P31comet and TRIP13 Recycle Rev7 to Regulate DNA Repair COMMENTARY Kevin D

Total Page:16

File Type:pdf, Size:1020Kb

P31comet and TRIP13 Recycle Rev7 to Regulate DNA Repair COMMENTARY Kevin D COMMENTARY p31comet and TRIP13 recycle Rev7 to regulate DNA repair COMMENTARY Kevin D. Corbetta,b,c,1 Proteins of the HORMA domain family, named for its of Rev7’s roles in two important DNA repair pathways: three founding members Hop1, Rev7, and Mad2, play translesion DNA synthesis and DNA double-strand key roles in a broad range of eukaryotic signaling break (DSB) repair. Rev7 was first characterized as a pathways, from chromosome segregation and meiotic subunit of DNA polymerase ζ, which aids replication recombination, to DNA repair, to the initiation of of DNA past lesions that stall replicative polymerases autophagy (1). The HORMA domain nucleates assem- (23, 24). A groundbreaking recent structure of the po- bly of multiprotein signaling complexes by wrapping lymerase ζ holoenzyme shows that a dimer of Rev7 its C-terminal “safety belt” region entirely around a coordinates assembly of this complex by binding short, 6- to 10-amino acid “closure motif” in a binding two closure motifs (also called Rev7-binding motifs partner, resulting in a highly stable complex (Fig. 1A). or RBMs) in the catalytic Rev3 subunit, and mediating While the mechanisms governing assembly of interactions with the accessory subunits Pol31 and HORMA protein signaling complexes vary, many Pol32 (25). At the same time, Rev7 binds a second HORMA proteins share a common disassembly path- DNA polymerase, Rev1, which, in turn, recruits addi- way involving two proteins, p31comet and the AAA+ tional Y-family DNA polymerases like Polη,Polι,and ATPase TRIP13. p31comet, itself a diverged HORMA Polκ (26). In this manner, Rev7 functionally links the ac- protein, specifically binds HORMA proteins in their tivity of Y-family “inserter” polymerases that insert a “closed” partner-bound conformation, and recruits base directly opposite a DNA lesion with that of the them to TRIP13 (2–4). TRIP13 partially unfolds the “extender” polymerase Rev3 that synthesizes past the HORMA domain, releasing the bound closure motif lesion for eventual handoff to a replicative polymerase. and converting the substrate HORMA protein to an In vertebrates, Rev7 plays a second key role in inactive “open” conformation poised for rebinding DNA repair through the newly discovered Shieldin (5–10). This HORMA recycling pathway was first de- complex, which regulates DSB repair pathway choice scribed for the spindle assembly checkpoint protein (27). Cells possess two major pathways for DSB repair: Mad2 (11–13), and has since been extended to in- the homologous recombination (HR) pathway that clude the meiotic recombination factor Hop1 and its uses an unbroken DNA template to mediate error- relatives, collectively termed meiotic HORMADs free repair, and the more error-prone nonhomologous (14–20). A key question has been whether TRIP13 end-joining (NHEJ) pathway. HR and NHEJ are tightly and p31comet regulate other HORMA protein families, regulated during the cell cycle, with NHEJ dominant including the DNA repair factor Rev7 and the auto- in G1, and HR dominant in S and G2 when a sister phagy regulators Atg13 and Atg101. In two recent chromosome generated by DNA replication is avail- manuscripts, Clairmont et al. (21) and Sarangi et al. able as a repair template. A key factor in repair path- (22) provide convincing evidence that TRIP13 and way choice is the Shieldin complex, which comprises p31comet regulate Rev7 function in two DNA repair Rev7, SHLD1, SHLD2, and SHLD3. A recent structure pathways, and that overexpression of TRIP13 and/or of the Rev7−SHLD2−SHLD3 subcomplex revealed p31comet in cancer causes resistance to a widely used that a dimer of Rev7 nucleates Shieldin assembly class of anticancer drugs known as Poly-ADP ribose through a complex set of interactions, including bind- polymerase (PARP) inhibitors. ing to a closure motif in SHLD3 (28). In the cell, Shiel- Rev7 has long been under-studied compared to din is recruited to DSB sites by 53BP1 and Rif1, where Mad2 and the meiotic HORMADs, but recent years it inhibits DNA end resection to suppress HR and pro- have witnessed a renaissance in our understanding mote NHEJ (Fig. 1B) (27). aDepartment of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093; bDepartment of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093; and cSan Diego Branch, Ludwig Institute for Cancer Research, La Jolla, CA 92093 Author contributions: K.D.C. wrote the paper. The author declares no competing interest. Published under the PNAS license. See companion article, “p31comet promotes homologous recombination by inactivating REV7 through the TRIP13 ATPase,” 10.1073/pnas. 2008830117. 1Email: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.2020103117 PNAS Latest Articles | 1of3 Downloaded by guest on September 30, 2021 Fig. 1. Regulation of HORMA proteins by p31comet and TRIP13. (A) HORMA-mediated signaling is activated when an open HORMA domain (light blue) binds a closure motif (yellow) in a binding partner and converts to the closed conformation (dark blue). To inactivate signaling, p31comet binds a HORMA-closure motif complex and recruits it to TRIP13 for disassembly. (B) Healthy cells maintain a balance between two DNA DSB repair pathways, HR and NHEJ. When recruited to DNA ends by 53BP1/Rif1, Rev7-Shieldin inhibits DNA end resection to suppress HR. In − − HR-deficient BRCA1 / cancers, PARP inhibition leads to increased DNA breaks and cell death. Overexpression of TRIP13 and/or p31comet in these cells reactivates HR to promote PARP inhibitor resistance, cell survival, and proliferation. −/− Given its central roles in two major DNA repair pathways, one Clairmont et al. (21) and Sarangi et al. (22) find that BRCA1 cells important question is whether Rev7, like the related Mad2 and overexpressing TRIP13 or p31comet become resistant to the PARP meiotic HORMADs, is regulated by the TRIP13/p31comet HORMA inhibitor Olaparib, and show that this resistance arises through reac- recycling pathway. In two recent studies, Clairmont et al. (21) and tivation of HR-mediated DNA repair due to lowered Shieldin com- Sarangi et al. (22) provide convincing evidence that TRIP13 and plex levels (Fig. 1B). Thus, inhibition of TRIP13/p31comet-mediated p31comet regulate Rev7 through conformational recycling and Shieldin disassembly may represent a promising treatment strat- Rev7-closure motif complex disassembly. The two studies show egy for patients with BRCA1-deficient cancers that develop resis- comet that TRIP13 and p31 physically interact with Rev7 and medi- tance to PARP inhibitors. ate disassembly of Shieldin and polymerase ζ, both in vitro and in Many questions remain with respect to the roles of TRIP13 comet cells. Overexpression of TRIP13 or p31 reduces association of and p31comet in healthy cells and in disease. First, while Clairmont Rev7 with SHLD3 and, in turn, increases DNA end resection at et al. (21) show that Rev7 can adopt two folded states in solution, comet DSBs and promotes their repair by HR. TRIP13/p31 overex- how these two states correspond to Mad2’s well-defined open pression also reduces the association of Rev7 with Rev3 and im- and closed conformations requires additional exploration. An- ’ pairs cells ability to repair DNA lesions caused by ultraviolet other question is whether and how Rev7 recycling is regulated radiation and the interstrand crosslinker mitomycin C, demon- through the cell cycle. Two studies have reported that p31comet strating a defect in translesion DNA synthesis. These data firmly is phosphorylated during mitosis to suppress disassembly of mi- comet ’ establish a role for TRIP13 and p31 in regulating Rev7 s func- totic checkpoint complexes (30, 31); whether this or other regula- tion in two important DNA repair pathways. comet tory mechanisms applies to Rev7 regulation is unknown. Finally, A direct role for TRIP13 and p31 in Rev7 regulation can comet whether TRIP13 and p31 regulate autophagy through Atg13 also explain these proteins’ contributions to cancer. TRIP13 is and Atg101, or other signaling pathways through as yet undiscov- known to be overexpressed in many human cancers, and Sarangi ered HORMA proteins, remains mostly unexplored. While many et al. (22) now find that p31comet overexpression is also common in questions remain, the studies by Clairmont et al. (21) and Sarangi cancer. Moreover, high TRIP13 and/or p31comet levels correlate et al. (22) provide significant insight into HORMA recycling by with poor prognosis across many cancer types (21, 22). While in- TRIP13 and p31comet, and clearly define a key connection between creased HORMA recycling activity in cancerous cells likely impacts these proteins and human disease. many HORMA-dependent signaling pathways, Clairmont et al. (21) and Sarangi et al. (22) demonstrate that Shieldin-regulated DSB repair is of particular clinical relevance. Many cancers lose the Acknowledgments ability to repair DNA breaks by HR through mutation or loss of I thank members of the Corbett laboratory and A. Desai for critical reading and BRCA1, and these cancers are sensitive to inhibition of PARP (29). helpful suggestions, and the NIH (Grant R01 GM104141) for support. 1 S. C. Rosenberg, K. D. Corbett, The multifaceted roles of the HORMA domain in cellular signaling. J. Cell Biol. 211, 745–755 (2015). 2 M. Yang et al., p31comet blocks Mad2 activation through structural mimicry. Cell 131,744–755 (2007). 3 T. Habu, S. H. Kim, J. Weinstein, T. Matsumoto, Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J. 21, 6419–6428 (2002). 4 G. Xia et al., Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. EMBO J. 23,3133–3143 (2004). 5 A. R. Tipton et al., Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries. BMC Cell Biol. 13, 15 (2012). 6 K. Wang et al., Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein.
Recommended publications
  • Biallelic TRIP13 Mutations Predispose to Wilms Tumor and Chromosome Missegregation
    Europe PMC Funders Group Author Manuscript Nat Genet. Author manuscript; available in PMC 2017 July 01. Published in final edited form as: Nat Genet. 2017 July ; 49(7): 1148–1151. doi:10.1038/ng.3883. Europe PMC Funders Author Manuscripts Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation Shawn Yost#1, Bas de Wolf#2, Sandra Hanks#1, Anna Zachariou1, Chiara Marcozzi3,4, Matthew Clarke1, Richarda de Voer2, Banafsheh Etemad2, Esther Uijttewaal2, Emma Ramsay1, Harriet Wylie1, Anna Elliott1, Susan Picton5, Audrey Smith6, Sarah Smithson7, Sheila Seal1, Elise Ruark1, Gunnar Houge8, Jonathan Pines3,4, Geert J.P.L. Kops2,9,10,+, and Nazneen Rahman1,11,+ 1Division of Genetics and Epidemiology, Institute of Cancer Research, 15 Cotswold Road, London, SM2 5NG, UK 2Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 3The Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK 4Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK 5Children's and Adolescent Oncology and Haematology Unit, Leeds General Infirmary, Leeds, LS1 3EX, UK 6Yorkshire Regional Clinical Genetics Service, Chapel Allerton Hospital, Chapeltown Road, Leeds, LS7 4SA, UK 7Clinical Genetics Service, St Michael's Hospital, Southwell Street, Bristol, BS2 8EG, UK 8Center for Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway 9Cancer Genomics Netherlands, Utrecht, The Netherlands 10Center for Molecular 11 Europe PMC Funders Author Manuscripts Medicine, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, UK SM2 5PT, UK # These authors contributed equally to this work.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Identifying the Contributions and Mechanisms of P31comet and TRIP13 Function During Mitotic
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Identifying the Contributions and Mechanisms of p31comet and TRIP13 Function During Mitotic Checkpoint Silencing A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biology by Kimia Candice Mashouf Committee in charge: Professor Don Cleveland, Chair Professor Gen-sheng Feng, Co-chair Professor Samara Reck-Peterson 2016 Copyright Kimia Candice Mashouf, 2016 All rights reserved The Thesis of Kimia Candice Mashouf is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair _____________________________________________________________________ Chair University of California, San Diego 2016 iii TABLE OF CONTENTS Signature Page……………………………………………………………………………….. iii Table of Contents…………………………………………………………………………….. iv List of Figures…………………………………………………………………………………. v Acknowledgments…………………………………………………………………..………... vi Abstract of Thesis…….…………………………………………………………………….... vii Chapter 1: Introduction………………………………………………………………….…… 1 Chapter 2: Materials and Methods…………………………………………………….…… 6 Chapter 3: Results…………………………………………………………………………... 10 Chapter 4: Discussion………………………………………………………………………. 16 Appendix……………………………………………………………………………………… 19 References…………………………………………………………………………………… 20 iv LIST OF FIGURES Figure 1: Kinetochore Activation of the checkpoint through hierarchical checkpoint protein recruitment………………………………………….…………………... 2 Figure 2: Disassembly Approach to Identify the functions of TRIP13 and p31 comet on the the
    [Show full text]
  • Identification of Conserved Genes Triggering Puberty in European Sea
    Blázquez et al. BMC Genomics (2017) 18:441 DOI 10.1186/s12864-017-3823-2 RESEARCHARTICLE Open Access Identification of conserved genes triggering puberty in European sea bass males (Dicentrarchus labrax) by microarray expression profiling Mercedes Blázquez1,2* , Paula Medina1,2,3, Berta Crespo1,4, Ana Gómez1 and Silvia Zanuy1* Abstract Background: Spermatogenesisisacomplexprocesscharacterized by the activation and/or repression of a number of genes in a spatio-temporal manner. Pubertal development in males starts with the onset of the first spermatogenesis and implies the division of primary spermatogonia and their subsequent entry into meiosis. This study is aimed at the characterization of genes involved in the onset of puberty in European sea bass, and constitutes the first transcriptomic approach focused on meiosis in this species. Results: European sea bass testes collected at the onset of puberty (first successful reproduction) were grouped in stage I (resting stage), and stage II (proliferative stage). Transition from stage I to stage II was marked by an increase of 11ketotestosterone (11KT), the main fish androgen, whereas the transcriptomic study resulted in 315 genes differentially expressed between the two stages. The onset of puberty induced 1) an up-regulation of genes involved in cell proliferation, cell cycle and meiosis progression, 2) changes in genes related with reproduction and growth, and 3) a down-regulation of genes included in the retinoic acid (RA) signalling pathway. The analysis of GO-terms and biological pathways showed that cell cycle, cell division, cellular metabolic processes, and reproduction were affected, consistent with the early events that occur during the onset of puberty.
    [Show full text]
  • The Mechanisms of the Spindle Assembly Checkpoint and Mitotic Cell Death
    The Mechanisms of the Spindle Assembly Checkpoint and Mitotic Cell Death Jianquan Li Thesis submitted to Newcastle University in candidature for the degree of Doctor of Philosophy Institute for Cell and Molecular Bioscience Newcastle University October 2018 Abstract The spindle assembly checkpoint (SAC) monitors the chromosomes and kinetochore– microtubule attachment to prevent premature anaphase onset (Lara-Gonzalez et al., 2012), and this ensures the fidelity of cell division. The mitotic checkpoint complex (MCC), the core SAC effector, contains two sub-complexes, CDC20-MAD2 and BUBR1-BUB3 (Sudakin et al., 2001). However, the exact mechanism underlying the assembly of the MCC regarding when, where and how still is not fully addressed. It is believed that the formation of the CDC20-MAD2 sub-complex is an initial and essential step in MCC assembly (Sudakin et al., 2001), thus the assembly of the MCC can be depicted by the observation of the formation of the CDC20-MAD2 complex (Fraschini et al., 2001, Meraldi et al., 2004, Poddar et al., 2005). Using the Duolink based in situ proximity ligation assay (PLA), the lab has previously used individual cell analysis to show the temporal and spatial in vivo formation of the CDC20-MAD2 complex throughout the cell cycle in HeLa cells and existence of a specific prophase form of the CDC20-MAD2 complex (Li et al., 2017). In this study, we provide evidences showing that the profile of the assembly of the CDC20-MAD2 complex revealed by using the PLA can genuinely reflect the dynamic in vivo interaction of these two proteins in individual cells.
    [Show full text]
  • Mitotic Arrest Deficient 2 Expression Induces Chemosensitization to a DNA-Damaging Agent, Cisplatin, in Nasopharyngeal Carcinoma Cells
    Research Article Mitotic Arrest Deficient 2 Expression Induces Chemosensitization to a DNA-Damaging Agent, Cisplatin, in Nasopharyngeal Carcinoma Cells Hiu Wing Cheung,1 Dong-Yan Jin,2 Ming-tat Ling,1 Yong Chuan Wong,1 Qi Wang,1 Sai Wah Tsao,1 and Xianghong Wang1 Departments of 1Anatomy and 2Biochemistry, Faculty of Medicine, University of Hong Kong, Hong Kong, China Abstract mitotic checkpoint control, may be associated with tumorigenesis Recently, mitotic arrest deficient 2 (MAD2)–mediated spindle as well as cancer progression. Several regulators of the mitotic checkpoint have been identified checkpoint is shown to induce mitotic arrest in response to DNA damage, indicating overlapping roles of the spindle and most of them are localized to the kinetochore, which is checkpoint and DNA damage checkpoint. In this study, we connected to both the chromosome and the spindle (1). One of investigated if MAD2 played a part in cellular sensitivity to them, mitotic arrest deficient 2 (MAD2), is thought to be a key DNA-damaging agents, especially cisplatin, and whether it was component for a functional mitotic checkpoint because it is regulated through mitotic checkpoint. Using nine nasopha- required for generating the ‘‘wait’’ signal in response to microtubule ryngeal carcinoma (NPC) cell lines, we found that decreased disruption (1). Deletion or down-regulation of MAD2 leads to MAD2 expression was correlated with cellular resistance to mitotic checkpoint inactivation and chromosomal instability (4–6). cisplatin compared with the cell lines with high levels of Down-regulation of MAD2 has also been reported in human MAD2. Exogenous MAD2 expression in NPC cells also cancers such as lung (7), breast (8), nasopharyngeal (9), and ovarian conferred sensitivity to DNA-damaging agents especially carcinomas (10).
    [Show full text]
  • 1 Spindle Assembly Checkpoint Is Sufficient for Complete Cdc20
    Spindle assembly checkpoint is sufficient for complete Cdc20 sequestering in mitotic control Bashar Ibrahim Bio System Analysis Group, Friedrich-Schiller-University Jena, and Jena Centre for Bioinformatics (JCB), 07743 Jena, Germany Email: [email protected] Abstract The spindle checkpoint assembly (SAC) ensures genome fidelity by temporarily delaying anaphase onset, until all chromosomes are properly attached to the mitotic spindle. The SAC delays mitotic progression by preventing activation of the ubiquitin ligase anaphase-promoting complex (APC/C) or cyclosome; whose activation by Cdc20 is required for sister-chromatid separation marking the transition into anaphase. The mitotic checkpoint complex (MCC), which contains Cdc20 as a subunit, binds stably to the APC/C. Compelling evidence by Izawa and Pines (Nature 2014; 10.1038/nature13911) indicates that the MCC can inhibit a second Cdc20 that has already bound and activated the APC/C. Whether or not MCC per se is sufficient to fully sequester Cdc20 and inhibit APC/C remains unclear. Here, a dynamic model for SAC regulation in which the MCC binds a second Cdc20 was constructed. This model is compared to the MCC, and the MCC-and-BubR1 (dual inhibition of APC) core model variants and subsequently validated with experimental data from the literature. By using ordinary nonlinear differential equations and spatial simulations, it is shown that the SAC works sufficiently to fully sequester Cdc20 and completely inhibit APC/C activity. This study highlights the principle that a systems biology approach is vital for molecular biology and could also be used for creating hypotheses to design future experiments. Keywords: Mathematical biology, Spindle assembly checkpoint; anaphase promoting complex, MCC, Cdc20, systems biology 1 Introduction Faithful DNA segregation, prior to cell division at mitosis, is vital for maintaining genomic integrity.
    [Show full text]
  • Kinetochores, Microtubules, and Spindle Assembly Checkpoint
    Review Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling 1 1,2,3 Carlos Sacristan and Geert J.P.L. Kops 1 Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands 2 Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands 3 Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands Error-free chromosome segregation relies on stable and cell division. The messenger is the SAC (also known as connections between kinetochores and spindle microtu- the mitotic checkpoint) (Figure 1). bules. The spindle assembly checkpoint (SAC) monitors The transition to anaphase is triggered by the E3 ubiqui- such connections and relays their absence to the cell tin ligase APC/C, which tags inhibitors of mitotic exit cycle machinery to delay cell division. The molecular (CYCLIN B) and of sister chromatid disjunction (SECURIN) network at kinetochores that is responsible for microtu- for proteasomal degradation [2]. The SAC has a one-track bule binding is integrated with the core components mind, inhibiting APC/C as long as incorrectly attached of the SAC signaling system. Molecular-mechanistic chromosomes persist. It goes about this in the most straight- understanding of how the SAC is coupled to the kineto- forward way possible: it assembles a direct and diffusible chore–microtubule interface has advanced significantly inhibitor of APC/C at kinetochores that are not connected in recent years. The latest insights not only provide a to spindle microtubules. This inhibitor is named the striking view of the dynamics and regulation of SAC mitotic checkpoint complex (MCC) (Figure 1).
    [Show full text]
  • MAD2 Expression in Oral Squamous Cell Carcinoma and Its Relationship to Tumor Grade and Proliferation
    ANTICANCER RESEARCH 34: 7021-7028 (2014) MAD2 Expression in Oral Squamous Cell Carcinoma and its Relationship to Tumor Grade and Proliferation CLARA RIZZARDI1, LUCIO TORELLI2, MANUELA SCHNEIDER3, FABIOLA GIUDICI4, LORENZO ZANDONA’1, MATTEO BIASOTTO5, ROBERTO DI LENARDA5 and MAURO MELATO6 1Unit of Pathology, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy; 2Department of Mathematics and Earth Science, University of Trieste, Trieste, Italy; 3Unit of Pathology, ASS n.2 “Isontina”, Gorizia, Italy; 4Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy; 5Unit of Odontology and Stomatology, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy; 6Scientific Research Institute and Hospital for Pediatrics “Burlo Garofolo”, Trieste, Italy Abstract. Background: Defects in the cell-cycle surveillance might contribute to the chromosomal instability observed in mechanism, called the spindle checkpoint, might contribute human cancers. Molecular analysis of the genes involved in to the chromosomal instability observed in human cancers, the spindle checkpoint has revealed relatively few genetic including oral squamous cell carcinoma. MAD2 and BUBR1 alterations, suggesting that the spindle checkpoint are key components of the spindle checkpoint, whose role in impairment frequently found in many human cancers might oral carcinogenesis and clinical relevance still need to be result from mutations in as yet unidentified checkpoint genes elucidated. Materials and Methods: We analyzed the or altered expression of known checkpoint genes. A better expression of MAD2 in 49 cases of oral squamous cell understanding of this mechanism might provide valuable carcinoma by immunohistochemistry and compared the insights into CIN and facilitate the design of novel findings with clinicopathological parameters, proliferative therapeutic approaches to treat cancer.
    [Show full text]
  • Bub1 Positions Mad1 Close to KNL1 MELT Repeats to Promote Checkpoint Signalling
    ARTICLE Received 14 Dec 2016 | Accepted 3 May 2017 | Published 12 June 2017 DOI: 10.1038/ncomms15822 OPEN Bub1 positions Mad1 close to KNL1 MELT repeats to promote checkpoint signalling Gang Zhang1, Thomas Kruse1, Blanca Lo´pez-Me´ndez1, Kathrine Beck Sylvestersen1, Dimitriya H. Garvanska1, Simone Schopper1, Michael Lund Nielsen1 & Jakob Nilsson1 Proper segregation of chromosomes depends on a functional spindle assembly checkpoint (SAC) and requires kinetochore localization of the Bub1 and Mad1/Mad2 checkpoint proteins. Several aspects of Mad1/Mad2 kinetochore recruitment in human cells are unclear and in particular the underlying direct interactions. Here we show that conserved domain 1 (CD1) in human Bub1 binds directly to Mad1 and a phosphorylation site exists in CD1 that stimulates Mad1 binding and SAC signalling. Importantly, fusion of minimal kinetochore-targeting Bub1 fragments to Mad1 bypasses the need for CD1, revealing that the main function of Bub1 is to position Mad1 close to KNL1 MELTrepeats. Furthermore, we identify residues in Mad1 that are critical for Mad1 functionality, but not Bub1 binding, arguing for a direct role of Mad1 in the checkpoint. This work dissects functionally relevant molecular interactions required for spindle assembly checkpoint signalling at kinetochores in human cells. 1 The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark. Correspondence and requests for materials should be addressed to G.Z.
    [Show full text]
  • The Closed Form of Mad2 Is Bound to Mad1 and Cdc20 at Unattached Kinetochores
    bioRxiv preprint doi: https://doi.org/10.1101/305763; this version posted April 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. The closed form of Mad2 is bound to Mad1 and Cdc20 at unattached kinetochores. Gang Zhang1,2,3 and Jakob Nilsson1 1 The Novo Nordisk Foundation Center for Protein Research, Faculty of health and medical sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark 2 Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, China 3 Qingdao Cancer Institute, Qingdao, Shandong 266061, China For correspondence: [email protected] or [email protected] Keywords: Mad2, Cdc20, Kinetochore, Spindle Assembly Checkpoint, Mad1 1 bioRxiv preprint doi: https://doi.org/10.1101/305763; this version posted April 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation by delaying anaphase onset in response to unattached kinetochores. Anaphase is delayed by the generation of the mitotic checkpoint complex (MCC) composed of the checkpoint proteins Mad2 and BubR1/Bub3 bound to the protein Cdc20. Current models assume that MCC production is catalyzed at unattached kinetochores and that the Mad1/Mad2 complex is instrumental in the conversion of Mad2 from an open form (O-Mad2) to a closed form (C-Mad2) that can bind to Cdc20.
    [Show full text]
  • Molecular Features of Triple Negative Breast Cancer Cells by Genome-Wide Gene Expression Profiling Analysis
    478 INTERNATIONAL JOURNAL OF ONCOLOGY 42: 478-506, 2013 Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis MASATO KOMATSU1,2*, TETSURO YOSHIMARU1*, TAISUKE MATSUO1, KAZUMA KIYOTANI1, YASUO MIYOSHI3, TOSHIHITO TANAHASHI4, KAZUHITO ROKUTAN4, RUI YAMAGUCHI5, AYUMU SAITO6, SEIYA IMOTO6, SATORU MIYANO6, YUSUKE NAKAMURA7, MITSUNORI SASA8, MITSUO SHIMADA2 and TOYOMASA KATAGIRI1 1Division of Genome Medicine, Institute for Genome Research, The University of Tokushima; 2Department of Digestive and Transplantation Surgery, The University of Tokushima Graduate School; 3Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo 663-8501; 4Department of Stress Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503; Laboratories of 5Sequence Analysis, 6DNA Information Analysis and 7Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639; 8Tokushima Breast Care Clinic, Tokushima 770-0052, Japan Received September 22, 2012; Accepted November 6, 2012 DOI: 10.3892/ijo.2012.1744 Abstract. Triple negative breast cancer (TNBC) has a poor carcinogenesis of TNBC and could contribute to the develop- outcome due to the lack of beneficial therapeutic targets. To ment of molecular targets as a treatment for TNBC patients. clarify the molecular mechanisms involved in the carcino- genesis of TNBC and to identify target molecules for novel Introduction anticancer drugs, we analyzed the gene expression profiles of 30 TNBCs as well as 13 normal epithelial ductal cells that were Breast cancer is one of the most common solid malignant purified by laser-microbeam microdissection. We identified tumors among women worldwide. Breast cancer is a heteroge- 301 and 321 transcripts that were significantly upregulated neous disease that is currently classified based on the expression and downregulated in TNBC, respectively.
    [Show full text]
  • The Aurora B Kinase Activity Is Required for the Maintenance of the Differentiated State of Murine Myoblasts
    Cell Death and Differentiation (2009) 16, 321–330 & 2009 Macmillan Publishers Limited All rights reserved 1350-9047/09 $32.00 www.nature.com/cdd The Aurora B kinase activity is required for the maintenance of the differentiated state of murine myoblasts G Amabile1,2, AM D’Alise1, M Iovino1, P Jones3, S Santaguida4, A Musacchio4, S Taylor5 and R Cortese*,1 Reversine is a synthetic molecule capable of inducing dedifferentiation of C2C12, a murine myoblast cell line, into multipotent progenitor cells, which can be redirected to differentiate in nonmuscle cell types under appropriate conditions. Reversine is also a potent inhibitor of Aurora B, a protein kinase required for mitotic chromosome segregation, spindle checkpoint function, cytokinesis and histone H3 phosphorylation, raising the possibility that the dedifferentiation capability of reversine is mediated through the inhibition of Aurora B. Indeed, here we show that several other well-characterized Aurora B inhibitors are capable of dedifferentiating C2C12 myoblasts. Significantly, expressing drug-resistant Aurora B mutants, which are insensitive to reversine block the dedifferentiation process, indicating that Aurora B kinase activity is required to maintain the differentiated state. We show that the inhibition of the spindle checkpoint or cytokinesis per se is not sufficient for dedifferentiation. Rather, our data support a model whereby changes in histone H3 phosphorylation result in chromatin remodeling, which in turn restores the multipotent state. Cell Death and Differentiation (2009) 16, 321–330; doi:10.1038/cdd.2008.156; published online 31 October 2008 Lineage-restricted cells can be reprogramed to a state Evidence is emerging that the role of Aurora B is not of pluripotency by several different manipulations, including restricted to mitosis and cell division.
    [Show full text]