IAT14 Imaging and Aberration Theory Lecture 12 Zernike Polynomials.Pdf
Imaging and Aberration Theory Lecture 12: Zernike polynomials 2015-01-29 Herbert Gross Winter term 2014 www.iap.uni-jena.de 2 Preliminary time schedule 1 30.10. Paraxial imaging paraxial optics, fundamental laws of geometrical imaging, compound systems Pupils, Fourier optics, pupil definition, basic Fourier relationship, phase space, analogy optics and 2 06.11. Hamiltonian coordinates mechanics, Hamiltonian coordinates Fermat principle, stationary phase, Eikonals, relation rays-waves, geometrical 3 13.11. Eikonal approximation, inhomogeneous media single surface, general Taylor expansion, representations, various orders, stop 4 20.11. Aberration expansions shift formulas different types of representations, fields of application, limitations and pitfalls, 5 27.11. Representation of aberrations measurement of aberrations phenomenology, sph-free surfaces, skew spherical, correction of sph, aspherical 6 04.12. Spherical aberration surfaces, higher orders phenomenology, relation to sine condition, aplanatic sytems, effect of stop 7 11.12. Distortion and coma position, various topics, correction options 8 18.12. Astigmatism and curvature phenomenology, Coddington equations, Petzval law, correction options Dispersion, axial chromatical aberration, transverse chromatical aberration, 9 08.01. Chromatical aberrations spherochromatism, secondary spoectrum Sine condition, aplanatism and Sine condition, isoplanatism, relation to coma and shift invariance, pupil 10 15.01. isoplanatism aberrations, Herschel condition, relation to Fourier optics 11 22.01. Wave aberrations definition, various expansion forms, propagation of wave aberrations special expansion for circular symmetry, problems, calculation, optimal balancing, 12 29.01. Zernike polynomials influence of normalization, measurement ideal psf, psf with aberrations, Strehl ratio, transfer function, resolution and 13 05.02. PSF and transfer function contrast Vectorial aberrations, generalized surface contributions, Aldis theorem, intrinsic 14 12.02.
[Show full text]