A Fast Las Vegas Algorithm for Computing the Smith Normal Form of a Polynomial Matrix
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
User's Guide to Pari-GP
User's Guide to PARI / GP C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier Laboratoire A2X, U.M.R. 9936 du C.N.R.S. Universit´eBordeaux I, 351 Cours de la Lib´eration 33405 TALENCE Cedex, FRANCE e-mail: [email protected] Home Page: http://www.parigp-home.de/ Primary ftp site: ftp://megrez.math.u-bordeaux.fr/pub/pari/ last updated 5 November 2000 for version 2.1.0 Copyright c 2000 The PARI Group Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions, or translations, of this manual under the conditions for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. PARI/GP is Copyright c 2000 The PARI Group PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER. Table of Contents Chapter 1: Overview of the PARI system . 5 1.1 Introduction . 5 1.2 The PARI types . 6 1.3 Operations and functions . 9 Chapter 2: Specific Use of the GP Calculator . 13 2.1 Defaults and output formats . 14 2.2 Simple metacommands . 20 2.3 Input formats for the PARI types . 23 2.4 GP operators . -
Polynomial Flows in the Plane
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ADVANCES IN MATHEMATICS 55, 173-208 (1985) Polynomial Flows in the Plane HYMAN BASS * Department of Mathematics, Columbia University. New York, New York 10027 AND GARY MEISTERS Department of Mathematics, University of Nebraska, Lincoln, Nebraska 68588 Contents. 1. Introduction. I. Polynomial flows are global, of bounded degree. 2. Vector fields and local flows. 3. Change of coordinates; the group GA,(K). 4. Polynomial flows; statement of the main results. 5. Continuous families of polynomials. 6. Locally polynomial flows are global, of bounded degree. II. One parameter subgroups of GA,(K). 7. Introduction. 8. Amalgamated free products. 9. GA,(K) as amalgamated free product. 10. One parameter subgroups of GA,(K). 11. One parameter subgroups of BA?(K). 12. One parameter subgroups of BA,(K). 1. Introduction Let f: Rn + R be a Cl-vector field, and consider the (autonomous) system of differential equations with initial condition x(0) = x0. (lb) The solution, x = cp(t, x,), depends on t and x0. For which f as above does the flow (p depend polynomially on the initial condition x,? This question was discussed in [M2], and in [Ml], Section 6. We present here a definitive solution of this problem for n = 2, over both R and C. (See Theorems (4.1) and (4.3) below.) The main tool is the theorem of Jung [J] and van der Kulk [vdK] * This material is based upon work partially supported by the National Science Foun- dation under Grant NSF MCS 82-02633. -
On Multivariate Interpolation
On Multivariate Interpolation Peter J. Olver† School of Mathematics University of Minnesota Minneapolis, MN 55455 U.S.A. [email protected] http://www.math.umn.edu/∼olver Abstract. A new approach to interpolation theory for functions of several variables is proposed. We develop a multivariate divided difference calculus based on the theory of non-commutative quasi-determinants. In addition, intriguing explicit formulae that connect the classical finite difference interpolation coefficients for univariate curves with multivariate interpolation coefficients for higher dimensional submanifolds are established. † Supported in part by NSF Grant DMS 11–08894. April 6, 2016 1 1. Introduction. Interpolation theory for functions of a single variable has a long and distinguished his- tory, dating back to Newton’s fundamental interpolation formula and the classical calculus of finite differences, [7, 47, 58, 64]. Standard numerical approximations to derivatives and many numerical integration methods for differential equations are based on the finite dif- ference calculus. However, historically, no comparable calculus was developed for functions of more than one variable. If one looks up multivariate interpolation in the classical books, one is essentially restricted to rectangular, or, slightly more generally, separable grids, over which the formulae are a simple adaptation of the univariate divided difference calculus. See [19] for historical details. Starting with G. Birkhoff, [2] (who was, coincidentally, my thesis advisor), recent years have seen a renewed level of interest in multivariate interpolation among both pure and applied researchers; see [18] for a fairly recent survey containing an extensive bibli- ography. De Boor and Ron, [8, 12, 13], and Sauer and Xu, [61, 10, 65], have systemati- cally studied the polynomial case. -
Stabilization, Estimation and Control of Linear Dynamical Systems with Positivity and Symmetry Constraints
Stabilization, Estimation and Control of Linear Dynamical Systems with Positivity and Symmetry Constraints A Dissertation Presented by Amirreza Oghbaee to The Department of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering Northeastern University Boston, Massachusetts April 2018 To my parents for their endless love and support i Contents List of Figures vi Acknowledgments vii Abstract of the Dissertation viii 1 Introduction 1 2 Matrices with Special Structures 4 2.1 Nonnegative (Positive) and Metzler Matrices . 4 2.1.1 Nonnegative Matrices and Eigenvalue Characterization . 6 2.1.2 Metzler Matrices . 8 2.1.3 Z-Matrices . 10 2.1.4 M-Matrices . 10 2.1.5 Totally Nonnegative (Positive) Matrices and Strictly Metzler Matrices . 12 2.2 Symmetric Matrices . 14 2.2.1 Properties of Symmetric Matrices . 14 2.2.2 Symmetrizer and Symmetrization . 15 2.2.3 Quadratic Form and Eigenvalues Characterization of Symmetric Matrices . 19 2.3 Nonnegative and Metzler Symmetric Matrices . 22 3 Positive and Symmetric Systems 27 3.1 Positive Systems . 27 3.1.1 Externally Positive Systems . 27 3.1.2 Internally Positive Systems . 29 3.1.3 Asymptotic Stability . 33 3.1.4 Bounded-Input Bounded-Output (BIBO) Stability . 34 3.1.5 Asymptotic Stability using Lyapunov Equation . 37 3.1.6 Robust Stability of Perturbed Systems . 38 3.1.7 Stability Radius . 40 3.2 Symmetric Systems . 43 3.3 Positive Symmetric Systems . 47 ii 4 Positive Stabilization of Dynamic Systems 50 4.1 Metzlerian Stabilization . 50 4.2 Maximizing the stability radius by state feedback . -
Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations
Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations Tri Dao 1 Albert Gu 1 Matthew Eichhorn 2 Atri Rudra 2 Christopher Re´ 1 Abstract ture generation, and kernel approximation, to image and Fast linear transforms are ubiquitous in machine language modeling (convolutions). To date, these trans- learning, including the discrete Fourier transform, formations rely on carefully designed algorithms, such as discrete cosine transform, and other structured the famous fast Fourier transform (FFT) algorithm, and transformations such as convolutions. All of these on specialized implementations (e.g., FFTW and cuFFT). transforms can be represented by dense matrix- Moreover, each specific transform requires hand-crafted vector multiplication, yet each has a specialized implementations for every platform (e.g., Tensorflow and and highly efficient (subquadratic) algorithm. We PyTorch lack the fast Hadamard transform), and it can be ask to what extent hand-crafting these algorithms difficult to know when they are useful. Ideally, these barri- and implementations is necessary, what structural ers would be addressed by automatically learning the most priors they encode, and how much knowledge is effective transform for a given task and dataset, along with required to automatically learn a fast algorithm an efficient implementation of it. Such a method should be for a provided structured transform. Motivated capable of recovering a range of fast transforms with high by a characterization of matrices with fast matrix- accuracy and realistic sizes given limited prior knowledge. vector multiplication as factoring into products It is also preferably composed of differentiable primitives of sparse matrices, we introduce a parameteriza- and basic operations common to linear algebra/machine tion of divide-and-conquer methods that is capa- learning libraries, that allow it to run on any platform and ble of representing a large class of transforms. -
On the Computation of the HNF of a Module Over the Ring of Integers of A
On the computation of the HNF of a module over the ring of integers of a number field Jean-Fran¸cois Biasse Department of Mathematics and Statistics University of South Florida Claus Fieker Fachbereich Mathematik Universit¨at Kaiserslautern Postfach 3049 67653 Kaiserslautern - Germany Tommy Hofmann Fachbereich Mathematik Universit¨at Kaiserslautern Postfach 3049 67653 Kaiserslautern - Germany Abstract We present a variation of the modular algorithm for computing the Hermite normal form of an K -module presented by Cohen [7], where K is the ring of integers of a numberO field K. An approach presented in [7] basedO on reductions modulo ideals was conjectured to run in polynomial time by Cohen, but so far, no such proof was available in the literature. In this paper, we present a modification of the approach of [7] to prevent the coefficient swell and we rigorously assess its complexity with respect to the size of the input and the invariants of the field K. Keywords: Number field, Dedekind domain, Hermite normal form, relative extension of number fields arXiv:1612.09428v1 [math.NT] 30 Dec 2016 2000 MSC: 11Y40 1. Introduction Algorithms for modules over the rational integers such as the Hermite nor- mal form algorithm are at the core of all methods for computations with rings Email addresses: [email protected] (Jean-Fran¸cois Biasse), [email protected] (Claus Fieker), [email protected] (Tommy Hofmann) Preprint submitted to Elsevier April 22, 2018 and ideals in finite extensions of the rational numbers. Following the growing interest in relative extensions, that is, finite extensions of number fields, the structure of modules over Dedekind domains became important. -
Polynomial Parametrization for the Solutions of Diophantine Equations and Arithmetic Groups
ANNALS OF MATHEMATICS Polynomial parametrization for the solutions of Diophantine equations and arithmetic groups By Leonid Vaserstein SECOND SERIES, VOL. 171, NO. 2 March, 2010 anmaah Annals of Mathematics, 171 (2010), 979–1009 Polynomial parametrization for the solutions of Diophantine equations and arithmetic groups By LEONID VASERSTEIN Abstract A polynomial parametrization for the group of integer two-by-two matrices with determinant one is given, solving an old open problem of Skolem and Beurk- ers. It follows that, for many Diophantine equations, the integer solutions and the primitive solutions admit polynomial parametrizations. Introduction This paper was motivated by an open problem from[8, p. 390]: CNTA 5.15 (Frits Beukers). Prove or disprove the following statement: There exist four polynomials A; B; C; D with integer coefficients (in any number of variables) such that AD BC 1 and all integer solutions D of ad bc 1 can be obtained from A; B; C; D by specialization of the D variables to integer values. Actually, the problem goes back to Skolem[14, p. 23]. Zannier[22] showed that three variables are not sufficient to parametrize the group SL2 Z, the set of all integer solutions to the equation x1x2 x3x4 1. D Apparently Beukers posed the question because SL2 Z (more precisely, a con- gruence subgroup of SL2 Z) is related with the solution set X of the equation x2 x2 x2 3, and he (like Skolem) expected the negative answer to CNTA 1 C 2 D 3 C 5.15, as indicated by his remark[8, p. 389] on the set X: I have begun to believe that it is not possible to cover all solutions by a finite number of polynomials simply because I have never The paper was conceived in July of 2004 while the author enjoyed the hospitality of Tata Institute for Fundamental Research, India. -
The Images of Non-Commutative Polynomials Evaluated on 2 × 2 Matrices
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 140, Number 2, February 2012, Pages 465–478 S 0002-9939(2011)10963-8 Article electronically published on June 16, 2011 THE IMAGES OF NON-COMMUTATIVE POLYNOMIALS EVALUATED ON 2 × 2 MATRICES ALEXEY KANEL-BELOV, SERGEY MALEV, AND LOUIS ROWEN (Communicated by Birge Huisgen-Zimmermann) Abstract. Let p be a multilinear polynomial in several non-commuting vari- ables with coefficients in a quadratically closed field K of any characteristic. It has been conjectured that for any n, the image of p evaluated on the set Mn(K)ofn by n matrices is either zero, or the set of scalar matrices, or the set sln(K) of matrices of trace 0, or all of Mn(K). We prove the conjecture for n = 2, and show that although the analogous assertion fails for completely homogeneous polynomials, one can salvage the conjecture in this case by in- cluding the set of all non-nilpotent matrices of trace zero and also permitting dense subsets of Mn(K). 1. Introduction Images of polynomials evaluated on algebras play an important role in non- commutative algebra. In particular, various important problems related to the theory of polynomial identities have been settled after the construction of central polynomials by Formanek [F1] and Razmyslov [Ra1]. The parallel topic in group theory (the images of words in groups) also has been studied extensively, particularly in recent years. Investigation of the image sets of words in pro-p-groups is related to the investigation of Lie polynomials and helped Zelmanov [Ze] to prove that the free pro-p-group cannot be embedded in the algebra of n × n matrices when p n. -
The Computation of the Inverse of a Square Polynomial Matrix ∗
The Computation of the Inverse of a Square Polynomial Matrix ∗ Ky M. Vu, PhD. AuLac Technologies Inc. c 2008 Email: [email protected] Abstract 2 The Inverse Polynomial An approach to calculate the inverse of a square polyno- The inverse of a square nonsingular matrix is a square ma- mial matrix is suggested. The approach consists of two trix, which by premultiplying or postmultiplying with the similar algorithms: One calculates the determinant polyno- matrix gives an identity matrix. An inverse matrix can be mial and the other calculates the adjoint polynomial. The expressed as a ratio of the adjoint and determinant of the algorithm to calculate the determinant polynomial gives the matrix. A singular matrix has no inverse because its deter- coefficients of the polynomial in a recursive manner from minant is zero; we cannot calculate its inverse. We, how- a recurrence formula. Similarly, the algorithm to calculate ever, can always calculate its adjoint and determinant. It is, the adjoint polynomial also gives the coefficient matrices therefore, always better to calculate the inverse of a square recursively from a similar recurrence formula. Together, polynomial matrix by calculating its adjoint and determi- they give the inverse as a ratio of the adjoint polynomial nant polynomials separately and obtain the inverse as a ra- and the determinant polynomial. tio of these polynomials. In the following discussion, we will present algorithms to calculate the adjoint and deter- minant polynomials. Keywords: Adjoint, Cayley-Hamilton theorem, determi- nant, Faddeev’s algorithm, inverse matrix. 2.1 The Determinant Polynomial To begin our discussion, we consider the following equa- 1 Introduction tion that is the determinant of a square matrix of dimension n, viz Modern control theory consists of a large part of matrix the- n n−1 n−2 n jλI − Cj = λ − p1(C)λ + p2(C)λ ··· (−1) pn(C); ory. -
Block Circulant Matrix with Circulant Polynomial Matrices As Its Blocks G.Ramesh, * R.Muthamilselvam,** * Associate Professor of Mathematics, Govt
Science, Technology and Development ISSN : 0950-0707 Block Circulant Matrix with Circulant Polynomial Matrices as its Blocks G.Ramesh, * R.Muthamilselvam,** * Associate Professor of Mathematics, Govt. Arts College(Autonomous), Kumbakonam. ([email protected]) ** Assistant Professor of Mathematics, Arasu Engineering College, Kumbakonam. ([email protected]) ___________________________________________________________________________ Abstract: The characterization of block circulant matrix with circulant polynomial matrices as its blocks are derived as a generalization of the block circulant matrices with circulant block matrices. Keywords: Circulant polynomial matrix, Block circulant polynomial matrix, Circulant block polynomial matrix. AMS Classification: 15A09, 15A15, 15A57. I. Introduction Let a12, a ,..., an be an ordered n-tuple of polynomial with complex coefficients , and let them generate the circulant polynomial matrix of order n 5 : a12 a ... an a a ... a A n 12 1.1 a2 a 3 ... a 1 We shall often denote this circulant polynomial matrix as A circ a , a ,..., a 1.2 12 n It is well known that all circulant polynomial matrices of order n are simultaneously diagonalizable by the polynomial matrix F associated with the finite Fourier transforms. 2i Specifically, let exp ,i 1 1.3 n 1 1 1 ... 1 21n 1 1 and set Fn 2 1 2 4 2(n 1) 1.4 nn12 1 ... The Fourier polynomial matrix F depends only on n. This matrix is also symmetric polynomial and unitary polynomial FFFFI and we have AFF 1.5 Where diag 12, ,..., n 1.6 Volume IX Issue IV APRIL 2020 Page No : 519 Science, Technology and Development ISSN : 0950-0707 The symbol * designates the conjugate transpose. -
An Application of the Hermite Normal Form in Integer Programming
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector An Application of the Hermite Normal Form in Integer Programming Ming S. Hung Graduate School of Management Kent State University Kent, Ohio 44242 and Walter 0. Rom School of Business Administration Cleveland State University Cleveland, Ohio 44115 Submitted by Richard A. Brualdi ABSTRACT A new algorithm for solving integer programming problems is developed. It is based on cuts which are generated from the Hermite normal form of the basis matrix at a continuous extreme point. INTRODUCTION We present a new cutting plane algorithm for solving an integer program. The cuts are derived from a modified version of the usual column tableau used in integer programming: Rather than doing a complete elimination on the rows corresponding to the nonbasic variables, these rows are transformed into the Her-mite normal form. There are two major advantages with our cutting plane algorithm: First, it uses all integer operations in the computa- tions. Second, the cuts are deep, since they expose vertices of the integer hull. The Her-mite normal form (HNF), along with the basic properties of the cuts, is developed in Section I. Sections II and III apply the HNF to systems of equations and integer programs. A proof of convergence for the algorithm is presented in Section IV. Section V discusses some preliminary computa- tional experience. LINEAR ALGEBRA AND ITS APPLlCATlONS 140:163-179 (1990) 163 0 Else&r Science Publishing Co., Inc., 1990 655 Avenue of the Americas, New York, NY 10010 0024-3795/90/$3.50 164 MING S. -
Matrix Algebra and Control
Appendix A Matrix Algebra and Control Boldface lower case letters, e.g., a or b, denote vectors, boldface capital letters, e.g., A, M, denote matrices. A vector is a column matrix. Containing m elements (entries) it is referred to as an m-vector. The number of rows and columns of a matrix A is nand m, respectively. Then, A is an (n, m)-matrix or n x m-matrix (dimension n x m). The matrix A is called positive or non-negative if A>, 0 or A :2:, 0 , respectively, i.e., if the elements are real, positive and non-negative, respectively. A.1 Matrix Multiplication Two matrices A and B may only be multiplied, C = AB , if they are conformable. A has size n x m, B m x r, C n x r. Two matrices are conformable for multiplication if the number m of columns of the first matrix A equals the number m of rows of the second matrix B. Kronecker matrix products do not require conformable multiplicands. The elements or entries of the matrices are related as follows Cij = 2::;;'=1 AivBvj 'Vi = 1 ... n, j = 1 ... r . The jth column vector C,j of the matrix C as denoted in Eq.(A.I3) can be calculated from the columns Av and the entries BVj by the following relation; the jth row C j ' from rows Bv. and Ajv: column C j = L A,vBvj , row Cj ' = (CT),j = LAjvBv, (A. 1) /1=1 11=1 A matrix product, e.g., AB = (c: c:) (~b ~b) = 0 , may be zero although neither multipli cand A nor multiplicator B is zero.