Multilayer Thin Films - Versatile Applications for Materials Engineering Materials for - Applications Films Versatile Thin Multilayer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Parylene Deposition Process
History of Parylene Parylene development started in 1947, when Michael Szwarc discovered the polymer as one of the thermal decomposition products of a common solvent p-xylene at temperatures exceeding 1000 °C. Szwarc first postulated the monomer to be para-xylylene which he confirmed by reacting the vapors with iodine and observing the para-xylylene di-iodide as the only product. The reaction yield was only a few percent, and a more efficient route was found later by William F. Gorham at Union Carbide. The Parylene Deposition Process Parylene coating is applied through a vapor deposition process onto the substrate or material that is being coated. Depending on the coating type and required thickness, typical parylene deposition rates are about .2/mils per hour, so machine runs can vary from as little as 1 hour to over 24 hours. The process begins with raw dimer in solid state (these are: Parylene C, Parylene N, Parylene D, Parylene AF-4, or other variants) being placed into a loading boat, which is then inserted into the vaporizer. The raw dimer is heated between 100-150º C. At this time, the vapor is pulled, under vacuum into the furnace and heated to very high temperatures which allows for sublimation and the splitting of the molecule into a monomer. The monomer gas continues to be drawn by vacuum one molecule at a time onto the desired substrate at ambient temperatures in the coating chamber. The final stage of the parylene deposition process is the cold trap. The cold trap is cooled to between -90º and -120º C and is responsible for removing all residual parylene materials pulled through the coating chamber. -
Lens Array by Electrostatic Patterning of Dielectric Microspheres in a Parylene-C Well Template H
LENS ARRAY BY ELECTROSTATIC PATTERNING OF DIELECTRIC MICROSPHERES IN A PARYLENE-C WELL TEMPLATE H. Yang*, M. Cornaglia and Martin A. M. Gijs Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Switzerland ABSTRACT We present the fabrication of a microlens array which can be integrated into a microfluidic device. In the demonstrated technique, a microwell array is firstly fabricated in a Parylene-C layer by a standard cleanroom process. Afterwards, the optically transparent dielectric microspheres with high refractive index are patterned inside the well template by utilizing an electrostatic technique. The mechanism of microsphere patterning is studied, and the lens effect of the microsphere is experimentally verified in a water-based medium. We also present a detailed two-dimensional numerical optical simulation study on the patterned microspheres using the Finite Element Method (FEM). KEYWORDS: Microlens array, Dielectric microspheres, Microfabrication, Parylene-C INTRODUCTION Microlenses that are integrated on microfluidic chips enable several important optical features, such as profiting from a large local numerical aperture (NA) and high light collection efficiency, so that, for example, the optical read-out in an immunoassay is facilitated and the detection limit decreased [1]. Optically transparent microspheres with high refractive index act as ball lenses and show strong capability in focusing light. Using microspheres to build a compact system integrated with microfluidics inevitably will be of benefit to the field of life sciences, diagnostics or environmental monitoring. In this study, an electrostatic technique for fabrication of a microlens array by printing single dielectric microspheres into a patterned microwell template is proposed. The immobilized microspheres can focus the illumination, such as the optical signal originating from the presence of fluorescent markers beneath a microlens, into a very narrow region with high optical intensity, which is also known as a ‘photonic nanojet’ [2]. -
The Laser Generation Threshold Characteristics of a Colloidal Solution of Gold and Platinum Nanoparticles with Rodamine 6G
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Tomsk State University Repository 370 17th INTERNATIONAL CONFERENCE ON MICRO/NANOTECHNOLOGIES AND ELECTRON DEVICES EDM 2016 The Laser Generation Threshold Characteristics of a Colloidal Solution of Gold and Platinum Nanoparticles with Rodamine 6G Valeriy A. Donchenko1,2, Mikhail M. Zinoviev1, Alexey A. Zemlyanov2, Vladimir A. Kharenkov1,2, Anna N. Panamaryova3 1National Research Tomsk State University, Tomsk, Russia 2Siberian Physical Technical Institute, Tomsk, Russia 3 National Research Tomsk Polytechnic University, Tomsk, Russia Abstract – In the work the spectral-energy characteristics of or more orders greater than the density of the incident wave stochastic (non-resonator) laser generation of a thin layer of power. organic dye Rhodamine 6G solution with the addition of gold This increases the number of excited molecules within and platinum nanoparticles in the form of a colloidal solution these regions. Due to the Purcell effect [6-8] it is also in ethanol have been experimentally investigated. It has been experimentally established that the generation thresholds possible to increase the speed of active medium molecules are reduced by two orders when adding nanoparticles to the conversions from the excited level into the primary. As active medium. It is shown that the use of nanoparticles having a result, during the agitation action, a large number of a plasmon absorption band in the region of the agitation stimulated emissions of photons appear. This should lead to radiation does not lead to a significant change of the active a decrease in the generation and intensity of emission of the medium generation thresholds. -
A Review of the Use of Nanoparticle Tracking Analysis (NTA)
WHITEPAPER Nanoscale Material Characterization: a Review of the use of Nanoparticle Tracking Analysis (NTA) PARTICLE SIZE Summary PARTICLE This white paper describes the central role of high resolution particle size CONCENTRATION and concentration measurement nanoparticle research. The technique of FLUORESCENCE Nanoparticle Tracking Analysis (NTA) is described and compared to other DETECTION - DELETED characterization methodologies, and comparative papers are cited. A wide range of application studies is then summarized with specific reference to the use and value of NTA. For those seeking a full listing of NTA experience to date by application type, the NanoSight publication “Nanoparticle Tracking Analysis - A review of applications and usage 2010 - 2012, (Carr B and Wright M (2013)) and its successors provides a detailed catalogue. This item is available from your local Malvern Instruments representative or email [email protected]. Malvern Instruments Worldwide Sales and service centres in over 65 countries www.malvern.com/contact ©2017 Malvern Instruments Limited WHITEPAPER Introduction Nanoscale materials, in the form of nanoparticles, are playing an important and growing role across a range of different applications and industries which seek to exploit the unique properties exhibited by these materials, such as their very high surface area to volume ratio and high number. The overall properties and stability of many manufactured products often depends upon the ability to produce particle populations within fine tolerances, without contaminants or aggregates. The concentration of particles within a suspension is another factor that may have an effect upon the desired outcome of the product. It is clear then that there is a real need to characterize a variety of different properties when analyzing nanoparticles, in order to understand the relationship between the formulation and the overall bulk characteristics of the materials (Fedotov, 2011). -
Formation of Three-Dimensional Parylene C Structures Via Thermoforming
Journal of Micromechanics and Microengineering J. Micromech. Microeng. 24 (2014) 065003 (9pp) doi:10.1088/0960-1317/24/6/065003 Formation of three-dimensional Parylene C structures via thermoforming BJKim1, B Chen2,MGupta2 and E Meng1,3 1 Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB-140, Los Angeles, CA 90089-1111, USA 2 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1211, USA 3 Ming Hsieh Department of Electrical Engineering, University of Southern California, 3740 McClintock Ave., EEB-100, Los Angeles, CA 90089-2560, USA E-mail: [email protected] Received 14 January 2014, revised 19 March 2014 Accepted for publication 31 March 2014 Published 25 April 2014 Abstract The thermoplastic nature of Parylene C is leveraged to enable the formation of three-dimensional structures using a thermal forming (thermoforming) technique. Thermoforming involves the heating of Parylene films above its glass transition temperature while they are physically confined in the final desired conformation. Micro and macro scale three-dimensional structures composed of Parylene thin films were developed using the thermoforming process, and the resulting chemical and mechanical changes to the films were characterized. No large changes to the surface and bulk chemistries of the polymer were observed following the thermoforming process conducted in vacuum. Heat treated structures exhibited increased stiffness by a maximum of 37% depending on the treatment temperature, due to an increase in crystallinity of the Parylene polymer. This study revealed important property changes resulting from the process, namely (1) the development of high strains in thermoformed areas of small radii of curvature (30–90 µm) and (2) 1.5% bulk material shrinkage in thermoformed multilayered Parylene–Parylene and Parylene–metal–Parylene∼ films. -
Interactions of Newly Synthesized Platinum Nanoparticles with ICR-191 and Their Potential Application
www.nature.com/scientificreports OPEN Interactions of newly synthesized platinum nanoparticles with ICR- 191 and their potential application Received: 26 November 2018 Agnieszka Borowik1, Rafal Banasiuk2, Natalia Derewonko3, Michal Rychlowski3, Accepted: 4 March 2019 Marta Krychowiak-Masnicka 2, Dariusz Wyrzykowski4, Magdalena Ziabka5, Published: xx xx xxxx Anna Woziwodzka1, Aleksandra Krolicka 2 & Jacek Piosik 1 One of the greatest challenges of modern medicine is to fnd cheaper and easier ways to produce transporters for biologically active substances, which will provide selective and efcient drug delivery to the target cells, while causing low toxicity towards healthy cells. Currently, metal-based nanoparticles are considered a successful and viable solution to this problem. In this work, we propose the use of novel synthesis method of platinum nanoparticles (PtNPs) connected with their precise biophysical characterization and assessment of their potential toxicity. To work as an efcient nanodelivery platform, nanoparticles should interact with the desired active compounds spontaneously and non-covalently. We investigated possible direct interactions of PtNPs with ICR-191, a model acridine mutagen with well-established biophysical properties and mutagenic activity, by Dynamic Light Scattering, fuorescence spectroscopy, and Isothermal Titration Calorimetry. Moreover, to determine the biological activity of ICR-191-PtNPs aggregates, we employed Ames mutagenicity test, eukaryotic cell line analysis and toxicity test against the model -
Controllable ALD Synthesis of Platinum Nanoparticles by Tuning
Journal of Physics D: Applied Physics PAPER Related content - Nucleation and growth process of atomic Controllable ALD synthesis of platinum layer deposition platinum nanoparticles on strontium titanate nanocuboids Chuandao Wang, Linhua Hu, Kenneth nanoparticles by tuning different synthesis Poeppelmeier et al. parameters - Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation To cite this article: Chuandao Wang et al 2017 J. Phys. D: Appl. Phys. 50 415301 Adriaan J M Mackus, Matthieu J Weber, Nick F W Thissen et al. - Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition View the article online for updates and enhancements. M J Weber, M A Verheijen, A A Bol et al. This content was downloaded from IP address 129.105.122.65 on 04/12/2017 at 17:10 IOP Journal of Physics D: Applied Physics Journal of Physics D: Applied Physics J. Phys. D: Appl. Phys. J. Phys. D: Appl. Phys. 50 (2017) 415301 (9pp) https://doi.org/10.1088/1361-6463/aa8709 50 Controllable ALD synthesis of platinum 2017 nanoparticles by tuning different synthesis © 2017 IOP Publishing Ltd parameters JPAPBE Chuandao Wang1,2,4, Linhua Hu2, Yuyuan Lin1,2, Kenneth Poeppelmeier2, Peter Stair2,3 and Laurence Marks1 415301 1 Department of Materials Science and Engineering, Northwestern University, 2220 North Campus Drive, Evanston, IL 602083108, United States of America C Wang et al 2 Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 602083113, United States of America 3 Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, United States of America Printed in the UK Email: [email protected] Received 17 July 2017, revised 11 August 2017 JPD Accepted for publication 18 August 2017 Published 15 September 2017 10.1088/1361-6463/aa8709 Abstract Pt nanoparticles were successfully deposited using three different atomic layer deposition (ALD) methods, e.g. -
Study on the Surface Characteristics of Parylene-C Films in Inductively Coupled O2/CF4 Gas Plasma
P2-44 / Y. -H. Ham Study on the surface characteristics of parylene-C films in inductively coupled O2/CF4 gas plasma Yong-hyun Ham1, Kyu-Ha Baek1, Kun-Sik Park1, Hong-sik Shin1, Ho-jin Yun1, Kwang-Ho Kwon2 , and Lee-Mi Do1 1 Electronics and Telecommunications Research Institute (ETRI), 138 Gajeongdong, Yuseong-gu, Daejeon 305-700, Korea Tel.:82-2-860-5776, E-mail: [email protected] 2 Dept. Control and Instrumentation Engineering, Korea University, Jochiwon-eup, Yeongi-gun, chungnam 339-700, Korea Keywords: Parylene-C, O2/CF4, Plasma treatment, ICP Abstract surface.[4] As a result, functional groups lead to In this article, we reported the results of etching poly- degradation of transistor performance. Hence, monochloro-para-xylylene (parylene-C) thin films using preventing the functional groups is essential to inductively coupled plasma and CF4/O2 gas mixture. The improve the OTFTs’ performance. Research in this CF4 gas fraction increased up to the approximately 16 %, field has been so far studied by many researching the polymer etch rate increased in the range of 277 – 373 groups. However, various gas chemistries have not nm/min. It confirmed that the etch rate of the parylene-C been widely examined to reduce the formation of the mainly depended on the O radical density in the plasma. Using a contact angle measurement, the contact angle functional groups, even though the reaction of the polymer with the plasma-created species makes a increased with increasing the CF4 fraction. Moreover, the contact angle was highly related a CFx functional group on large effect on the formation of the functional groups. -
Silver Based Nanoparticles Synthesis and Characterization of Silver
Silver-based nanoparticles Synthesis and characterization of bimetallic silver- platinum and silver-gold nanoparticles Dissertation Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften Dr. rer. nat. vorgelegt von Viktoria Grasmik Fakultät für Chemie Institut für Anorganische Chemie Universität Duisburg-Essen 2018 II Die vorliegende Arbeit wurde im Zeitraum von April 2015 bis Mai 2018 im Arbeitskreis von Prof. Dr. Matthias Epple am Institut der Anorganischen Chemie der Universität Duisburg-Essen angefertigt. Gutachter: Prof. Dr. Matthias Epple Prof. Dr. Malte Behrens Vorsitzender: PD Dr. Holger Somnitz Tag der Disputation: 04.09.2018 III IV List of contents List of contents Index of abbreviations ................................................................................... VIII Abstract ............................................................................................................... X Deutscher Abstract ............................................................................................ XI 1. Introduction ..................................................................................................... 1 2. Theoretical background .................................................................................. 4 2.1 Colloids, nanoclusters, and nanoparticles – a definition .................................................. 4 2.2 Stabilization of nanoparticles ............................................................................................ 5 2.3 Synthesis routes and crystallization -
Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems
micromachines Review Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems Jessica Ortigoza-Diaz 1, Kee Scholten 1 ID , Christopher Larson 1 ID , Angelica Cobo 1, Trevor Hudson 1, James Yoo 1 ID , Alex Baldwin 1 ID , Ahuva Weltman Hirschberg 1 and Ellis Meng 1,2,* 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; [email protected] (J.O.-D.); [email protected] (K.S.); [email protected] (C.L.); [email protected] (A.C.); [email protected] (T.H.); [email protected] (J.Y.); [email protected] (A.B.); [email protected] (A.W.H.) 2 Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA * Correspondence: [email protected]; Tel.: +1-213-740-6952 Received: 31 July 2018; Accepted: 18 August 2018; Published: 22 August 2018 Abstract: Parylene C is a promising material for constructing flexible, biocompatible and corrosion- resistant microelectromechanical systems (MEMS) devices. Historically, Parylene C has been employed as an encapsulation material for medical implants, such as stents and pacemakers, due to its strong barrier properties and biocompatibility. In the past few decades, the adaptation of planar microfabrication processes to thin film Parylene C has encouraged its use as an insulator, structural and substrate material for MEMS and other microelectronic devices. However, Parylene C presents unique challenges during microfabrication and during use with liquids, especially for flexible, thin film electronic devices. In particular, the flexibility and low thermal budget of Parylene C require modification of the fabrication techniques inherited from silicon MEMS, and poor adhesion at Parylene-Parylene and Parylene-metal interfaces causes device failure under prolonged use in wet environments. -
Size-Dependent Activity and Selectivity of Carbon Dioxide Photocatalytic Reduction Over Platinum Nanoparticles
ARTICLE DOI: 10.1038/s41467-018-03666-2 OPEN Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles Chunyang Dong1, Cheng Lian1, Songchang Hu1, Zesheng Deng1, Jianqiu Gong1, Mingde Li2, Honglai Liu1, Mingyang Xing 1 & Jinlong Zhang 1 fi 1234567890():,; Platinum nanoparticles (Pt NPs) are one of the most ef cient cocatalysts in photocatalysis, and their size determines the activity and the selectivity of the catalytic reaction. Never- theless, an in-depth understanding of the platinum’s size effect in the carbon dioxide pho- tocatalytic reduction is still lacking. Through analyses of the geometric features and electronic properties with variable-sized Pt NPs, here we show a prominent size effect of Pt NPs in both the activity and selectivity of carbon dioxide photocatalytic reduction. Decreasing the size of Pt NPs promotes the charge transfer efficiency, and thus enhances both the carbon dioxide photocatalytic reduction and hydrogen evolution reaction (HER) activity, but leads to higher selectivity towards hydrogen over methane. Combining experimental results and theoretical calculations, in Pt NPs, the terrace sites are revealed as the active sites for methane generation; meanwhile, the low-coordinated sites are more favorable in the com- peting HER. 1 Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China. 2 Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China. These authors contributed equally: Chunyang Dong, Cheng Lian. -
Colloidal Platinum (Nano) and Acetyl Tetrapeptide-17 Colloidal Platinum (Nano)
SCCS/1630/21 Final Opinion Scientific Committee on Consumer Safety SCCS OPINION ON Platinum (nano), Colloidal Platinum (nano) and Acetyl tetrapeptide-17 Colloidal Platinum (nano) The SCCS adopted this document at its plenary meeting on 24-25 June 2021 SCCS/1630/21 Final Opinion Opinion on Platinum (nano) ___________________________________________________________________________________________ ACKNOWLEDGMENTS Members of the Working Group are acknowledged for their valuable contribution to this Opinion. The members of the Working Group are: The SCCS members: Dr U. Bernauer (Chairperson) Dr L. Bodin Prof. Q. Chaudhry Prof. P.J. Coenraads Prof. M. Dusinska Dr E. Gaffet Prof. E. Panteri Dr C. Rousselle Dr M. Stepnik Dr S. Wijnhoven (Rapporteur) The SCHEER members Dr W.H. de Jong External experts Dr N. von Goetz All Declarations of Working Group members are available on the following webpage: Register of Commission expert groups and other similar entities This Opinion has been subject to a commenting period of eight weeks after its initial publication (from 16 April until 14 June 2021). There were no comments received. _________________________________________________________________________________ 2 SCCS/1630/21 Final Opinion Opinion on Platinum (nano) ___________________________________________________________________________________________ 1. ABSTRACT The SCCS concludes the following: (1) In view of the above, and taking into account the scientific data provided, does the SCCS consider the nanomaterials A (Platinum and Colloidal Platinum