text file Click here to access/download;text file;Tarlati et al. SJG_submission - Title_Authors_Abstract.docx 1 Sedimentological and microfaunal evidence for final 2 deglaciation of the Malin Sea through meltwater release 3 and calving events 4 Abbreviated title: Malin Sea shelf final deglaciation 5 6 Serena Tarlati*1, S. Benetti1, S.L. Callard2, C. Ó Cofaigh2, P. Dunlop1, A. Georgiopoulou3, R. 7 Edwards4, K.J.J. Van Landeghem5, M. Saher5, R. Chiverrell6, D. Fabel7, S. Moreton8, S. Morgan9, 8 C.D. Clark10 9 10 1 School of Geography and Environmental Sciences, Ulster University, Coleraine, UK 11 2 Department of Geography, Durham University, UK 12 3UCD School of Earth Sciences, University College Dublin, Ireland 13 4School of Natural Sciences, Trinity College Dublin, Ireland 14 5School of Ocean Science, Bangor University, UK 15 6School of Environmental Sciences, University of Liverpool, UK 16 7Scottish Universities Environmental Research Centre, UK 17 8Natural Environment Research Council, Radiocarbon Facility, East Kilbride, UK 18 9University of Leicester, UK 19 10Department of Geography, University of Sheffield, UK 20 *
[email protected] 21 22 Abstract (199 words) 23 During the last glacial maximum, the British-Irish Ice Sheet (BIIS) extended to the shelf edge in the 24 Malin Sea between Ireland and Scotland, delivering sediments to the Donegal Barra Fan (DBF). The 25 analysis of well-preserved, glacially-derived sediment in the DBF provides new insights on the 26 character of the BIIS final deglaciation and on paleoenvironmental conditions at the Younger Dryas 27 (YD). Chaotic/laminated muds, ice-rafted debris (IRD)-rich layers and laminated sand-mud couplets 28 are interpreted as mass transport deposits, plumites and turbidites from BIIS-transported sediments.