do not necessarily reflect the views of the National Bureau of Economic Research. © 2007 by Howard Kunreuther, Gabriel Silvasi, Eric T. Bradlow, and Dylan Small. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. Deterministic and Stochastic Prisoner's Dilemma Games: Experiments in Interdependent Security Howard Kunreuther, Gabriel Silvasi, Eric T. Bradlow, and Dylan Small NBER Technical Working Paper No. 341 August 2007 JEL No. C11,C12,C22,C23,C73,C91 ABSTRACT This paper examines experiments on interdependent security prisoner's dilemma games with repeated play. -
Stochastic Games with Hidden States∗
Stochastic Games with Hidden States¤ Yuichi Yamamoto† First Draft: March 29, 2014 This Version: January 14, 2015 Abstract This paper studies infinite-horizon stochastic games in which players ob- serve noisy public information about a hidden state each period. We find that if the game is connected, the limit feasible payoff set exists and is invariant to the initial prior about the state. Building on this invariance result, we pro- vide a recursive characterization of the equilibrium payoff set and establish the folk theorem. We also show that connectedness can be replaced with an even weaker condition, called asymptotic connectedness. Asymptotic con- nectedness is satisfied for generic signal distributions, if the state evolution is irreducible. Journal of Economic Literature Classification Numbers: C72, C73. Keywords: stochastic game, hidden state, connectedness, stochastic self- generation, folk theorem. ¤The author thanks Naoki Aizawa, Drew Fudenberg, Johannes Horner,¨ Atsushi Iwasaki, Michi- hiro Kandori, George Mailath, Takeaki Sunada, and Masatoshi Tsumagari for helpful conversa- tions, and seminar participants at various places. †Department of Economics, University of Pennsylvania. Email: [email protected] 1 1 Introduction When agents have a long-run relationship, underlying economic conditions may change over time. A leading example is a repeated Bertrand competition with stochastic demand shocks. Rotemberg and Saloner (1986) explore optimal col- lusive pricing when random demand shocks are i.i.d. each period. Haltiwanger and Harrington (1991), Kandori (1991), and Bagwell and Staiger (1997) further extend the analysis to the case in which demand fluctuations are cyclic or persis- tent. One of the crucial assumptions of these papers is that demand shocks are publicly observable before firms make their decisions in each period. -
570: Minimax Sample Complexity for Turn-Based Stochastic Game
Minimax Sample Complexity for Turn-based Stochastic Game Qiwen Cui1 Lin F. Yang2 1School of Mathematical Sciences, Peking University 2Electrical and Computer Engineering Department, University of California, Los Angeles Abstract guarantees are rather rare due to complex interaction be- tween agents that makes the problem considerably harder than single agent reinforcement learning. This is also known The empirical success of multi-agent reinforce- as non-stationarity in MARL, which means when multi- ment learning is encouraging, while few theoret- ple agents alter their strategies based on samples collected ical guarantees have been revealed. In this work, from previous strategy, the system becomes non-stationary we prove that the plug-in solver approach, proba- for each agent and the improvement can not be guaranteed. bly the most natural reinforcement learning algo- One fundamental question in MBRL is that how to design rithm, achieves minimax sample complexity for efficient algorithms to overcome non-stationarity. turn-based stochastic game (TBSG). Specifically, we perform planning in an empirical TBSG by Two-players turn-based stochastic game (TBSG) is a two- utilizing a ‘simulator’ that allows sampling from agents generalization of Markov decision process (MDP), arbitrary state-action pair. We show that the em- where two agents choose actions in turn and one agent wants pirical Nash equilibrium strategy is an approxi- to maximize the total reward while the other wants to min- mate Nash equilibrium strategy in the true TBSG imize it. As a zero-sum game, TBSG is known to have and give both problem-dependent and problem- Nash equilibrium strategy [Shapley, 1953], which means independent bound. -
Discovery and Equilibrium in Games with Unawareness∗
Discovery and Equilibrium in Games with Unawareness∗ Burkhard C. Schippery April 20, 2018 Abstract Equilibrium notions for games with unawareness in the literature cannot be interpreted as steady-states of a learning process because players may discover novel actions during play. In this sense, many games with unawareness are \self-destroying" as a player's representa- tion of the game may change after playing it once. We define discovery processes where at each state there is an extensive-form game with unawareness that together with the players' play determines the transition to possibly another extensive-form game with unawareness in which players are now aware of actions that they have discovered. A discovery process is rationalizable if players play extensive-form rationalizable strategies in each game with un- awareness. We show that for any game with unawareness there is a rationalizable discovery process that leads to a self-confirming game that possesses a self-confirming equilibrium in extensive-form rationalizable strategies. This notion of equilibrium can be interpreted as steady-state of both a discovery and learning process. Keywords: Self-confirming equilibrium, conjectural equilibrium, extensive-form rational- izability, unawareness, extensive-form games, equilibrium, learning, discovery. JEL-Classifications: C72, D83. ∗I thank Aviad Heifetz, Byung Soo Lee, and seminar participants at UC Berkeley, the University of Toronto, the Barcelona workshop on Limited Reasoning and Cognition, SAET 2015, CSLI 2016, TARK 2017, and the Virginia Tech Workshop on Advances in Decision Theory 2018 for helpful discussions. An abbreviated earlier version appeared in the online proceedings of TARK 2017 under the title “Self-Confirming Games: Unawareness, Discovery, and Equilibrium". -
Efficient Exploration of Zero-Sum Stochastic Games
Efficient exploration of zero-sum stochastic games Carlos Martin1 Tuomas Sandholm1,2,3,4 [email protected] [email protected] 1Computer Science Department, Carnegie Mellon University 2Optimized Markets, Inc. 3Strategic Machine, Inc. 4Strategy Robot, Inc. Abstract We investigate the increasingly important and common game-solving setting where we do not have an explicit description of the game but only oracle access to it through gameplay, such as in financial or military simulations and computer games. During a limited-duration learning phase, the algorithm can control the actions of both players in order to try to learn the game and how to play it well. After that, the algorithm has to produce a strategy that has low exploitability. Our motivation is to quickly learn strategies that have low exploitability in situations where evaluating the payoffs of a queried strategy profile is costly. For the stochastic game setting, we propose using the distribution of state-action value functions induced by a belief distribution over possible environments. We compare the performance of various explo- ration strategies for this task, including generalizations of Thompson sampling and Bayes-UCB to this new setting. These two consistently outperform other strategies. 1 Introduction We study the problem of how to efficiently explore zero-sum games whose payoffs and dynamics are initially unknown. The agent is given a certain number of episodes to learn as much useful information about the game as possible. During this learning, the rewards obtained in the game are fictional and thus do not count toward the evaluation of the final strategy. -
Modeling Replicator Dynamics in Stochastic Games Using Markov Chain Method
Main Track AAMAS 2021, May 3-7, 2021, Online Modeling Replicator Dynamics in Stochastic Games Using Markov Chain Method Chuang Deng Zhihai Rong Department of Automation School of Computer Science and Engineering Shanghai Jiao Tong University University of Electronic Science and Technology of China [email protected] [email protected] Lin Wang Xiaofan Wang Department of Automation School of Mechatronic Engineering and Automation Shanghai Jiao Tong University Shanghai University [email protected] [email protected] ABSTRACT For gaining qualitative and detailed insights into the learning In stochastic games, individuals need to make decisions in multi- process in repeated games, many algorithms and models have been ple states and transitions between states influence the dynamics proposed to build the bridge between evolutionary game theory of strategies significantly. In this work, by describing the dynamic and multi-agent reinforcement learning algorithms, such as FAQ- process in stochastic game as a Markov chain and utilizing the tran- learning [10], regret minimization [11], continuous strategy repli- sition matrix, we introduce a new method, named state-transition cator dynamics [5], IGA [21], IGA-WOLF [2] and so on. Besides replicator dynamics, to obtain the replicator dynamics of a stochas- the assumption that individuals are in the same state, how to de- tic game. Based on our proposed model, we can gain qualitative scribe strategy dynamics with the reciprocity of multiple states and and detailed insights into the influence of transition probabilities separate strategies also raises the attention of researchers. Vrancx on the dynamics of strategies. We illustrate that a set of unbalanced et al. -
Nash Q-Learning for General-Sum Stochastic Games
Journal of Machine Learning Research 4 (2003) 1039-1069 Submitted 11/01; Revised 10/02; Published 11/03 Nash Q-Learning for General-Sum Stochastic Games Junling Hu [email protected] Talkai Research 843 Roble Ave., 2 Menlo Park, CA 94025, USA Michael P. Wellman [email protected] Artificial Intelligence Laboratory University of Michigan Ann Arbor, MI 48109-2110, USA Editor: Craig Boutilier Abstract We extend Q-learning to a noncooperative multiagent context, using the framework of general- sum stochastic games. A learning agent maintains Q-functions over joint actions, and performs updates based on assuming Nash equilibrium behavior over the current Q-values. This learning protocol provably converges given certain restrictions on the stage games (defined by Q-values) that arise during learning. Experiments with a pair of two-player grid games suggest that such restric- tions on the game structure are not necessarily required. Stage games encountered during learning in both grid environments violate the conditions. However, learning consistently converges in the first grid game, which has a unique equilibrium Q-function, but sometimes fails to converge in the second, which has three different equilibrium Q-functions. In a comparison of offline learn- ing performance in both games, we find agents are more likely to reach a joint optimal path with Nash Q-learning than with a single-agent Q-learning method. When at least one agent adopts Nash Q-learning, the performance of both agents is better than using single-agent Q-learning. We have also implemented an online version of Nash Q-learning that balances exploration with exploitation, yielding improved performance. -
TESIS DOCTORAL Three Essays on Game Theory
UNIVERSIDAD CARLOS III DE MADRID TESIS DOCTORAL Three Essays on Game Theory Autor: José Carlos González Pimienta Directores: Luis Carlos Corchón Francesco De Sinopoli DEPARTAMENTO DE ECONOMÍA Getafe, Julio del 2007 Three Essays on Game Theory Carlos Gonzalez´ Pimienta To my parents Contents List of Figures iii Acknowledgments 1 Chapter 1. Introduction 3 Chapter 2. Conditions for Equivalence Between Sequentiality and Subgame Perfection 5 2.1. Introduction 5 2.2. Notation and Terminology 7 2.3. Definitions 9 2.4. Results 12 2.5. Examples 24 2.6. Appendix: Notation and Terminology 26 Chapter 3. Undominated (and) Perfect Equilibria in Poisson Games 29 3.1. Introduction 29 3.2. Preliminaries 31 3.3. Dominated Strategies 34 3.4. Perfection 42 3.5. Undominated Perfect Equilibria 51 Chapter 4. Generic Determinacy of Nash Equilibrium in Network Formation Games 57 4.1. Introduction 57 4.2. Preliminaries 59 i ii CONTENTS 4.3. An Example 62 4.4. The Result 64 4.5. Remarks 66 4.6. Appendix: Proof of Theorem 4.1 70 Bibliography 73 List of Figures 2.1 Notation and terminology of finite extensive games with perfect recall 8 2.2 Extensive form where no information set is avoidable. 11 2.3 Extensive form where no information set is avoidable in its minimal subform. 12 2.4 Example of the use of the algorithm contained in the proof of Proposition 2.1 to generate a game where SPE(Γ) = SQE(Γ). 14 6 2.5 Selten’s horse. An example of the use of the algorithm contained in the proof of proposition 2.1 to generate a game where SPE(Γ) = SQE(Γ).