MASTERARBEIT

Titel der Masterarbeit „Diversity, habitats & size-frequency distribution of the gastropod genus at Dahab (Gulf of Aqaba, Northern Red Sea)“

verfasst von Sarah Zauner BSc

angestrebter akademischer Grad Master of Science (MSc)

Wien, 2015

Studienkennzahl lt. Studienblatt: A 066 833 Studienrichtung lt. Studienblatt: Master Ökologie Betreuerin / Betreuer: Univ.-Prof. Mag. Dr. Martin Zuschin O C

TABLE F ONTENTS ABSTRACT ...... 2

ZUSAMMENFASSUNG ...... 3

INTRODUCTION ...... 4

STUDY AREA ...... 5

LF F

THE GU O AQABA...... 5 ABITAT TYPES MATERIALH & METHODS...... 5 6

AMPLING STATIONS S ATA ...... 6 SAMPLING DESIGN...... 7 ANALYSIS RESULTSD ...... 8 9

PECIES COMPOSITION ABUNDANCE S Y D & ...... 9 ICROHABITAT UTILIZATION M B ...... 11 SIZE-FREQUENC ISTRIBUTION...... 11 HERMIT CRA OCCUPATION DISCUSSION ...... …………………………………………………………………………………………………………………...... 12 13

PECIES DIVERSITY AND ABUNDANCE S Vermivorous species ...... 13 PECIES DISTRIBUTION MICROHABITAT UTILIZATION S Molluscivorous and& piscivorous species ...... 14 F 14 Y D 15 PECIES COMPOSITION O HABITAT TYPES S B ...... 15 SIZE FREQUENC ISTRIBUTION...... 16 ERMIT CRA OCCUPATION CONCLUSIONH ...... 17 18

ACKNOWLEDGEMENTS ...... 19

...... FIGURES & TABLES ...... 20

SUPPLEMENTARY MATERIAL ...…………………………………………………………………………………………………… 36

...... REFERENCES .………………………………………………………………………………………………………………………………….. 37

1

ABSTRACT Conus, one of t e

Theuted venomous gastropodt tal genuse the of themos diverse marin genera,larly is widelye distribthe throughout coas on.marin environments al tropics and iseparticu diversed in Indo-Weslly Pacific regi al Previousoral ecologic ort theassessments t haver fdemonstrat Conus that thetopographica t complexon subtid , c reefsl reefsupp ehighes of numb o species with lowes , populati densitiese dalintertida flats the ar t intermediatee diversity. ander,high abundance oand extensiv subti sanded areasConus are leason divers habitat types Howev d no Therefore,study has s I providefar particularly a first ecologicaladdress assessmentdistributi of the genuspatterns Conusin the alongNorthern a fringingRe Sea. reef coastline in the Southern Sinai (Dahab, analyzing sampling quadrats from a total of 73 line-transects in five ecologically distinctEgypt), habitats with water depths ranging from 0 to 15 m. Ecological information was obtained for a total of 258 individuals of 14 species (9 living and 12 dead). 175 livingThe and three 83 deadmost individualsabundant species were collected C. parvatus for identification, andC. taeniatus size measurement with calipers. C. tessulatus , predominantlyWalls, feeding 1979 accountedHwass in Bruguière,for 80 % of 1792 the total and living assemblage.Born, 1779Hard substrata were dominatedon bypolychaetes, C. parvatus whereas soft substrata supported a high abundance of C. tessulatus, suggesting that hard and soft substrata are generally dominated by different Conus species according to their feeding ecology and the availability of refuges. Results demonstrated that the distribution of Conus subtidal reefs around Dahab strongly overlapped with other habitat types from on are considered to be the most heterogeneous habitat where coralthe blocks region. alternatingSubtidal reefswith sand patches and rock of varying portions establishtype, numerous microhabitats which can be exploited by Conus. Contrastingly, the other habitats showed a more characteristic species composition, whereby subtidal and intertidal sand characterized by large, uniform areas of soft substratum with similar ecological properties were almost identical in species composition.

Conus The average shell length of was 15 ± 9 mm inFurthermore, the living and except 17 for ± 14 the mm intertidal, in the living dead andassemblage dead assemblages with a general of the size individual range of 6habitats - 85 mm. showed high similarities and peaked between 9 and 15 mm of size, indicating that postmortem processes may not be influential for the distribution of Conus around Dahab. Living and dead specimens from subtidal sand and the reef flat averagely consisted of smaller individuals than those of other habitats suggesting that these topographically simpler habitat types do not provide adequate refuges for larger specimens. The most dominant and smallest shells C. parvatus, C. taeniatus and C. miliaris), were the ones most frequently occupied by hermit crabs,( preferentially on the reef flat where the abundance of empty Conus shells was high. Results indicate that hermit crab distribution is influenced by favorable environmental conditions and the availability of empty gastropod shells such as Conus as a resource and that this supply is well utilized due to their

general rarity. 2

ZUSAMMENFASSUNGDie giftige Gastropoden-Gattung Conus, eine der diversesten marinen Gattungen, ist in den Küstenlebensräumen der Tropen weit verbreitetals und besonders artenreich im Indo-West Pazifik. Vorangegangene ökologische Erhebungen haben gezeigt, dass topographisch komplexe subtidale Korallenriffe die höchste Conus Diversität jedoch die geringste Populationsdichte aufweisen. Das intertidale Riffdach weist intermediate Diversität und hohe Abundanz auf und extensive subtidale Sandflächen sind jene Habitate mit der niedrigsten Diversität. Bis dato wurden jedoch in keiner Studie die Verteilungsmuster der Gattung Conus im nördlichen roten Meer untersucht, weshalb hier der erste ökologische Zensus dieser Art entlang einer Saumriffküste im Süd-Sinai gypten) erhoben wurde. Die Probennahme erfolgte mittels

entlang von 73 Transekten(Ä in fünf unterschiedlichen Habitat Typen in Tiefenstufen Quadratenvon 0 bis 15 m. Ökologische Daten wurden für 258 Individuen aus 14 Arten erfasst (9 lebende, 12 tote). 175Die lebendedrei häufigsten und 83 Arten tote C. Individuen parvatus wurden bestimmtC. taeniatus und mittels Schiebelehre vermessen.C. tessulatus die sich hauptsächlich, Walls, 1979, von Polychaeten Hwass ernähren, in Bruguière, 179280 % und der Lebendvergesellschaftung Born, 1779, aus. Hartsubstrate wurden von C. parvatus dominiert,machten wohingegen C. tessulatus in Weichsubstraten eine hohe Abundanz aufwies. Dies lässt darauf schließen, dass Hart- und Weichsubstrate von unterschiedlichen Conus Arten dominiert werden, entsprechend der Ökologie ihrer Ernährung und der Verfügbarkeit von Refugien. Die aktuelle Studie hat gezeigt, dass die Artenzusammensetzung in subtidalen Korallenriffen um Dahab sehr heterogen ist und die dort gesammelten Arten auch in den anderen Lebensräumen vorkommen. Man kann daher annehmen, dass diese Tatsache von der generellen Heterogenität dieses Habitattypes herrührt, da dort Korallenblöcke abwechselnd mit Sandflächen und Fels variablen Anteils vorkommen und dadurch eine Reihe von Mikrohabitaten für Conus schaffen wie es in keinem anderen Lebensraum der Fall ist. Im Gegensatz dazu, zeigten die anderen Lebensräume klare Abgrenzungen in ihrer zusammensetzung, speziell die reinen Sandhabitate, die sich durch ähnliche ökologischeArte Eigenschaftenn auszeichneten, zeigten starke Ähnlichkeit untereinander jedoch starke Abgrenzung zu den anderen Lebensräumen. Weiters wiesen auch Lebend- und Totvergesellschaftung der einzelnen Lebensräume untereinander keine Unterschiede auf, mit Ausnahme des Intertidals.

Bei einem Größenbereich von 6 - 85 mm betrug die mittlere Schalengröße derDie Lebendvergesellschaftung häufigste Größenklasse war 15jene ±von 9 9 bismm, 15 mm.die Dieseder Totvergesellschaftung zwischen 17 ± Lebend-14 mm. d Totvergesellschaftungen lassen annehmen, dass Ähnlichkeitepostmortem nProzesse keinen oder nurun geringen Einfluss auf das Verteilungsmuster von Conus ausüben. Generell waren jene Individuen des Riffdaches und der subtidalen Sandflächen am kleinsten, was auf ein Fehlen von geeigneten Refugien hindeuten könnte. Die dominantesten und zugleich kleinsten Arten C. parvatus, C. taeniatus und C. tessulatus) wurden am häufigsten von Einsiedlerkrebsen, vorzugsweise( am Riffdach besiedelt, wo auch die Abundanz von leeren Conus Schalen hoch war. Dies deutet darauf hin, dass die Verteilung der Einsiedlerkrebse von den Umweltfaktoren und der Verfügbarkeit leerer Gastropoden-Schalen wie Conus beeinflusst wird und diese R ssource aufgrund ihres limitierten Vorkommens optimal ausgenutzt wird. 3

e

INTRODUCTION Conus

The predatoryae gastropod genus one f the(Linnaeus t 1758) constitutese thea monotypic family Conid zed(Fleming 1822) and is o mos species -rich onmarin hngener with currently 761 recogni species eawith predominately the tropical distributied (Ko 1990).e, The gastropode superfamilye. Conoid ea includes art widely der distribut odafamilies e Conida Terrebrida anda theTurrida The Conoidoda of theform p of the or a Neogastrop el et in .th sub -classe Prosobranchi, of class Gastrop a phylum one Mollusce (Roonck o allal. 1995) theThis divers superfamily, edalso known as Toxoglosse shares 1959;featur lorcomm et t Conusspecies: venom apparatus us to rapidly captur prey (Kohnh a Tay e al. 1993).a th (up immobilizeso preye by injecting a neurotoxic venomh an throug harpoon -lik radul too t six in of som molluscivorousar species), 998;whic c vary et .in shape, dependinga et on the1). feedinge ecology Conusthe particul speciesan (Kohn 1 ed Kohn al o 1999;r Dud odeal. 200hn Thre groups of, speciest c p bef distinguishConus ,according on t thei feeding f m (Ko 1959):, Vermivors as the larges grou o er species prey and polychaetes, r o different families whereas molluscivors and piscivors pref mollusks fishes espectively.on of the dae al The e,geographic distributi ew family at Coni stretchesd acrossh tropic waters worldwid; Beesleywith et only al. a f Biogeographicalspecies occurring patternslatitudes of Conusbeyon are40° diverseNort withand someSouth species(Kohn having1994 a rather broad1998 range). of distribution and others being endemic to certain areas (Röckel et al. Monteiro et al. 2004). The highest diversity of Conus is present in the Indo Pacific region,1995; which is known to contain the largest number of extant species in many groups (Röckel et al. 1995). A recent study gives reasonable evidence to suggest that at least 10 % of the Conus species worldwide are under threat, with some endemic species even being critically ered et endang oral(P eters of al. the201 3). al t , h Conus on On c reefs f tropic, Indo-Wes low Pacificonhig populati h density and low diversity characterize, Conusree flats whereas on populatie s density and hig diversity re characterizet subtital reefs. and onpopulations an extensiv antretches oral of subtidal edsand ata the leas diverseat (Kohn 1968) Surveys Micronesi d an and Australi torc Conusreefs reveal th d microhabite type and Levitenavailability 1976;of refugesen coul Kohnbe important0; hn fac for diversity an abundanc (Kohn and Although detailsLevit on theand ecology198 and speciesKo 1983). diversity of Conus from different areas of the Indo-Pacific are known (Kohn 1967, 1968, 1983, 1994; Kohn & Nybakken 1975; Kohn & Leviten 1976; Leviten & Kohn 1980; Kohn & Perron 1994; 2005), little ecological information is available on the distribution patterns of Conus in theVallejo Northern Red Sea (Kohn 1964; Fishelson 1971; Fainzilber et al. 1992; Zuschin et al. 2000, Therefore, the goal of the present work was to study the distribution patterns of Conus in different2001). shallow marine habitats around 4 Dahab (Northern Red Sea) and to obtain information on the importance of substrate type and habitat complexity for the abundance of this diverse genus.

TUDY A

S REA G f of A aba

The ul q narrow subtropical marine water body with a width of 26 km extendsThe over Gulf 170 of Aqaba km from is a the Israeli and Jordanian coast in the North to the Strait of14- Tiran in the South (Klinker et al. ). As part of the African rift valley the Gulf is descending to over 1,800 m depth and1978 forms; Fig. a unique 1 topography consisting of various types of shore. The arid desert climate characterized by low rainfall averages 25mm/year) and predominantly northern and northeastern results in high evaporation(22- and high salinities, ranging between 40 and 41.5 ‰ winds, (Friedmann ; Usiel Loya 2004). These climatic, oceanographic and geological conditions together1968 with the1968; Gulf’s oligotrophic character have shaped the Red Sea’s rich marine flora and fauna with its high endemism ratio (Sheppard et al.

1992). tat

Habi typeson of Conus ed al tat

(hardDistributi and soft substrata):patterns subtidalpredatory reef, reefassemblages flat, subtidalwere sand,studi intertidalin sever sand andhabi seagrasstypes meadow (Tab. 1). Coral reefs along the Dahab coast are exclusively of the fringing type which form belts along the shelving shoreline and show the typical zonation into reef flat, reef crest and reef slope (Fishelson 1973). Habitat types distinguished here are similar to the classification Conus habitat types o Kohn (1967). of f

1. Reef flats. eward abitat pe of oral k is

This emerged shor, ave h ty consisting f c roc bottomd highly affected by ttidal oralfluctuations h utw upportaction andr variations o htemperature an salinity. These factors. limi ughc of growt b s , othef organisms desuc as encrusting and filamentous al algae Altho lter orsimple topography e ree hflats provi numerous of the crevices Conusand alg mats servingeviten as Kohnshe f many marin taxa suc as gastropods genus (Kohn 1968, 2. LSubtidal& coral reefs.1980). eef , oral ets and oral s order the reef s , h r e Red ea er er R slopes c carp c patche b flat around Dahab suc as in. many othe are areas a oforeth S (Reiss and Hotting 1984;ated Pill and Pervesler 1989) of Porites,They Acroporaof mMilleporacomplex. daltopography andt of sdominal by coral 5 associations and Subti reefs consis ever microhabitats living and dead coral heads, coral rock, sand and coral rubble which provide e for hn 967). f e area tart - – important daytimthe utershelter e themany fri conids reef (Koand 1 Ree slopesed across h cth sampling e es erat 10 mo ereedg htof i nging were characteriz e by hig slopeoral coverag in th upp to wh of lig0 ntensity0 and water t mixingto a ar highest. Thewreef plunges. oraldown steeply depths 3 – 5 fm or lflattens ou in relatively e shalloon sandd bottomab C to carpets 40are definedral as low - arerelie coraalcommunities al , andhyar comm r arounal Dah ondown are30 – m. Co patches oft tratasubtid corer reefsdalpatc in theioral spati distributi. In e and a,isolated across s o urredsubs from oth at subti r reefs froor c 3 40patches . th sampling are coral 3. patchesSubtidal cc sand. commonly tat depthspe anging med – m e of of ConusThis an habirow ty is thecharacteriz . e by extensiv e areason sandow ayswher e species c bur the reefduring da reefy Thes areas undar comm. in areshall b to or lagoonsthe andat t oftenpe border t l t Conusflats and slopeshn aro Dahab They known be 4. Seagrasshabit meadows.y with Thishe habitatowes diversityusually (Ko from1967). 2 18 m depth around exhibited extensive areas of sand typecovered by seagrass ranges of the species– Halophila stipulaceaDahab, 5. Intertidal sand. ed t f , tat pe ed . al s Characteriz b the fact thatby vas t stretchesally o sand this a habi urnalty is distinguish from subtid and only y i parti falls dry in semidi manner.

& M

MATERIAL ETHODS st

Samplingable 1 ations an w of the tat d . reef t

Tan gives atelyovervie 0 habide typesapedan sampling atstations The fla studied' was approxim1' h 2 - 30 m wih table -sh bench ‘The Islands’ ( 28°28.593 N 034°30.39 E),e cwit a relativelye i hig algal. coverledage shoreward and declink ing in area seaward direction e wher oral abundanc reef t ncreasesre edSand -fil depressions and r roc cracks layer f common and larg flat portionsi co edof bthe water flaevena cover lowwith algald- bounder levelsand 0.5o a thin o sand. The whole als ver y d during at r tide (mi wat ab. –,1m). Subtid4' reefs were sample reef fouope different locations ,(T 1 2): ‘The Lighthouse’ N (28° 29.941' N 34° 31.182'e E; al sl , and coral patches) ‘The2'Islands’ (28°28.655'' 034°30.73) E; reefu slopal’ and cor patches)' ‘Moray8'Garden’ ral(28°26.26 arpet). llN 034°27.534 E; coraled a carpetlar and ‘Abure Hel (28°32.542 N were034°30.99 E; dco c A stations 20 display 30 simi struct and topography and characterize by an approximately - m wide6 reef t, ally reef to , ed ther e

fla oran initi d steepd slopehy descending 20 – 40 m follow by ei extensiv coral carpets sandal omin ate patced atreefs. ons: ral 94' ' , Subtid sand was sampl42' three12'locati Moray‘Co Garden’ (28°33.262’ N 34°31.257' E) ‘Goldene wBlocks’e s (28°26.3w N 34°27.8 E) toand the r‘ Garden’. (28°26.2 N 34°27.534 E). ThesSandyer seagrasshallo sand meadowsstretches wereadjacent studied at eef table (28° 29.712' N 34° 31.021' E), ‘Bannerfish Bay’ (28° 29.934' N 34° 31.125' ‘Mashraba’ E) and ‘The Lighthouse’ (28° 29.944' N 34° 31.182' E) . was surveyed at the Kite lagoon in Dahab (Fig. The intertidal 1;28° 28.593' N 34° 30.391' E). The Kite lagoon can be characterized by its protected location behind fringing reefs and its low relief which let develop a large tidal flat, popular for recreational activities (Zuschin et al. 2015).

g n

Samplinensdesig e d at e of 0 o

Specim ab.wer , collecte. e different depths inon the rang the att 15 m using eSCUBA and snorkellingl (T e at1 2) hLin transects in combinatitat . with d quadrata, amethod 0 wer performedt e 2 paralleed thto as hor1 eac location ed atand habi oftype 5 On har substr a ed2 meatransec of linor was 2 us wi . m quaedrat o plac intervals meresulting in sampld or aroft 5 m f, a eac0 h transectt (Fige 2). Du dt theth time and labor-intensiv at edsampling 2.5metho .25f s persubstrata 1. m 2 2 transec lin twas or use h wi a 0.25 m quadr plac every m (1 am attransect) a The starting poine thef eac transect. was chosen by haphazardlydal throwing e quadred (∅from 2 few) metersder oabov e substratum Quadrats from subtit sand transects ewer siev o e mmzed in or t includConus endobenthic individuals.7, hn Differen8, microhabitatsen 980,ar known t b utili by differentIn der o speciese (Kohnther196 Ko 196 Levite & Kohn 1 Kohn 1983, f Kohn 2001). or on,t evaluat tatwhe certain species o hav 1983)preferences indedterms or o microhabitat utilizatied onmicrohabi al types the(according . t Kohn dead were recor f every specimen collect d subtidt reefs) and reef edflat orLiving and individuals e (empty shells thand those. inhabite by hermi of crabs were deadcollect f identificatione ded andor siz all measurement. wi calipers Abundancesl r living and e speciesens were otrecor d f ut habitats dEasily identifiableed in situ. individuaConus o especially larg edspecim on wer n collectee b measured el et an(1995)identifi on a ed identificationon was bas the edRusmore-Villaum ea (2008),al Ro ck al. ab. andll well sorte r collectied a erpresent at R S zeEnvironment m Centre (RSEC) in Dah A specimens wer eleas ft identification and si easurement.

7 Data analy

ata siset ted of e k 4)

The d to s wasfy tes using analysis Conussimilarities (ANOSIM, or Clark and deadWarwic 199 . in order on ofidenti atadifferences among habitats f living and assemblagest Preparati the the d was performed of by generating a similarity matrix. from transec hdata occurrence of Conus were excluded from the analysis transects) and the trix was using Bray-Curtis coefficient similarity (Bray and Curtis 1957) Samples wit no standardized by total percentages were used) and square (37 root transformed to ma t high abundances of some(i.e., species. The one-way ANOSIM generates pairwise R valuesdownweigh between 0 (no differences between transects) d 1 (perfect separation). The R statistic itself is a useful

e ure of ree ofan s on , at t comparativ al meas the deg an eeparati ed of sitese and f its value is leas as important h as its statistic e significance which. c btatedargu tokeb low i onlyey few replicates R in eac.5 group occur (Clark d and Gorley w 2001) As s < 25in Clarind ateand hardlyGorl (2001) s values. ≥ 0 indicate clearlyor ifferent a groupsl hereasonvalues of 0. ic any theeparation F visuaonal representati thekalsimilarities ) between ed 34edtransects, the nonay-metric multidimensi . scaling (nMDS, Krus 1964 was performener bas on = Br) Curtis similarity matrix ANOSIM, nMDS, diversity indexed;(Shannon-Wi 999 ons)1949 : ereH’ -Σ (pi (log pi)) theand speciesoftwareaccumulation e curvesR 6 (speciesarke observ permutati w conductede using s and deadpackag as PRIMEe) (Clsu andzedWarwick b hi 1994 ).forSpecies each haabundancat us tdistribution so (living e t semblag was mmari; y etstograms bit ing he ftware packag thePas (Paleontologicalare Statistics 4)Hammer al. 2001). lkNormality testsrowere performed using al Chi-squ test een(Yates o193 or oreand the Shapiro-Wi e tedtest (Shapi the & Wilk 1965).t Statistict differences08), e betw twey U mt samples werey tes47) using e Student´sal test (Studenal &19 Wall th 1 Mann-Whitn tes (Mann & Whitn 19 and th Krusk Wallis test (Krusk is 952).

8

RESULTS on ab

Species compositial on& undance d for a total f 58 of 4 (9

12 Ecologic 73informati was obtaine an a f om2. 75individuals 831 speciesd living and 2 dead)ted from. transects,). coveringable are enso 245 . 1avilyliving andted dea )individuals were were collec r (Fig 3A Unidentifid or 7 % N =specim 19) f the (e.gal he encruse. shells udedgrouped togethe and accounted f Half of( o tot assemblag This groupd was excl one orfrom species-relate. statistics. the recorded species were represente by only two specimensThe quantitatively most important species in this study were the vermivorous Conus parvatus, Conus taeniatus and Conus tessulatus (Tab. 3; Fig. 3 B, ).

Together, these species accounted for 80% of the living and 59% ofC; the Supplementary dead assemblage. Fig. 1, The 2 C. parvatus occurred in all habitats except in seagrass meadows and was most ubiquitousabundant on reef flats and subtidal reefs (Fig. 4 A-D). Conus taeniatus most frequently occupied different microhabitats on subtidal reef flats, preferentially algae on reef limestone (Fig. 5). In contrast, C. tessulatus was the dominant species on soft substratum where specimens were primarily buried in the sand. Other vermivorous species recorded in this study Conus miliaris Hwass in Bruguière, most frequently found on the reef flat Conuswere flavidus Lamarck, which occupied1792 both hard- and soft substrata but is generallyand known to be more abundant 1810on subtidal reefs interspersed with sufficient amounts of sand patches (Fig. . Conus arenatus and Conus maldivus Hwass in Bruguière, 1792 found6) on sand substrataHwass and on in dead Bruguière, coral, are1792 both known to be associated with sand substratum and prey on polychaetes of different species whereas Conus rattus Hwass in Bruguière, 1792 is predominantly reported from subtidal reefs where specimens occasionally are found on dead coral covered with algae (Kohn 1959; Röckel et al. 1995). The latter species could only be found dead, buried in sand. The molluscivorous Conus pennaceus , rarely occurs reef flats but rather sandy areas arespecies large enough to provideBorn substrate1778 for burrowingon during daytime. However,where the only specimen found was an empty shell from the reef flat. Conus textile Da Motta, preys on Conus d other mollusks, generally prefers sand substratum and is considered1982 rare on subtidal reefs.an Specimens in this study could only be reported alive from a seagrass meadow and dead from subtidal sand. Conus nussatella Linnaeus, , Conus geographus Linnaeus, 1758 and Conus striatus Linnaeus, are reported to be molluscivorous1758 and where only represented by dead specimens (subtidal1758 reef and reef flat). They are generally

9 d clo e to s ed sa d under oral k or in e el et foun1995; in hn s vicinity ubtidal reefs buri in n c roc rubbl (Röck al. Ko 1959). on ut d ot h e tat Species accumulati curves approached,ort ughb di h n reac asymptot toin theoverhabi types suggesting perthat habthetat, samplinge effon t -r althof flat hig - was unsufficient c the whole diversity the i rd speciallyata, thehe ee lat(Fig. 7). the tat h the t Amongon ha f substr deadreef f was 4 habi wit, highes 1.8observed to 2 populatiab. 2). densities o living and rather lowconids =(~ ,individuals/m ab. 4). t ranging from ally 13.2; T tat Speciese, 20diversity was 53 ead (H’ 1.1 of T e A this topographice d, simpler habi typately1 %living of ande re d individualson. eadnin speciese onwer erecorde t comprisingted approximore than60 e th enti collectie The de assemblagab. 4). tht reef flat consis of C.m parvatus,species C. taeniatusth living a d C.assemblag flavidus. (eight/fiv – T The mos abundan species were al n ab were zed low Conus (< 1 Subtid reefs around. 2) aDah characteri =by , 4). adensities otal 2 e individual/m ;tedTab and moderatetat species diversityed e(H’ 1.8 Tab. Frome t of nindead species collec oth doin this habied C.type, parvatussix constitut . 4, ab.th 4). Theliving assemblagat andof s four the assemblage,w bdal minat dby ab (Figd at 5T depth gre = ;majority ee . )pecimens th fromonshallo subtie’ reefs aroun Dah occurreN = 9; ab. 5).m (N 16 sll Fig 8A wi the 10stati 15‘Lighthous beingo most prominent an e ( T to Duer to the sma sampling er sizes for depthand r m .depth, n conclusions c b drawn as whethe certain species pref particular angesal t ata tat h t on of deadSubtid c sand was 2 indithe sof substr, habit wit theat thehighes s onpopulati Bdensities ab. 2)living 2 andked onidsond (~ all viduals/mate highes. densities tati ‘Goldenely wlocks’; = T , ab.and ran sec urredamong esubstr etypes Species diversity of ,was urrelativ lo (H’ ed1.3 T 4). Six species e occ dead in th extensive ab.subtidal . areas the sand fo of which constitut theatedliving C.and tessulatus,fiv the assemblag C. parvatus (T C. 4)tessulatusHere, wereliving assemblage was dominad by . 4). whereas and dominant among the de assemblage (Fig Seagrass meadows showed low population densities of living and dead conids (<1 Sandy ; H’ = , Tab. 4) and were dominated by C. parvatus and the sand-associated 2 C. arenatusindividual/m. This substrate1 type was occupied by three species, all of which occurred in the living assemblage but only two were also found in the dead assemblage. The intertidal sand area was the least diverse habitat type (H’ = , Tab. with only two species, C. tessulatus and C. maldivus; only the former occurred in0.5 the living4) and the dead (Tab. 4, Fig. 4). assemblageed on on f d , t tat well Bas the speciesle compositi. 6, 7, , .o living and dea t assemblagesed amos habiely types were distinguishab early (Tabd 8 Fig 9). The reef fla constitut relativ ther homogenouslar o habitat cl delineate from subtidal- and intertidal sand, but was ra simi t the 10 on of 6, . speciest composititer seagrassot owmeadows (Tab. 7) Sub- and intertidalon thsand habitats formed. a distincrp clus t,and did n sh weresimilarities in tspecies compositi wiat seagrasspe meadows a In sha contras subtidal reefs e unathe ofmos heterogeneous . habite ty withe species. composition earlyoverlapping the with th fa adjacent tathabitats , Th dughead assemblagh ht (Fig 9B) showedab. n same differences between habi types altho wit slig variations (T 7). on of e ath d ot w r on a larComparis liv andonde assemblages di n eptsho orclea separati indicatinglobal R = rather simiab. 8, species. compositi within the habitats exc f the intertidal (g 0.141; T Fig 9C).

tat

Microhabitat utilizationon ed for reef . 5) dal . 6).

tMicrohabi utilizati wasatestudi on reef flats were(Fig and subtie edreefs a(Fig layerThe mos frequentlyd occupied substr ae types flatse on reeflimeston e.cover e by thin of sand boun by filamentousd C.alg parvatusand macro-alga C. taeniatus, the limestont Thest substrates und onwere predominantlyreef t . 4).occupie e by of C. parvatusand N = 50) mosed abundan species onfo the fla (FigC. taeniatusTh majority ( d oroccupi algal-boundh ae sand limestone,. Conus whereasflavidus C. miliariswas werepredominantly foun on underneat alg d on limestone one.and In C. parvatus,low inC. abundancetaeniatus and C. primarilymiliaris wereoccupie e algal-boundt tsand on limest t deadaddition, a e on r flat ( . 4).and th mos abundan species amongMorehe than 0%ssemblag of all Conus eef sensFig d rd oral are k 9ere d specimt occurre . 6).on hae substrata; here,t living C.c parvatus,heads and b ocroc edw bareoccupie r k or smallmos rofrequentlyk ks (F(Fig. 6). Th most abundan species mostly cupi oc c crac ig

ency

Size-frequ distribution on of , dead e 9

15 mmThe ofsize-frequency size (Fig. 3). Thedistributi average shellboth lengthliving wasand 15 ± 9 mmassemblag in the livingpeaked and between17 ± 14 mmand in the dead assemblage and this size difference is statistically significant

test: p = 0.04). From(size all rangethe species 6 - 85 only mm) C. taeniatus showed a significant difference in size (U-between its living and dead assemblage (U-test: p < 0.002). Living and dead Conus populations of subtidal sand and reef flat consisted of smaller individuals than those of other habitats

(U test: p < 0.02). No correlation between shell length and sampling depth could be found. In addition, no significant differences in shell length of living Conus could be found between habitats of sampling stations (Tab. Moreover, shell lengths of living and dead specimens did not vary significantly among different4). p 11 microhabitat types of the reef flat ( > 0.5). In tat , t trate d ot s w

this habi v onshowever s ze (Krspecimens occupying t p > differen subs types di n ho significant ariati of thein i e uskal-Wallis edest: 0.4). ttle e ab.Individuals on sam lspecies show of generallyallyli variancet in siz between C. parvatus,habitats (TC. taeniatus9). Comparis C. tessulatusof shel) forlengths all the numeric edmos timportant species of C. parvatus( and on ef t habitat types revealr tha specimens p 02). , were significantly smallere for the re fla than in any othe habitatad (U-test: < 0.owed Thiso however, holds only tru e the eenliving assemblage, whereas e to de erassemblages all sh n significant or differenceson in siz betwe habitats. Conus taeniatus(mainly du d oteith r very sme sampleen sizes large C.variati tessulatusamong sampl sizes) ller on di n diffe than in onsiz betwe habitatsl whereash lag was significantly p < 0.02).sma subtidal sand the intertida sandy beac of Dahab´s oon (U-test:

t ed sh

InHermi total, crab-inhabit83 dead ellsere d, of h 1 were t d 32

ab. 4, shells w foun elywhic t 5 hermi crab-inhabite ed and t were emptywere C.(T parvatus6; Fig (N 10). 9),The C. quantitativ taeniatus (N =mos important C. miliarisspecies (N occupi 7). by hermi crabs C. flavidus, C.= striatus,1 C. tessulatus, C. nussatella10) and = dThe remaining one or four species ( . e ze of t ed ) were represente ± by only, edtwo to individuals18 15 Th r average si hermiut the crab-inhabitze ency shells wason17 of ead14 mm compar ± mm fo emptyted shells, i notb s si frequ d distributi ( . 10). The dgreatempty ma shells of deadand hermit crab-inhabi d onshells s f at ignificantly t lifferent Fig8%; ) joritye specimens was e,foun overedthe ree fl and ealmos theal of thoset (8 six speciesed wer hermitabitat crabpe inhabited. Therd algae-c limestond wase 1%)mos frequentlydoccupi on microh e ty%). (52%), followe wereby sand-covere edlimeston 9% of (2 the and algal-bounted sand on limeston the ef (17t. Sand patches 12 % onlyh occupie byd t hermit-inhabi dshells on dal re fla Theal remaining whic wer occupie by hermi crabs were foun subti reefs, subtid sand and seagrass.

12

DISCUSSION d and

Species a eneraliversity , di abundanceon and of Conus are ofte influe d topographyAs g and rule substratestributi type (Kohnpatterns 1967, 1983).species Priorrichness studies from the Indo-Westn nce Pacificby region (e.g., Kohn 1959, 7, 1980, 1983, 2001; Leviten & Kohn 1980) have

ed that 196 ally 1990,dal upport e t er demonstrat, ugh topographic e complex llysubti w, reefs sl reef th highesre of numb of species altho habundance e,ther is usua e lo dalintertida areflats a t intermediatee. diversitylly and higed abundanc e and ofextensiv e subti sand areasdal leas diversed e This ist partia support by th findingst th onpresent study: Subtie reefs display H’ = 1.5;th nhighes =

The re. flat asle topograonsphic htsimp de habi hty supporton of largesd numb of specimens o Favorabe e condititrate mig inclu the hig proportiuge or algal-boun sand, which tendswater t stabiliz atth subs andhn thus provides; a evitenref f small individuals, from strong le movementd high aretide (Koo 1959 to Kohn &onL 1976). Crevices upportsand patchesh and rubb fillee depressions an e als hknown functi. t asanrefuges, eand thus s higt thatspecies abundancpled efin , otherwis t harsto environmente d I hnc et also e.g.b taken into accoun hn the sam re flat in contras thos studie by Ko al. ( 1967; Leviten & Ko 1983), 13 ever ed to air at low de d an t or h ht awas rolen i Conusexpos on r ti flatand thus lacke importan stress fact whic mig play n abundance eef s.dal ab The structurallyate onuniform subti of ew sand areas around. Dah were characterizedt at by intermedit populatit densitiesave well adaptedf dominating to species toThe theresults thus sugges th theset mos rabundanuge speciesn h e. burrowing in substrate and utilizing i as both, ef and utrient sourcrted low Conus , ar to e Seagrassated meadows hn suppo980) e populatione that densitieslar simil thos previously investigal s by Ko (1t Conusand ther is evidenc t habitat tysimi. ecological mechanisms as in subtid and areasal limi abundancewed a in his peon ated to dal Theh intertidConus sand area shoed species compositit orded.rel It an subtie sand areas althoug on at lowabundance e i a differ faandtor was t the lowes rec c b hypothesized that desiccati tid s limiting c in his habitat. d on mi abitat ut

Species istributi & croh ilization Vermivorous species

e the t t ow e d

Vermivorouse , species wer on mos abundan ofin shall marin, e habitatsderedaroun o e Dahab. Thes speciesed. known of to prey e variousdapted groups a polychaetes ar consi der t tob highly on specializ Many them hav ona o unique hunting reef techniquet in or e, prey tube-dwelling of ferentpolychaetes commete t subtidalrow reefto and flae habitats. .Ther In ordera sufficientto number food source,dif thepolycha radula toothspecies of manybur vermivorousin reef limeston species hasand a coralsspecial shape and accessis not thisheld by the proboscis after injection (Kohn 1959) but rather remains in the y while the proboscis . C. flavidus C. parvatus d onpre quickly retractse on theBoth, de of oraland k or on oralmainly fee Othertube-dwelling polychaetes that liv undersi on c roc c rubble. vermivorous species predominantly h they prey urrowsand-dwelling C. tessulatuspolychaetes. hn and59)thus o prefer extensive C. rattussand a stretcheson in whic on efcan b (e.g.. ) Ko en (19of als reported ded asthe comm species re flats in Hawaii The onlyted specim althis species recor thefrom presentudy study though, at was an empty shell collec from are subtid dsand. hResults rfrom d present st C. conclude,parvatus) orth oftmany vermivorous C. tessulatus)species associate to witr eithe har rsubstrata that (e.g. on of se substrata (e.g. on t avaccording of thei r feeding and behavio organd , distributires thes species depends he ailability efuges prey anisms pectively.

14 Molluscivorous and piscivorous species

o mo and (C. textile C. nigropunctatus)

Thed onlyundtw livingab were lluscivorous piscivorousrted specieser theand e tat foun. arohn Dah Conus textile,previously a repodator from othl studies in ersam Conushabi types (e.g Ko 1959). onas predal of epifauna Conus nigropunctatusgrazers and oth onspecies reef on seagrassut o meadows all and rarely on subti reefs and or le of dal typically. reef flats C.b nigropunctatusals in sm numbers the sand bottom rubb subtie reefs On t that flats, or is usually only entirely piscivorousally species. thanThes for results sugges allyfood supply f molluscivorslly pler andtatpiscivors ish gener dallower an vermivorsre eespeci in topographicalower in sime than habithat of vtypes suc as subti sand and c therefo b considered abundanc ermivors.

of ha at t

Species compositionon of Conus bit ypes well on of Conus that m of theOrdinati tat abundanceed a as as frequency distributi ab. 6, 7; . indicate4, 9). ost habi types showon characteristic tat species assemblagee ed(T the Fig Differencesal in species compositial among of ehabi ttypes tatcan b explain. ef byat, varying physiclly and environment conditionst to th distince on,habi rtypes The re, flh with its genera harshon. A conditions is subjec heavy wav acti wate tomovement Conushig salinityth a and irradiati varyinglyle dense layer of algal-bound on, sandwateris crucial provide on.wi burrowing medium suitabh as refugee ableagainst f predati hnmovement 9) and desiccatithat This, lowerhowever, requires sandyenoug areasalga oncap reef flatso binding comparedsand. toKo subtidal(195 reefsstated, can limitthe theusually density of abundance certain of dwelling Conus species such as C. pennaceus and that other species, such as the vermivoroussand- C. flavidus, are so specialized on sand-dwelling polychaetes that the absence of sand patches limits their abundance. In contrast to this, the results of the present study showed that C. flavidus was most abundant on reef flats where individuals commonly occupied algal-bound sand on reef limestone. The only individual of C. pennaceus, although dead, was also found on the reef

These differences can be explained by a varying density of the gal mat and the amountflat. of sandy areas between the reef flats studied by Kohn (1959) and the alone at Dahab. al l a lar on r

Subtid and theintertida t sand showedd. simi speciesat thecompositi o t and thei are species diversities were at eylowes recordeer Thisr indicatesal th . tw habita types rather uniform ande th th tatonly diff inughthei physic dalconditions allyExtensive areas to of pureonsand characteriz both habi types, altho the interti is especi exposed desiccati and

15 . h ht t tor or Conus e predation habitatThese t pe. generally hars conditions mig ac as limiting fac f abundanc in this y to e f an e pe lar eSeagrass f meadowsoft seem b habitats upporto larintermediat . ty with resimi featurese to thos o other to s allysubstrata, ey onand thus s simi species However,h C. textilethe . are som species reported especi pr well fishes ead in seagrass meadows of e suc as This explains the differences andin livingr oftas as d. assemblages th nMDS ordination between seagrass meadows othe, s substrata tat , w the t tat Subtidal of reefs as heterogeneouson tohabi the typest t shothey largese f within-habit differences. inanterms e speciesed,compositi due fac thato compris o ofdifferen microhabitatstat pe It coralb hypothesiz that this is generally due thek heterogeneityf this habi hty where c blocks alternating for Conus. withIt ansand e patches andzed roc o varyingt ft portionsaestablis eneralnumerous microhabitats r reec bf hypothesi though, tha so d substrat in g support species with a highe o deg o tedspecialization hnin 1968,terms of80),foo and microhabitat. en (1975),Resource partitioningeviten Kohnhas als80)be end sugges to be fromrKo ( ated in19 Kohne s & Nybakk. and L & (19 an hasead Conusfurthe investig futur tudiesferent tat Moreover, living and d assemblages rare inhabiting dif habi a letypes were different in) specieswere composition,le wherebye species. therepresented one d, byeonly sing specimen the (singletonse ld negligibe inatedquantitativ termsr abitatOn han thes specimensd to in ondead waterassemblag cou , hav origin or from othe . h the typesr and transporte, t an e itsdlocati that via movement hermit crabs rare predators On t,othe e hand i toc eb argueed ethese singletonsore arerepresent p rt of thevery species which,. in fac ar unlikely b observ aliv and theref a species community ze freq d on

Si uencyencyistributi on of 9

The size-frequ ll distributi. both, tliving and dead assemblages peaked betweenon and 15 mm of sheon oflength (Fig 3), indicating to tha post-mortem processes er such as transportati or t and redistributiay ot e empty onshells Conusin surrounding habitats of by wat movementat hermid crabs m n b influential f the reefdistribution lat patternsal different edhabit of etypes arount Dahab. The livingh an assemblagese t een o the f ande subtidC. parvatussand consist C. tessulatusth. smalles ospecimens, whic c b bes s in abundanc ofed t hnand 8) Thisenis als hnconsistent with findings from previous studies carri ou by Ko (196 and Levith dal& Ko (1980). Theyk ofboth stated, that the generallyallystrong plerwater movementtat pe associatedht e wit ti benches the and a lace of Conusrefuges in this m topographicht ld t e alsosim for s habi sa ty mige refugeb factors are influencingrtually ot p body siz a . Thisat ig hoens ruan urrow ubtidalto e nd, wher. s vi ally n e resent, only inal way th tatspecim ct, b in th substrate The topographicd a mor complexr subtid reef habi in contras provides shelter from predators an is to much lesse extent 16 ed o water . e, t an e , that ey expos t movement d Furthermor Conusi c b hypothesized are ore pr t onorganisms the of allarger, where food s and of r is larg mostly molluscivorous an piscivorous species m abundan subtid reef upply quantity efuges usually er.

t ab

Hermit cr occupation are to e for ar f e, ape the apertureHermi crabs and thicknessknown and somehav preferencesspecies have evenparticul specializedshells onin inhabitingterms o sizlong,sh narrowof apertures such as those of Conus (Briffa Mowles 2007; Vermeij Although several studies reported that hermit crabs rarely use& empty Conus shells, the 1978).availability of particular size ranges for hermit crabs is likely to be determining for selection (Reese 1968, 1969; Mitchell 1975; & B war .

Reddy ises 1993) ency on and t Asedthe present results rrelatedshowed, size-frequ pe akeddistributi of 9the dead 15 the of hermill crab- inhabit assemblage, cot in sha andt pe C.between parvatus C.and taeniatusmm she C. miliarislength. Consequentlywere the the most dominant andedsmalles shellst ( , , ally on the andreef at ), the onesemos of frequently Conusoccupi by hermi crabsepreferenti e that fl twhere abundancon emptyd the shells was high. of Thes resultsod indicat h hermi Conus crab distributie is thatinfluence by availabilityl emptye to gastropr al shells suc as o as a resourc and72; thise supply pightis wel utilized oddu et thei 1979;gener a etrarity (Provenzan 1960;ely, Childressd e 19 Vancd t 1972; S 1977; Elwo the al. al wereGarci ot al. 2001 to the). Convers e it shoul b pointe that ou that empty shellsre from subtide for t n utilizedthan the reefsam , extent, suggesting conditionsatthere we less favorabl It anhermi crabse e onuded thatflat where nutrient- andal microhabit availability the islablebetter. c etherefor of h b ellconcl favorablee environmenton of econditions Conusand avai her t size rang eac sh species determin the colonizati mpty shells by mi crabs.

17

CONCLUSION f udy ed at Conus d ea und ab is lowerThe results o thiserst show f e th tdiversity in theon. Northern otRe S aro , Dah thant e in othh partse ofo th Indo-Wes Pacifica regi the Thist ist nConussurprising taking into accounllyth hig latitud the the. sampling a totalare of 4and fac thated, e diversitye decreasesely graduadead away frome, tropics From 1 speciesoncollec of fiv wer exclusive efound pledand onlyatonc indicating d that a considerablee,fracti e the of total assemblag is rar tin all sam habit oft typestrataaroun upportDahab. Furthermort Conus th results e the present or studye sugges that hard- and s subsht e: s differen species. Possibltat factors, f e thes variations in habitat use mige b the distribution of of favorable ey microhabi patches oralth degree undof physical , stress er,and th e availabilityot refugesle and pr organisms. Subtidal ofc reefs aro Dahab. howev wer nf distinguishab tat pe from any other habitat in terms speciesan composition The heterogeneityfor Conuso this habi ty with different microhabitats offorms Conus environmenth suitable different dal species f the and thus supportst the ebiodiversity three t suct as already C. parvatusknown, fromC. taeniatussubti reefs C. tessulatuso Indo-Wes were Pacific. Th tedmos r abundan80 % of speciese C. parvatusand rd vermivorsa and C.accoun tessulatusfo th a livingh assemblage withoft dominatinge ha substrat and d oft supportingata are erallyhig abundanceed on sdifferentsubstrata. ConusThes speciesfindings accordingsuggest to theirthat hard-feedingan ecologys substr and availabilitygen of refugesdominat and thatby small vermivors must possess over molluscivors and piscivors. The size frequency of the living,a clear dead advantage and hermit crab-occupied assemblage is of similar shape and distributionspeaked between 9 and 15 mm of shell It can therefore be concluded that this similarity indicates a rather negligible impact of length.postmortem processes on the distribution of Conus around Dahab and that hermit crabs which most frequently occupied the dominant Conus species on reef flats, tend to fully utilize their limiting resources.

18 ACKNOWLEDGEMENTS

I or . . Dr. rtin or onal upport

thank mye supervis Univ theProf. Mag of Ma Zuschin. I wouldf professike to s and constructivon criticism to . during or progress ld thisk work . li er express al my specialut appreciati S Raus I fld aidingo kewith fie wor. and llnerF Scharhaus or forallycritic inp and fruitf Conusul discussions. on wou forals li to thankal Hut.Breitenfe on, af profession o photographingo the ed my collectial terand his technic inp In additi thankallyyou als t ltonR Sea Environmentr for Cen rand Sinai Diverse Backpackers e in Dahab eespe cih to MScedN. Mir. and T. clo t d e the g t and t for b my e b up l Furle sharing thei knowledg with m and supplying m wit compress ai My family and ses friends eserv reates thanks respec eing all-tim ack- ight.

19 Figure 1. ng g or S : ogleMap of Gulf of Aqaba and the area aro und Dahab showi positions of all samplin stations at which samples were taken. F GP coordinates see text. (Maps Go Earth).

Figure 2. 1 m x 1 m sampling quadrat at a marked point on a line transect.

20 8 0 A

] 7 80 0

6 Conids 70 0 f o

5 60 0

y

c

n

e

u

q 4 number

e

r

50F 0

total 3 40 0 y [

2 30 0

1 Frequenc 20 0

0 10 0 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 0 0 0 10 20 30 40 50 60 70 80 90

] B 60 Conids g

livin 50 f o

40

number

30

total y [ 20

Frequenc 10

0 0 10 20 30 40 50 60 70 80 90

] C 60

Conids d 50 dea

f o

40

number

30

total y [ 20

Frequenc 10

0 0 10 20 30 40 50 60 70 80 90 Size [mm] C. parvatus sharmiensis C. maldivus C. rattus C. taeniatus C. nigropunctatus C. textile C. tessulatus C. nussatella C. geographus C. miliaris C. pennaceus C. striatus C. flavidus C. arenatus

Figure 3. ns or r r ng r 21 Size frequency distributio f the total numbe of Conids (A) with total assemblage dead assemblage, total numbe of livi Conids (B) and total numbe of dead Conids (C).

A B 48 48 = 120 = 42 41 Reef flat 41 Reef flat n 2 n 2 34 20 m 34 20 m

18 18

15 15

12 12

9 9

6 6

3 3 0 C 0 D = 15 = 5 Subtidal reef0 m Subtidal reef0 m n 2 n 2 7 18 7 18

6 6

5 uals] 5

4 4 individuals]

individ

3 3

dead living 2

2 of of

1 1 0 E 0 F

= 24 umber = 19 number Subtidal .25sand Subtidal .25sand n n y [ 7 2 y [n 7 2 11 m 11 m 6 6

5 5 Frequenc Frequenc 4 4

3 3

2 2 1 1 0 G ow 0 H ow = 7, .5 = 2, .5 Seagrass mead2 Seagrass mead2 7 (n 22 m ) 7 (n 22 m ) = 4, ) = 1, ) 6 Intertidal sand2 6 Intertidal sand2 (n 11.25 m (n 11.25 m 5 5

4 4

3 3

2 2

1 1 0 0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Size [mm] Size [mm] Figure 4. ns or Conus g

ows Size frequency distributio f the 14 rnsspecies G per habitat. Sizesnt plotted for livin (A -G) and dead (B-H) individuals. Reef flats (A -B), subtidal or coral reefs (C - D), subtidal sand (E -F), seagrass mead and intertidal sand (G-H). Cross-hatched patte in and H represe intertidal sand. Note the numerical dominance of the smallest size classes. F legend see Fig. 3.

22 A

50

40

30

20

10 Sand patches

Bare limestone Frequency [no. of living ] ofliving [no. Frequency Thin layer of sand on limestone 0 Algal-bound sand on limestone Algae on limestone C. parvatus (87) C. taeniatus (19) C. flavidusC. miliaris (9) (4) C. arenatusssulatus (0) C. nigropunctatusC. te (1) C. pennaceus C. arenatus aequipunctatusC. quasimagnificus C.(0) nussatella (0) (0)

B

50

40

30

20

10 Sand patches

Bare limestone Frequency [no. of dead Conidae] ofdead [no. Frequency Thin layer of sand on limestone 0 Algal-bound sand on limestone Algae on limestone C. parvatus (19) C. taeniatus (10) C. flavidusC. miliaris (2) (7) C. arenatus C. nigropunctatusC. tessulatus (0) (1) a (1) C. pennaceus C. arenatus aequipunctatusC. quasimagnificus C.(1) nussatell (1)

Figure 5 bitat . ns g r nt . Microha occupation on the reef flat of the location ‘The Islands’ Vertical colum indicate the number of livin (A) and dead (B) individuals pe species found on differe substrates of the reef flat. Numbers in brackets denote sample sizes.

23 A

5

4

3

2

1 Sand patches Cracks in rock Coral rubble Frequency [no. of living Conidae] ofliving [no. Frequency 0 Bare rock Living coral C. tessulatus (1) Dead coral C. miliarisC. flavidus (1) (3) C. maldivusC. taeniatus (2) C. parvatusC. generalis sharmiensis maldivus (7)C. arenatus(1) C. geographusC. striatus (0) (0) C. arenatus aequipunctatus (0)

B

5

4

3

2

1 Sand patches Cracks in rock

Coral rubble Frequency [no. of dead Conidae] ofdead [no. Frequency 0 Bare rock Living coral C. tessulatus (0) Dead coral C. miliarisC. flavidus (0) (0) C. maldivus C. taeniatus (0) C. parvatusC. generalis sharmiensis maldivus (2)C. arenatus(0) C. geographusC. striatus (1) (1) C. arenatus aequipunctatus (1)

Figure 6. bitat n ns r g ) rring g ns Microha occupatio on subtidal reefs. Vertical colum indicate the numbe of livin (A) and dead (B individuals of each species occu on each microhabitat type at the four samplin statio listed in Table 2. Numbers in brackets denote sample sizes.

24 6 6 A B

4 4 Species Count Species Count 2 2

0 0 0 50 100 150 0 200 5 10 15 20 Samples Samples 6 6 C D

4 4 Species Count Species Count 2 2

0 0 0 10 20 30 40 50 0 20 40 60 80 100 Samples Samples 6 E Figure 7. ng r n n r 4 A. Cumulative B. curves sC.howi the numbe D. of samples (grids) E.take o the x -axis and the numbe of found species on the y-axis. Subtidal reef Reef flat Subtidal sand Seagrass meadow Intertidal sand Species Count 2

0 0 10 20 30 40 50 Samples

25 Shell length [mm] Shell length [mm] 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 0 C A

N

= 16 5 m

N N = 20 4 - 6m 10 m = 2

N N = 4 8 - 9m 15 m = 2

N N = 16 4 - 6m 5 m = 3

N

8 - 9m = 3 10 m

N

15 m = 3

Shell length [mm] 10 20 30 40 50 60 70 80 90 (square) Living Sea types. ha bitat assemblage nt differe three assemblage for depths 8 Figure range interquartile included. are the specimens Unidentifiable 3x + extreme outliers (asterisk) quartile r uppe the quartile +1.5x the but interquartilerange smaller than B meadows. grass

r than definedgreate values are the as upper . nt differe at lengths shell of Comparison N s s

shown = 3 shown onthe right. 3 - 4m

N = 3 to the

C. 5 - 6m

outliers Mild Sand. Subtidal

left lie beyond that upper

of the line dashed N = 2

A. 3 - 4m

reefs. Subtidal

5 - 6m 26 , dead

limit B. . ,

2D Stress: 0,04 A

2D Stress: 0,03 B

2D Stress: 0,06 C

Living/Dead Living Dead

dal dal Seagrassdal meadow Seagrassdal meadow Subti sand Subti sand Subti reefl s Subti reefl s Reef flat Reef flat Intertida and Intertida and Figure 9. Conus A. ot g Conus

Ordination of n abundance. nMDS pl B. of livinS ot assemblage s from 27 transects at 11 sites C.. DistancesS ot betweenng points ng correspond to dissimilarities i Conus taxonomic composition. nMD pl of deadwo assemblages o from ow16 transectsr at 9 sites.n nMD plg displayir livi (black) and dead (transparent) assemblages from 31 transects. The t groups d not sh clea separat io indicatin a rathe similar 27 composition. 30

30 25 Conids] 25 20 dead

of r

y

20 c

n

e

u

q

15 e

r F numbe

15 10

[total

10 5

Frequency 5

0 10 20 30 40 50 60 70 80 90

0

0 10 20 30 40 50 60 70 80 90 Size [mm] Figure 10. n g o ite nt nt y it Size. frequency distributio of dead c onids, includin shells that could not be identified t species level. Wh bars represe the total dead assemblage whereas black bars represe empt shells occupied by herm crabs

28 Tablele 1. Overview the five Conus

of habitat types. r r Sampling g Habitat & No. of Sampled2 Numbe of transects pe Coordinates location transects area [m ] samplin depth [m] Subtidal reef y x , x , x N x , x , x Mora Garden 9 45 3 5 3 x10 , 3 x 15 28°26.262’ 34°27.534' E Islands South 9 45 3 x 5, 3 x 10, 3 x 15 28°28.655' N 34°30.731' E ReeAbuf flatHelal 6 30 3 5 3 10 28°32.542' N 34°30.998' E Lighthouse 9 45 3 5 3 10 3 <15 1 28°29.944‘ N 34°31.182‘ E Subtidal sand The Islands 4 20 28°28.655' N 34°30.731' E n CoralyGarden 3 3.75 5, 8, 9 28°33.294' N 34°31.257' E SeagrassGolde Blocksmeadow 3 3.75 4, 5, 4 28°26.342' N 34°27.812' E Mora Garden 3 3.75 6, 5, 5 28°26.262’ 34°27.534' E

Bannerfish Bay 6 7.5 4, 3, 4, 9, 8, 8 28°29.934' N 34°31.125' E IntertidalMashraba sand 6 7.5 8, 7, 6, 7, 3, 3 28°29.712' N 34°31.021' E Lighthouseb 6 7.5 5, 6, 7, 4, 5,< 14 28°29.944' N 34°31.182' E

Daha Lagoon 9 11.25 28°28.593' N 34°30.391' E

29 Table 2. ic MG y S n G y, Bas data on sampling locations. = Mora Garden, I = The Islands, AH = Abu Helal, LH = Lighthouse, GBTransect= Golde LocationBlocks, C Depth= Coral HabitatGarden, typeBB = Bannerfish Ba NumberMS = Mashraba. of species Population density [m] g [ d [ 2 2 Livin perd.m ] Dea per d.m ] Live Dead Mean St Dev Mean St Dev dal l

1 MG 5 Subtidal reef (Coral carpet) 1 0 0.2 0.4 0 0 2 MG 5 Subtidal reef (Coral carpet) 0 1 0 0 0.2 0. 4 3 MG 5 Subtidal reef (Coral carpet) 0 1 0.2 0.4 0 0 4 MG 10 Subtidal reef (Coral carpet) 1 0 0.2 0.4 0 0 5 MG 10 Subtidal reef (Coral carpet) 0 0 0 0 0 0 6 MG 10 Subtidal reef (Coral carpet) 0 0 0 0 0 0 7 MG 15 Subtidal reef (Coral carpet) 0 1 0 0 0.2 0.4 8 MG 15 Subtidal reef (Coral carpet) 1 0 0.2 0.4 0 0 9 MG 15 Subtidal reef (Cora carpet) 0 0 0 0 0 0 10 IS 5 Subtidal reef (Reef slope) 1 1 0.2 0.4 0.2 0.4 11 IS 5 Subtidal reef (Reef slope) 2 0 0.4 0.9 0 0 12 IS 5 Subtidal reef (Reefhslope) 0 0 0 0 0 0 13 IS 10 Subtidal reef (Patch reef) 0 0 0 0 0 0 14 IS 10 Subtidal reef (Patch reef) 0 0 0 0 0 0 15 IS 10 Subtidal reef (Patch reef) 0 0 0 0 0 0 16 IS 15 Subtidal reef (Patch reef) 1 0 0.2 0.4 0 0 17 IS 15 Subtidal reef (Patch reef) 0 0 0 0 0 0 18 IS 15 Subtidal reef (Patc l reef) 0 1 0.4 0.9 0 0 19 AH 5 Subtidal reef (Coral carpet) 1 0 0.2 0.4 0 0 20 AH 5 Subtidal reef (Coral carpet) 1 0 0.2 0.4 0 0 21 AH 5 Subtidal reef (Coral carpet) 0 0 0 0 0 0 22 AH 10 Subtidal reef (Coral carpet) 0 0 0 0 0 0 23 AH 10 Subtidal reef (Coral carpet) 1 1 0.2 0.4 0.2 0.4 24 AH 10 Subtidal reef (Cora carpet) 0 0 0 0 0 0 25 LH 5 Subtidal reef (Reef slope) 1 0 0.2 0.4 0 0 26 LH 5 Subtidal reef (Reef slope) 3 0 0.7 0.5 0 0 27 LH 5 Subtidal reef (Reeflslope) p 2 0 0.8 0.4 0 0 28 LH 10 Subtidal reef (Coral patches) 0 0 0 0 0 0 29 LH 10 Subtidal reef (Coral patches) 0 0 0 0 0 0 30 LH 10 Subtidal reef (Coral patches) 0 0 0 0 0 0 31 LH 15 Subtidal reef (Coral patches) 0 0 0 0 0 0 32 LH 15 Subtidal reef (Coral patches) 0 0 0 0 0 0 33 LH 15< 1 Subti reef (Cora atches) 0 0 0 0 0 0 34 IS < 1 Reef flat 4 6 4 5.4 4.2 4.7 35 IS < 1 Reef flat 2 5 2.8 1.6 1.8 1.8 36 IS < 1 Reef flat 3 6 4.6 2.1 2.6 1.5 37 IS Reef flatdal 5 3 13.2 5.5 2.0 1.6 38 GB 4 Subtidal sand 3 2 8.0 8.5 3.2 3.3 39 GB 5 Subtidal sand 2 2 2.2 3.2 3.2 4.4 40 GB 4 Subtidal sand 2 3 1.6 2.2 4.8 3.3

41 CG 9 Subtidal sand 1 1 2.4 3.6 0.8 1.8

42 CG 8 Subti sand 1 1 0.8 1.8 1.6 2.2

30 dal

43 CG 5 Subtidal sand 2 1 2.4 3.6 0.8 1.8 44 MG 6 Subtidal sand 0 1 0 0 0.8 1.8 45 MG 5 Subtidal sand 0 0 0 0 0 0 46 MG 5 Subti sand 2 0 1.6 3.6 0 0 47 BB 4 Seagrass meadow 0 1 0.0 0.0 0.6 1.3 48 BB 3 Seagrass meadow 1 1 0.8 1.8 0.8 1.8 49 BB 4 Seagrass meadow 1 0 0.8 1.8 0 0 50 BB 9 Seagrass meadow 0 0 0 0 0 0 51 BB 8 Seagrass meadow 0 0 0 0 0 0 52 BB 8 Seagrass meadow 0 0 0 0 0 0 53 MS 8 Seagrass meadow 0 0 0 0 0 0 54 MS 7 Seagrass meadow 0 0 0 0 0 0 55 MS 6 Seagrass meadow 0 0 0 0 0 0 56 MS 7 Seagrass meadow 0 0 0 0 0 0 57 MS 3 Seagrass meadow 0 0 0 0 0 0 58 MS 3 Seagrass meadow 2 0 1.6 2.2 0 0 59 LH 5 Seagrass meadow 0 0 0 0 0 0 60 LH 6 Seagrass meadow 2 0 1.6 2.2 0 0 61 LH 7 Seagrass meadow 0 0 0 0 0 0 62 LH 4 Seagrass meadow 0 0 0 0 0 0 63 LH 5 Seagrass meadow 1 0 0.8 1.8 0 0 64 LH 4< 0. Seagrasslmeadow s 0 0 0 0 0 0 65 Lagoon < 0.5 Intertidal sand 1 1 1.6 3.6 0.8 1.8 66 Lagoon < 0.5 Intertidal sand 0 0 0 0 0 0 67 Lagoon < 0.5 Intertidal sand 0 0 0 0 0 0 68 Lagoon < 0.5 Intertidal sand 0 0 0 0 0 0 69 Lagoon < 0.5 Intertidal sand 0 0 0 0 0 0 70 Lagoon < 0.5 Intertidal sand 0 0 0 0 0 0 71 Lagoon < 0.5 Intertidal sand 0 0 0 0 0 0 < 0. l s 72 Lagoon 5 Intertida and 0 0 0 0 0 0 73 Lagoon 5 Intertida and 2 2 1.6 2.2 1.6 2.2

31 Table 3. g gy of Conus d d

Species Feedin ecolo the species foun aroun Dahab. g

Conus arenatus Description Feedin mode Conus tessulatus Born, 1778 , Conus parvatus Walls,Hwass 1979 in Burguière, 1792 vermivorous Conus miliaris Hwass in Bruguière, 1792 vermivorous piscivorous Conus pennaceus vermivorous Conus nussatella Linnaeus, 1758 vermivorous Conus rattus HwassBorn, 1778 in Bruguière, 1792 molluscivorous Conus textile Da Motta, 1982 vermivorous Conus nigropunctatus Sowerby II, 1857 vermivorous Conus geographus molluscivorous Conus taeniatus , piscivorous Conus striatus Linnaeus, 1758 piscivorous Conus flavidus Hwass in, Bruguière 1792 vermivorous Conus maldivus Linnaeus, 1758 , piscivorous Lamarck 1810 vermivorous Hwass in Bruguière 1792 vermivorous

Table 4. Conus

species diversity. Living Dead Total

Habitat S N S N S

H‘ H‘ H‘ Reef flat 5 120 0.9 8 42 1.5 9 1.1 Subtidal reef 6 15 1.5 4 5 1.3 9 1.8 Subtidal sand 4 24 0.9 5 19 1.2 6 1.3 Seagrass meadow 3 7 1.0 2 2 --- 3 1.0 SIntertidal = s sand N = s 2 4 0.6 d 1 1 --- 2 0.5 = g pecies number, ample size, H‘= Shannon an Weaver Index (1949) H’ -Σ (pi) (lo pi)

32 Table 4. r g

Average shell lengths of living and dead Conids pe habitat and samplin station.

n n Habitat Living N Dead N Hermit - Mea shell Mea shell crab Subtidal reef length [mm] length [mm] occupied y 17.9 ± 7.1 20 50.3 ± 34.8 6 3

Mora Garden 16.7 ± 7.2 3 57.7 ± 39.7 3 1

Islands South 26.5 ± 7.9 4 22.0 ± 14.1 2 1

Abu Helal 17.3 ± 5.0 4 85.0 1 1 Reef flat

Lighthouse 14.8 ± 4.9 9 ------Subtidal sand 12.5 ± 5.0 120 14.4 ± 5.7 53 46 The Islands

14.3 ± 9.8 24 13.5 ± 9 19 1 n Coral Garden 16.3 ± 12.8 7 10.8 ± 2.2 4 --- y Golde Blocks 13.3 ± 9.4 15 11.8 ± 3.8 14 1 Seagrass meadow Mora Garden 15.0 ± 1.4 2 48.0 1 ---

31.4 ± 21.9 7 20.0 ± 12.7 2 1

Bannerfish Bay 22.0 ± 14.1 2 20.0 ± 12.7 2 1

Mashraba 59.0 ± 22.6 2 ------Intertidal sand

Lighthouseb 19.3 ± 4.2 3 ------42.3 ± 13.6 4 25.0 ± 7.9 3 --- Daha Lagoon

Table 6. M or Conus Significance Actual Number of permuted Living ConidaeANOSI f habitats of living assemblagesR statistic level % permutations statistics ≥ observed R

Subtidal reef , reef flat - 0.248 99.2 999 991

Subtidal reef, subtidal sand 0.317 0.3 999 2

Subtidal reef, seagrass meadow 0.083 15.6 999 155

Subtidal reef, intertidal sand 0.15 8.8 91 8

Reef flat, subtidal sand 0.955 0.3 330 1

Reef flat, seagrass meadow 0.256 8.7 126 11

Reef flat, intertidal sand 1 6.7 15 1

Subtidal sand, seagrass meadow 0.703 0.1 792 1

Subtidal sand, intertidal sand - 0.179 77.8 36 28

Seagrass meadow, intertidal sand 0.636 4.8 21 1 g y oups

Note R-values > 0.5 indicatin clearl separable gr (bold values)

33 Table 7. Conus Significance Actual Number of permuted Dead ConidaeANOSIM for habitats of dead assemblagesR statistic level % permutations statistics ≥ observed R

Subtidal reef , reef flat 0.146 14.3 35 5

Subtidal reef, subtidal sand - 0.29 52.9 495 262

Subtidal reef, seagrass meadow - 0.333 100 5 5

Subtidal reef, intertidal sand 0.036 60 15 9

Reef flat, subtidal sand 0.109 18.8 495 93

Reef flat, seagrass meadow 0.501 20 5 1

Reef flat, intertidal sand 0.964 6.7 15 1

Subtidal sand, seagrass meadow - 0.192 77.8 9 7

Subtidal sand, intertidal sand 0.246 11.1 45 5

Seagrass meadow, intertidal sand 1 33.3 3 1 g y oups

Note R-values > 0.5 indicatin clearl separable gr (bold values)

Table 8. M or Conus g Significance Actual Number of permuted Living versusANOSI deadf Conidae habitats separated intoR livinstatisticand dead assemblages level % permutations statistics ≥ observed R

Total assemblage 0.141 0.6 999 5

Subtidal reef -0.03 57.1 999 570 Reef flat 0.229 20 35 7 Subtidal sand 0.162 5.5 999 54 Seagrass meadow -0.2 83.3 6 5 Intertidal sand 0.75 33.3 3 1

g y oups

Note R-values > 0.5 indicatin clearl separable gr (bold values)

34 Table 9.

Mean shell size (+/- standard deviation) of all species in the studied Habitathabitats . Mean shell Mean shell N N lengthLiving [mm] lengthDead [mm] Subtidal reef C. parvatus 13 13 C. taeniatus C. tessulatus ± 1.8 7 ± 1.4 2 C. miliaris 12.5 ± 0.7 2 C. flavidus 11 1 C. maldivus 24 1 C. arenatus 26.7 ± 1.5 3 C. striatus 35 1 C. geographus 32 1 unidentifiable 82 1 Total 77 1 18.2 ± 5 5 85 1 Reef flat 20 6 C. parvatus 11 C. taeniatus C. miliaris 10.8 ± 1.6 87 ± 1.9 19 C. flavidus 12.627 ± 2.8 19 6.620 ± 3.1 10 C. nigropunctatus 13.5 ± 2.4 4 15.4 ± 6.4 7 C. arenatus ± 5.2 9 ± 4.2 2 C. nussatella 33 1 C. pennaceus 37 1 C. tessulatus 25 1 unidentifiable 12 28 1 Total 14 1 ± 2.1 11 Subtidal sand 120 53 C. parvatus C. arenatus C. maldivus 14 1 12.4 ± 4.1 9 C. tessulatus 8.7 ± 3.1 3 8 2 C. rattus 30.3 ± 3.2 3 C. textile 12.5 ± 8.8 17 11.3 ± 2.7 6 Total 12 1 Seagrass meadow 48 1 24 19 C. parvatus C. arenatus 33 C. textile 15.3 ± 3 3 11 1 ± 9.5 3 29 1 75 1 Intertidal sand Total 7 2 C. tessulatus C. maldivus unidentifiable 41.3 ± 16.6 3 28 19 1 45 1 ± 8.5 2 Total 4 3

35 36 Supplementary Figure 2. C. tessulatus (left) and C. arenatus (right) on the tidal flat.

37

REFERENCES Vindobonae, ex officina Krausiana. p. 131. Born, I. von, (1778). Index Rerum Naturalium Musei Caesarei Vindobonensis. Pars Prima, Testacea.

Ecological monographs, 27 Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Briffa, M., & Mowles, S. L. (2008).(4), Hermit 325-349. crabs. Current Biology, 18(4), R144-R146.

Beesley, P. L., Ross, G. J., & Wells, A. (1998). . CSIRO : the southern synthesis. Part A. Fauna of Australia Volume 5 publishing. Ecology, 53

Clarke,Childress, K. J.R.R., &(1972). Warwick, Behavioral R. M. (1994). ecology Similarity-based and fitness theory testing in a tropical for community hermit crab. pattern: the , 960-964. way layout with no replication. Marine Biology, 118(1), 76. two-way 167-1 Publicações Ocasionais da Sociedade Portuguesa de Malacologia, 1, Da Motta, A. J. (1982). Seventeen new cone shell names (: Conidae). 1-20.

Clarke,Duda, T. K. F., R., Kohn, & Gorley, A. J., R.& Palumbi,N. (2001). S. Primer. R. (2001). Primer-e Origins Ltd., of diversePlymouth, feeding UK. ecologies within Conus, gastropods. Biological Journal of the Linnean Society 73 ), 391-409. a genus Elwood,of venomous R.W., McLean, marine A., and Webb, L. (1979). The development of shell preferences, (4 by crab Pagurus bernhardus. Behavior, the hermit Fainzilber, M., Mienis, H. K., & Heller, J. (1992).27, 940–946. The Conidae (Mollusca, Gastropoda) of the waters of the east coast of Sinai, Gulf of Elat, northern Red Argamon, Israel Journal of Malacology 14, shallow Sea. Fishelson, L. (1973)., Ecological1-16. and biological phenomena influencing coral-species reef tables at Eilat (Gulf of Aqaba, Red Marine Biology, 19(3), 183-196. composition on the Fishelson, L. (1995). Eilat (Gulf of Aqaba) LittoralSea). Life on the Red Line of Biodegradation. Israel Journal of Zoology, 41 - , 43-55.

Fleming, J. (1822). The philosophy of zoology, a general view of the structure, functions and classification Friedman, of 2. (1968). Constable Geology & Co., andEdinburgh, geochemistry p. 490. reefs, carbonate sediments and waters, Aqaba (Elat, Red Sea). J Sediment Petrol, 38 G. M. of Gulf of Garcia, R., and Mantelatto, F. 2001. Shell selection, 895– by91 the3. tropical hermit crab Calcinus tibicen 1791) (Anomura, Diogenidae) from Southern Brazil. Journal of Experimental Marine Biology and (Herbst, Ecology, 265,

Hammer, Ø., Harper, 1–14. D. A. T., & Ryan, P. D. (2001). PAST-Palaeontological statistics. Palaeontol. Electronica, 4, software package for Hopley, education D. (2011). and data Encyclopedia analysis. of Modern Coral Reefs: 9. structure, form and process. Encyclopedia of Earth Sciences. Springer, Dordrecht, The Netherlands. ISBN Bolchon p. 476. 978-90-481-2639-2

Hwass, C. H. (1792). Cone, in: Bruguière, J. G., Encyclopédie Méthodique. Histoire Naturelle des Vers, 1: Klinker, 586 J.,-757, Reiss, Panckoucke, Z., Kropach, Paris. C., Levanon, I., Harpaz, H., & Shapiro, Y. (1978). Nutrients biomass distribution in the Gulf of Aqaba (Elat), Red Sea. Marine Biology 45(1), 53 and Kohn, A. J. (1959). The ecology of Conus in Ecological Monographs, , -64. 38 Hawaii. 29, 47-90. Conus

Kohn, A. J. (1964). Israel South Red Sea Expedition,Sea Fisheries 1962, Research Report Station no. 11. Bulletin, (Mollusca, 38, Gastropoda) collected by the Israel South Red Sea expedition, 1962, with notes on collections from the Gulf Kohn, A.of J.Aqaba (1967). and Environmental the Sinai peninsula. Complexity and Species Diversity in the Gastropod54-59. s Conus American Naturalist, 101, Genu on Kohn, A.Indo-West J. (1968). PacificMicrohabitats, Reef Platforms. Abundance and Food of Conus on 251–259. Atoll Reefs in the Chagos Ecology, 49, Maldives and Kohn, A. J. (1981).Islands. Abundance, Diversity, 1046-1062. and Resource Use in an Assemblage of Conus Pacific Science, 34 , 359–369 Species, Kohn, A. J. (4)Microhabitat. factors affecting abundance and diversity of Conus on coral Oecologia, 60 , (1983). reefs. (3) 293–301. Malacologia, 32

Kohn, A. J. (1990).(1998). TempoSuperfamily and mode of evolution in Conidae. (1), 55-67.

Kohn, A. J. (2001). Maximal speciesConoidea. richnessMollusca: in Conus Southern : diversity, Synthesis. diet Fauna and habitatof Australia, on reefs 5, 846-854. of northeast Papua New Coral Reefs, 20 , Kohn, Kohn, A. J., Leviten, P. J. (1976).Guinea. Effect of Habitat Complexity(1) 25-38. on Population Density and Species Richness in Tropical Intertidal Predatory Oecologia (Berl.), 25

Gastropod Assemblages. (3), Kohn, A. 199-210. J., & Perron, F. E. Conus.

(1994). Life history and biogeography: patterns in Clarendon Kohn, A. PressJ., Nishi,, Oxford M., &. Pernet, B. (1999). Snail spears and scimitars: a character analysis of Conus radular teeth. Journal of Molluscan Studies 65(4), 461

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks, in criterion-481. variance Journal of the American statistical Association 47(260), 583 one- analysis. , -621. method. Psychometrika, 29

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical (2), 115-129. Annales du Muséum d'Histoire Naturelle, Paris, 15, Lamarck, J. B. P. (1810). Sur la determination des especes. 1-442. Ecological Monographs, 50, Leviten, P. J., Kohn, A. J., (1980). Microhabitat Resource Use, Activity Patterns, and Episodic Catastrophe : Conus on Tropical Intertidal Reef Rock Benches. 55-75. Lightfoot, J. (1786). A Catalogue of the Portland Museum, Lately the Property of the Duchess Dowager of Portland, Deceased; Which will be sold by Auction by Mr. Skinner and Co. on Monday 24th of April 1786 and the thirty-seven following days at twelve o´clock, London, 194 pp. Editio decima, reformata. Tomus I. Holmiae, Linnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Impensis Direct. Laurentii Salvii, 824 p. Coral health and disease. Loya, Y. (2004) The Coral Reefs of Eilat – Past, Present and Future: Three Decades of Coral Community Structure Studies. In: Rosenberg, E., & Loya, Y. (Eds.) Mann, Springer-VerlagH. B., & Whitney, Berlin, D. R.p. 1-29.(1947). On a test of whether one of two random variables is stochastically larger than the other. The annals of mathematical statistics, 18,

Mitchell, K. A. (1975). An analysis of shell occupation by two sympatric species of hermit50-60. crab. I. Ecological factors. The Biological Bulletin 149(1), 39 , 205-213. Monteiro, A., Tenorio, M. J., & Poppe, G. T. (2004). The Family Conidae: The West African and Mediterranean Species of Conus. A Conchological Iconography. ConchBooks, Hackenheim, Germany

Peters, H., O'Leary,. B. C., Hawkins, J. P., Carpenter, K. E., & Roberts, C. M. (2013). Conus: First comprehensive conservation Red List assessment of a marine gastropod mollusc PloS one 8(12), e83353. genus. Piller, W., E., Pervesler, P. (1989). The northern Bay of Safaga (Red Sea, an actuopaleontological approach. I. Topography and bottom facies. Beiträge zur Paläontologie Egypt): Österreichs, 15

Provenzano Jr, A. J. (1960)., 103-147. Notes on Bermuda hermit crabs (Crustacea; Bulletin of Marine Science 10(1), Anomura). Puillandre, N., Kantor,, Y. I., Sysoev,117-124. A., Couloux, A., Meyer, C., Rawlings, T., & Bouchet, P. (2011). dragon tamed? A molecular phylogeny of the Journal of Molluscan The Studies 77(3), (Gastropoda). , 259-272.

Quoy, J.R. & Gaimard, J.P. 1834. Voyage de Découvertes de l'Astrolabe exécuté par Ordre du Roi, Pendant les Années 1826-1829. Paris : J. Tastu Zoologie Vol. 3 Reddy, T., & Biseswar, R. (1993). Patterns of shell utilization in two sympatric species of hermit from the Natal coast (Decapoda, Anomura, Crustaceana 65(1), crabs Reese, E. S. (1968). Annual breeding seasons of threeDiogenidae). sympatric species of, tropical13- intertidal 24. crabs, with a discussion of factors controlling breeding. Journal of Experimental Marine Biology hermit and Ecology 2(3),

Reese, E. S. (1969)., Behavioral308-318. Adaptations of Intertidal Hermit Crabs. American Zoologist 9(2),

Reiss, Z., Hottinger, L. (1984). . Springer, , 343-355 Heidelberg New York. The Gulf of Aqaba. Ecological Micropaleontology Berlin

ckel, D., Korn, W., & Kohn, A. J. (1995). Manual of the living Conidae (Vol. 1). Wiesbaden, Christa Rö Germany: Verlag Villaume,Hemmen. M. L. (2008). Seashells of the Egyptian Red Sea: The illustrated

Rusmore- handbook. The Shannon, American C. E. (1948). University A mathematical in Cairo Press, theory Cairo. of Bell System Tech. Journal, 27,

Shapiro, S. S., & Wilk, M. B. (1965). An analysiscommunication. of variance test for normality (complete 379-423 Biometrika,

samples). 52, 591-611.

Sheppard, C. R. C., Price, A. R. G., Roberts, C. M. (1992). Marine ecology of the Arabian region: patterns and processes in extreme tropical environments. Academic Press, London.

Sowerby, G.B., II. (1857-1858). Monograph of the genus Conus. In: G.B. Sowerby II (ed.), Thesaurus Conchyliorum, vol. 3(17): 1-24, pls. 187-195 [1-9](1857); 3(18): 25-56, pl. 196-210 [10-24] (1858). London, privately published. The Biological Bulletin, 152 Spight, T. M. (1977). Availability and use of shells by intertidal hermit crabs. (1), 120-133.

40 Biometrika, 6

Student, (1908). The probable error of a mean. , 1-25.

Journal of Natural History, 18, Taylor, P., Taylor, J. D., & Reid, D. G. (1984). The abundance and trophic classification of molluscs upon coral reefs in the Sudanese Red Sea, 37–41. Bulletin of the Natural History Museum. Zoology Taylor, J. D., Kantor, Y. I., & Sysoev, A. V. (1993). Foregut anatomy, feeding mechanisms, series 59 relationships and classification of the Conoidea. Usiel, Y. (1968)., (2), 125-17 Sea level0. at Ashdod and Eilat: differences between prediction and Israel Journal of Earth Sciences 17,

Vance, R.observation. R. (1972). Competition and Mechanism of, Coexistence-1137 51. in Three Sympatric of Crabs. Ecology, 53 Intertidal Hermit Vermeij, G. J. (1978). Biogeography(6), 1062-1074. and adaptation: patterns of marine life. Harvard

University Press, Yates, F.Cambridge. (1934). Contingency tables involving small numbers and the χ 2 test.Supplement to the Journal of the Royal Statistical Society, 1, 217

-235.

Journal of biogeography, 32 Vallejo, B. (2005). Inferring the mode of speciation in Indo-West Pacific Conus (Gastropoda: Conidae). (8), 1429-1439. The Pariah, 5,

Zuschin,Walls, J. G. M., (1979). Hohenegger, Three new J., & IndianSteininger, Ocean F. cones F. (2000). (Mollusca: A comparison Conidae). of living and dead1 -6. molluscs coral reef associated hard substrata in the northern Red Sea — implications for the foss on Palaeogeography, Palaeoclimatology, Palaeoecology,159, il record. Zuschin, M., Hohenegger, J., & Steininger, F. F. (2001). Molluscan 167–190. assemblages on coral reefs and associated hard substrata in the northern Red Sea. Coral Reefs 20(2), 107–116.

, Zuschin,doi:10.1007/s003380100140. M., & Stachowitsch, M. (2007). The distribution of molluscan assemblages and their postmortem fate on coral reefs in the Gulf of Aqaba (northern Red Sea). Marine Biology 151(6), 2217–2230. doi:10.1007/s00227 , -007-0656-6. Facies, 61 Zuschin, M., & Ebner, C. (2015). Actuopaleontological characterization and molluscan biodiversity of a protected tidal flat and shallow subtidal at the northern Red Sea. (2), 1-13.

41 Sarah Zauner, BSc Curriculum vitae

: e & e of b h: 6 Dec er 1984 n Nationality Austria Dat plac irt 0 emb i Wels

University Education

2007-2012 Bachelor program in Biology with specialization in Ecology (University of

2012-2015 Master in Ecology with main focüs Marine science University of Vienna)

on ( Vienna)

Research activities

03/2015 al C e i M EM) at e ll h Practic(CI U ours n ofS ubmicroscopic Anatomy and Preparatory Techniques in Electron Microscopy (SE , T The Cor Facility Ce Imaging and Ultrastructure Researc 11/2014 US),al niversitye Vienna l e F. P L , U of V Practic Cours in fluorescence- and confoca microscopy including imag processing, 06/2014 Max Rerutz aboratoriesh P t Eniversity in the Briennaht Lab of Zoothamnium niveum t of an , USpecific esearc of V rojec in cology ig - Sequencing bacterial ectosymbionts (Departmen Oceanography d Limnology 05/2014 niversityc ienna)l c y lab

12/2013 Aquatile IsMicrobiaopes in E ology lab course

Stab ot Ecolog course

42 09/10 2013 Master sampling at the Red Sea Environmental Centre (RSEC) in Dahab, Egypt: astropod enüs Conus Dahab thesis Northern Red Sea)' 'Diversity, habitats & size-frequency distribution of the g g at 09/10 2013 eef (Gulf of Aqaba,g t at t e Red Sea En al e C) ab,

07/2013 RAdvancedMonitorin MarineProjec Ecologicalh Field Coürsevironment at the MarineCentr (RSE BiologyDah Station,Egypt Piran, Slovenia. Research topic: 'The Symbiosis of Zoothamnium niveum – reinfection and host settlement'

07/2013 e B al F eld e a a a of m e , er R R , a Marin iologic i Cours – Faun nd flor arin habitats Cent for Marine 08/09 2012 esearch,t ovinj Croation of ea in P t A ed e on F e, T Projec study - Protecti S Turtles Turkey: rojec in ppli Natur Conservati in ethiy urkey

Languages

German - e English - Bulgarian t Spanish French Italian

nativ fluent - fluen - basic - basic - basic

43