Solar Works for Oregon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2011 Indiana Renewable Energy Resources Study
September 2011 2011 Indiana Renewable Energy Resources Study Prepared for: Indiana Utility Regulatory Commission and Regulatory Flexibility Committee of the Indiana General Assembly Indianapolis, Indiana State Utility Forecasting Group | Energy Center at Discovery Park | Purdue University | West Lafayette, Indiana 2011 INDIANA RENEWABLE ENERGY RESOURCES STUDY State Utility Forecasting Group Energy Center Purdue University West Lafayette, Indiana David Nderitu Tianyun Ji Benjamin Allen Douglas Gotham Paul Preckel Darla Mize Forrest Holland Marco Velastegui Tim Phillips September 2011 2011 Indiana Renewable Energy Resources Study - State Utility Forecasting Group 2011 Indiana Renewable Energy Resources Study - State Utility Forecasting Group Table of Contents List of Figures .................................................................................................................... iii List of Tables ...................................................................................................................... v Acronyms and Abbreviations ............................................................................................ vi Foreword ............................................................................................................................ ix 1. Overview ............................................................................................................... 1 1.1 Trends in renewable energy consumption in the United States ................ 1 1.2 Trends in renewable energy consumption in Indiana -
2015-17 Biennial Energy Plan
2015-17 2015-17 STATE OF OREGON BIENNIAL ENERGY PLAN Oregon Department of Energy 625 Marion Street N.E. Salem, Oregon 97301 Oregon.gov/energy Oregon Department of Energy 1-800-221-8035 625 Marion Street N.E. 503-378-4040 Salem, Oregon 97301 Oregon.gov/energy 1-800-221-8035 503-378-4040 State of Oregon Biennial Energy Plan 2015-17 State of O n Energy lan Oregon Department of Energy 625 Marion St. NE Salem, OR 97301 503-378-4040 or toll-free in Oregon 1-800-221-8035 www.oregon.gov/energy 2 State of Oregon Biennial Energy Plan 2015-17 TABLE OF CONTENTS INTRODUCTION ............................................................................................4 ENERGY MATTERS ........................................................................................6 ENERGY SUPPLY AND DEMAND .................................................................. 11 ENERGY TRENDS AND ISSUES ..................................................................... 29 REDUCING ENERGY COSTS .......................................................................... 40 Appendix A – Energy Glossary ................................................. 47 Appendix B – Energy Legislation .............................................. 54 Appendix C – Final BETC Awards by County ............................. 68 Appendix D – Success Stories ................................................... 75 Appendix E – Government-to-Government Report .................. 77 Appendix F – Oregon’s Electric Utilities ................................... 81 3 State of Oregon Biennial Energy -
Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets. -
Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market
AGENCY/PHOTOGRAPHER ASSOCIATED PRESS ASSOCIATED Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market By Sean Pool and John Dos Passos Coggin June 2013 WWW.AMERICANPROGRESS.ORG Fulfilling the Promise of Concentrating Solar Power Low-Cost Incentives Can Spur Innovation in the Solar Market By Sean Pool and John Dos Passos Coggin May 2013 Contents 1 Introduction and summary 3 6 reasons to support concentrating solar power 5 Concentrating solar power is a proven zero-carbon technology with high growth potential 6 Concentrating solar power can be used for baseload power 7 Concentrating solar power has few impacts on natural resources 8 Concentrating solar power creates jobs Concentrating solar power is low-cost electricity 9 Concentrating solar power is carbon-free electricity on a budget 11 Market and regulatory challenges to innovation and deployment of CSP technology 13 Low-cost policy solutions to reduce risk, promote investment, and drive innovation 14 Existing policy framework 15 Policy reforms to reduce risk and the cost of capital 17 Establish an independent clean energy deployment bank 18 Implement CLEAN contracts or feed-in tariffs Reinstate the Department of Energy’s Loan Guarantee Program 19 Price carbon Policy reforms to streamline regulation and tax treatment 20 Tax reform for capital-intensive clean energy technologies Guarantee transmission-grid connection for solar projects 21 Stabilize and monetize existing tax incentives 22 Further streamline regulatory approval by creating an interagency one-stop shop for solar power 23 Regulatory transparency 24 Conclusion 26 About the authors 27 Endnotes Introduction and summary Concentrating solar power—also known as concentrated solar power, concen- trated solar thermal, and CSP—is a cost-effective way to produce electricity while reducing our dependence on foreign oil, improving domestic energy-price stabil- ity, reducing carbon emissions, cleaning our air, promoting economic growth, and creating jobs. -
CSPV Solar Cells and Modules from China
Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Robert B. Koopman Acting Director of Operations Staff assigned Christopher Cassise, Senior Investigator Andrew David, Industry Analyst Nannette Christ, Economist Samantha Warrington, Economist Charles Yost, Accountant Gracemary Roth-Roffy, Attorney Lemuel Shields, Statistician Jim McClure, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 C O N T E N T S Page Determinations.................................................................. 1 Views of the Commission ......................................................... 3 Separate Views of Commission Charlotte R. Lane ...................................... 31 Part I: Introduction ............................................................ I-1 Background .................................................................. I-1 Organization of report......................................................... -
Design and Experiment of a Sun-Powered Smart Building Envelope with Automatic Control
Energy & Buildings 223 (2020) 110173 Contents lists available at ScienceDirect Energy & Buildings journal homepage: www.elsevier.com/locate/enb Design and experiment of a sun-powered smart building envelope with automatic control Qiliang Lin a, Yanchu Zhang a, Arnaud Van Mieghem b, Yi-Chung Chen c, Nanfang Yu d, Yuan Yang d, ⇑ Huiming Yin a, a Department of Civil Engineering and Engineering Mechanics, Columbia University, United States b Department of Electrical Engineering ESAT, Katholieke Universiteit Leuven, Belgium c Department of Electrical and Computer Engineering, Tennessee State University, United States d Department of Applied Physics and Applied Mathematics, Columbia University, United States article info abstract Article history: A novel sun-powered smart window blind (SPSWB) system has been designed and developed for the Received 26 February 2020 smart control of building envelopes to achieve the optimal internal comfort with minimum energy Revised 15 May 2020 expenditure. Its self-powered sensing, controlling, and actuation significantly simplify the installation Accepted 21 May 2020 and maintenance of the system. The energy is harvested by the attached thin-film photovoltaic cells, after Available online 29 May 2020 which it is voltage-regulated for the permanent storage into a rechargeable battery with 55% energy effi- ciency. The excessive heat absorbed by the solar cells is dissipated by a PVdF-HFP porous coating with Keywords: more than 9% temperature reduction. The smart control of the energy harvesting and the cooling is Smart building envelope achieved based on the blinds’ surface temperature by an Arduino-based sensing, controlling, and actuat- Window blinds Energy harvesting ing system, whose energy consumption is closely monitored. -
ENERGY by the NUMBERS Been Analyzed Toprovide Insights
S Energy by the Numbers focuses on the metrics and data available to track how Oregon produces, purchases, and uses various types of energy. Like the 2018 report, this includes energy use data by resource and by sector with data on electricity, transportation energy, and direct fuel use. Where possible, data showing how Oregon’s energy system has changed over time has been included to provide context and history. New to this report is the energy flow diagram in Oregon, which is a visual summary of how energy is produced, imported, and used. This chart follows each resource through the energy flow. We also discuss energy production — where and what kind of energy Oregon produces, where and how we generate electricity, and what direct use and transportation fuels are produced in state. Oregon is a leading producer of renewable energy and this section explains why and how. Readers will find data on what Oregon spends on energy, how energy costs burden Oregonians differently across the state, and what the energy industry gives back to Oregon in terms of jobs. The section also demonstrates how energy efficiency continues to serve as an important resource for Oregon. It concludes with highlights on the four end use sectors: residential, commercial, industrial, and transportation, including energy use, expenditures, and GHG emissions – and how each sector uses energy to provide goods and services. ENERGY BY THE NUMBER BY ENERGY Trends and What’s New: • Oregon has vast energy efficiency potential, but in the last two years the region hasn’t been meeting the Northwest Power and Conservation Council’s Seventh Power Plan goals for savings in electricity. -
Wild Springs Solar Project Draft Environmental Assessment Pennington County, South Dakota
Wild Springs Solar Project Draft Environmental Assessment Pennington County, South Dakota DOE/EA-2068 April 2021 Table of Contents Introduction and Background ................................................................................... 1 Purpose and Need for WAPA’s Federal Action ...................................................................... 1 Wild Springs Solar’s Purpose and Need .................................................................................. 1 Proposed Action and Alternatives ............................................................................ 2 No Action Alternative .............................................................................................................. 2 Alternatives Considered but Eliminated from Further Study .................................................. 2 Proposed Action ....................................................................................................................... 2 Solar Panels and Racking ................................................................................................3 Electrical Collection System ...........................................................................................4 Inverter/Transformer Skids .............................................................................................4 Access Roads ..................................................................................................................5 Fencing & Cameras .........................................................................................................5 -
Ab307 Application Summary Proposed Project Applicant App
AB307 APPLICATION SUMMARY PROPOSED PROJECT APPLICANT APP. RCVD. TYPE COUNTY SIZE Bordertown to California 120kV NV Energy 6/27/2012 Powerline Washoe 120 kV North Elko Pipeline Prospector Pipeline Comp. 7/11/2012 Nat Gas Pipeline Elko, Eureka Wild Rose ORNI 47 7/17/2012 Geothermal Mineral 30 MW New York Canyon New York Canyon LLC 8/14/2012 Geothermal Persh., Church. 70 MW Mountain View Solar Energy Mountain View Solar LLC 9/24/2012 Solar Clark 20 MW Mahacek to Mt. Hope 230kV Eureka Moly LLC 10/23/2012 Powerline Eureka 230 kV Moapa Solar Energy Center Moapa Solar LLC 11/5/2012 Powerline Clark 230 kV, 500 kV Pahrump Valley Solar Project Abengoa Solar Inc. 11/14/2012 Solar Clark, Nye 225 MW Copper Rays Solar Farm Element Power Solar Dev. LLC 11/26/2012 Solar Nye 180 MW Boulder City Solar Project Techren Solar 1/2/2013 Solar Clark 300 MW Townsite Solar Project KOWEPO America LLC/Skylar Res. LP 1/15/2013 Solar Clark 180 MW Copper Mountain Solar 3 CMS-3 LLC (Sempra Energy) 1/16/2013 Solar Clark 250 MW Crescent Peak Wind Crescent Peak Renewables LLC 1/23/2013 Wind Clark 500 MW Silver State Solar South Silver State Solar Power South LLC 1/23/2013 Solar Clark 350 MW Toquop Power Project Toquop Power Holdings LLC 1/23/2013 Fossil Fuel Lincoln 1,100 MW Hidden Hills 230kV Transmission Valley Electric Transmission Assoc. LLC 1/28/2013 Powerline Nye, Clark 230 kV Boulder Solar Project Boulder Solar Power LLC 1/25/2013 Solar Clark 350 MW ARES Regulation Energy Mgmt. -
Background Report Prepared by Arizona State University NINETY-NINTH ARIZONA TOWN HALL
Arizona’s Energy Future 99th Arizona Town Hall November 6 - 9, 2011 Background Report Prepared by Arizona State University NINETY-NINTH ARIZONA TOWN HALL PREMIER PARTNER CONTRIBUTING PARTNER COLLABORATING PARTNERS SUPPORTING PARTNERS CIVIC PARTNERS CORE Construction Kennedy Partners Ryley, Carlock & Applewhite Sundt Construction One East Camelback, Suite 530, Phoenix, Arizona 85012 Phone: 602.252.9600 Fax: 602.252.6189 Website: www.aztownhall.org Email: [email protected] ARIZONA’S ENERGY FUTURE September 2011 We thank you for making the commitment to participate in the 99th Arizona Town Hall to be held at the Grand Canyon on November 6-9, 2011. You will be discussing and developing consensus with fellow Arizonans on the future of energy in Arizona. An essential element to the success of these consensus-driven discussions is this background report that is provided to all participants before the Town Hall convenes. As they have so often done for past Arizona Town Halls, Arizona State University has prepared a detailed and informative report that will provide a unique and unparalleled resource for your Town Hall panel sessions. Special thanks go to editors Clark Miller and Sharlissa Moore of the Consortium for Science, Policy, and Outcomes at ASU for spearheading this effort and marshaling many talented professionals to write individual chapters. For sharing their wealth of knowledge and professional talents, our thanks go to the many authors who contributed to the report. Our deepest gratitude also goes to University Vice President and Dean of the College of Public Programs for ASU, Debra Friedman, and Director of the School of Public Affairs for ASU, Jonathan Koppell, who made great efforts to ensure that ASU could provide this type of resource to Arizona. -
Planning for the Energy Transition: Solar Photovoltaics in Arizona By
Planning for the Energy Transition: Solar Photovoltaics in Arizona by Debaleena Majumdar A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved November 2018 by the Graduate Supervisory Committee: Martin J. Pasqualetti, Chair David Pijawka Randall Cerveny Meagan Ehlenz ARIZONA STATE UNIVERSITY December 2018 ABSTRACT Arizona’s population has been increasing quickly in recent decades and is expected to rise an additional 40%-80% by 2050. In response, the total annual energy demand would increase by an additional 30-60 TWh (terawatt-hours). Development of solar photovoltaic (PV) can sustainably contribute to meet this growing energy demand. This dissertation focuses on solar PV development at three different spatial planning levels: the state level (state of Arizona); the metropolitan level (Phoenix Metropolitan Statistical Area); and the city level. At the State level, this thesis answers how much suitable land is available for utility-scale PV development and how future land cover changes may affect the availability of this land. Less than two percent of Arizona's land is considered Excellent for PV development, most of which is private or state trust land. If this suitable land is not set-aside, Arizona would then have to depend on less suitable lands, look for multi-purpose land use options and distributed PV deployments to meet its future energy need. At the Metropolitan Level, ‘agrivoltaic’ system development is proposed within Phoenix Metropolitan Statistical Area. The study finds that private agricultural lands in the APS (Arizona Public Service) service territory can generate 3.4 times the current total energy requirements of the MSA. -
Concentrating Solar Power Tower: Latest Status 3 Report and Survey of Development Trends
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 November 2017 doi:10.20944/preprints201710.0027.v2 1 Review 2 Concentrating Solar Power Tower: Latest Status 3 Report and Survey of Development Trends 4 Albert Boretti 1,*, Stefania Castelletto 2 and Sarim Al-Zubaidy 3 5 1 Department of Mechanical and Aerospace Engineering (MAE), Benjamin M. Statler College of 6 Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, United States, 7 [email protected]; [email protected] 8 2 School of Engineering, RMIT University, Bundoora, VIC 3083, Australia; [email protected] 9 3 The University of Trinidad and Tobago, Trinidad and Tobago; [email protected] 10 * Correspondence: [email protected]; [email protected] 11 Abstract: The paper examines design and operating data of current concentrated solar power (CSP) 12 solar tower (ST) plants. The study includes CSP with or without boost by combustion of natural gas 13 (NG), and with or without thermal energy storage (TES). The latest, actual specific costs per 14 installed capacity are very high, 6085 $/kW for Ivanpah Solar Electric Generating System (ISEGS) 15 with no TES, and 9227 $/kW for Crescent Dunes with TES. The actual production of electricity is 16 very low and much less than the expected. The actual capacity factors are 22% for ISEGS, despite 17 combustion of a significant amount of NG largely exceeding the planned values, and 13% for 18 Crescent Dunes. The design values were 33% and 52%. The study then reviews the proposed 19 technology updates to produce better ratio of solar field power to electric power, better capacity 20 factor, better matching of production and demand, lower plant’s cost, improved reliability and 21 increased life span of plant’s components.