Chloroquine: an Old Drug with New Perspective Against Giardiasis

Total Page:16

File Type:pdf, Size:1020Kb

Chloroquine: an Old Drug with New Perspective Against Giardiasis See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281780591 Chloroquine: An Old Drug With New Perspective Against Giardiasis Article · September 2015 DOI: 10.2174/1574891X10666150914122118 CITATIONS READS 0 211 7 authors, including: Angel A Escobedo Pedro Almirall Academic Paediatric Hospital "Pedro Borrás" Centro Municipal de Higiene, Epidemiología … 73 PUBLICATIONS 752 CITATIONS 33 PUBLICATIONS 305 CITATIONS SEE PROFILE SEE PROFILE Sergio Cimerman Marco Lalle Instituto de Infectologia Emílio Ribas Istituto Superiore di Sanità 44 PUBLICATIONS 549 CITATIONS 33 PUBLICATIONS 992 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: VI International Giardia & Cryptosporidium Conference. April 26-28, 2017. Havana City, Cuba http://www.giardiacrypto2017.sld.cu View project VI International Giardia & Cryptosporidium Conference. April 26-28, 2017. Havana City, Cuba http://www.giardiacrypto2017.sld.cu View project All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Angel A Escobedo letting you access and read them immediately. Retrieved on: 26 September 2016 Send Orders for Reprints to [email protected] Recent Patents on Anti-Infective Drug Discovery, 2015, 10, 000-000 1 Chloroquine: An Old Drug with New Perspective Against Giardiasis Angel A. Escobedoa,b,c*, Pedro Almirallc,d, Sérgio Cimermanc,e, Marco Lallef, Frank Pachecog, Carlos Z. Acandah and Niurka Sánchezh aAcademic Paediatric Hospital “Pedro Borrás”, Calle F No. 616 esquina 27, Plaza, La Habana, CP 10400, Cuba; bWorking Group on Zoonoses, International Society for Chemotherapy, Aberdeen, United Kingdom; cCommittee on Clinical Parasitol- ogy, Panamerican Association of Infectology; dMunicipal Centre of Hygiene, Epide- miology and Microbiology “Plaza”, Calle 8 No. 406 esquina a 19, Plaza, La Ha- bana, CP 10400, Cuba; eInstitute of Infectious Diseases “Emilio Ribas”, Rua Zaca- rias de Gois, 966/41, 04610-002, SP, São Paulo, Brazil; fDepartment of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Angel A. Escobedo Italy; gPolyclinic Cerro, Calzada del Cerro No. 1813 esquina a Arzobispo, Cerro, La Habana, CP 10600, Cuba; hCuban Institute of Gastro-enterology, Calle 25 No. 503 esquina a I, Plaza, La Ha- bana, CP 10400, Cuba Received: July 14, 2015; Revised: September 11, 2015; Accepted: September 11, 2015 Abstract: The occurrence of treatment failures to first-line treatment for giardiasis, one of the most wide- spread although neglected parasitic disease, has long been recognised. Nowadays, it starts to represent a great challenge to clinicians, especially in endemic countries. This requires the introduction of new drug interven- tions, but the development of novel drugs is a time and money consuming effort with most of the compounds never reaching the market. Consequently, alternative strategies are needed, especially for the treatment of giardiasis. Chloroquine (CQ), a synthetic drug developed as antimalarial agent, has been shown to also exert antigiardial activity. Here, we present a minireview summarizing results on the treatment of human clinical cases with CQ, going through in vitro research, case report, and case series to human clinical trials, highlight- ing the benefits and mentioning possible adverse effects. Keywords: Chloroquine, Giardia, treatment. INTRODUCTION Africa, and Latin America about 200 million peo- Giardia lamblia (synonymous G. duodenalis or ple have symptomatic giardiasis, with some G. intestinalis), the aetiological agent of human 500,000 new cases reported each year [2] The pub- giardiasis, is one of the commonest intestinal pro- lic health impact of this parasitic protozoan infec- tozoa worldwide, both in developed as well as in tion is due to: a) its high prevalence, being one of developing countries, although the largest impact the main causes of diarrhoea among young chil- of giardiasis can be found in the latter, with South dren in day care centres [3] and among travellers Asia, the Middle East, and South America from non-endemic countries [1]; b) its propensity considered areas of high endemicity [1]. In Asia, to cause water- and (less frequently) food-borne outbreaks [3]; and c) its impact on community of *Address correspondence to this author at the Angel A. Escobedo, men who have sex with men [4]. Department of Microbiology, Paediatric Academic Hospital “Pedro Borrás”. 616, F. Plaza. Havana City, 10400, Cuba; Giardia infection occurs after ingestion of Tel:/Fax: +53 7 8301042; E-mail: [email protected] water or food contaminated with parasite cysts or 1574-891X/15 $100.00+.00 © 2015 Bentham Science Publishers 2 Recent Patents on Anti-Infective Drug Discovery, 2015, Vol. 10, No. 2 Escobedo et al. directly between hosts by faecal-oral route. The trophozoite stage of the parasite replicates and colonizes the upper small intestine of the host attaching to the surface of enterocytes. Giardiasis may be asymptomatic or responsible for a broad clinical spectrum, including acute or chronic diar- rhoea which may be with or without dehydration and malabsorption syndrome. Nausea, vomiting, abdominal pain, flatulence and weight loss are also commonly reported [5]. In addition, giardiasis may have long term consequences on the growth and cognitive functions of infected children [6]. Fur- thermore, extra-intestinal manifestations and post- infectious sequelae can also occur [7, 8]. Current treatments rely on 5-nitroimidazole (5- NI) compounds that, although not ideal, are suc- Fig. (1). Chemical structures of quinacrine and chloroquine. cessful in a high percentage of patients. However, an increasing number of treatment failures have been reported in the literature [9-22]. Undesirable at the psychiatric hospital in Düsseldorf using para- side-effects, poor patient compliance and “drug lytic patients, who had been inoculated with Plas- resistance” are associated to treatment failures and modium vivax. The reported efficacy of CQ was with contraindications of these drugs for some pa- similar to that of atabrine although, due to its con- tients. Other compounds belonging to different troversial adverse effect (it was too toxic for human pharmacological classes have already been studied use), it was not subjected to any further clinical in the giardiasis context [23, 24]; one of them is study [26]. Thus, the recognition of the value of CQ chloroquine (CQ). This paper reviews published was delayed, and it was not brought forward until it data on the use of this drug as a treatment for was re-evaluated in the United States of America Giardia infections. and designated as the drug of choice against malaria near the end of World War II [27]. For many dec- MATERIAL & METHODS ades, CQ was the first line drug for the treatment of non-severe or uncomplicated malaria, until the A PubMed online data base search was com- emergence of drug resistance that greatly reduced pleted for articles published in the English, French, its usefulness [28]. To date, it is still used in many Italian and Spanish languages using the keywords regions of the world as a reliable treatment against “giardiasis,” “giardia,” “chloroquine,” “case se- simpler forms of malaria. ries,” “case reports,” and “clinical trials” and the reference lists of the retrieved articles. The search Beyond its well-known antimalarial effect, CQ included articles that were published as of May is currently recommended as second-line therapy 2015. in the treatment of other infectious and non- infectious diseases including extraintestinal amoe- CQ HISTORY biasis [29], HIV [30, 31], sarcoidosis [32, 33], rheumatoid arthritis [34], lupus erythematosus CQ is a synthetic agent of the 4-aminoquinoline [35], porphyria cutanea tarda [36], and cancer, series (Fig. 1). This drug was first synthesized by with evidence suggesting that this compound sen- Johann “Hans” Andersag at the Bayer laboratories in Elberfeld in 1934, when he modified quinacrine sitizes cancer cells to radiation and chemothera- (also known as atabrine) by replacing its acridine peutic agents [37, 38]. ring with a quinoline ring (Fig. 1) [25]. The first Although quinacrine was firstly reported at the human trials as anti-malaria agent were carried out end of the 30s as effective drug against clinical Chloroquine in Giardiasis Recent Patents on Anti-Infective Drug Discovery, 2015, Vol. 10, No. 2 3 cases of giardiasis [39, 40], evidences of the effect to the plasma membranes, binds to DNA, although of CQ in the treatment of giardiasis dates only few it does not accumulate within the nuclei [55], and years later in Cuba. This novel use had been ini- decreases encystation rate from both in vitro- and tially described in the late 1940s [41, 42]; and patient-derived Giardia cysts [56, 57]. various studies have been subsequently carried out [43, 44]. Owing to the low experience, the appar- SUMMARY OF ISOLATED CASE RE- ent modest activity reported, the recognized activ- PORT/CASE SERIES OF CQ USE IN ity of quinacrine, its prioritized activity for malaria GIARDIASIS cases, and the introduction in the earliest 1960s of Parasitological outcome for CQ in the treatment more potent antigiardial drugs, such as metronida- of giardiasis is summarized in Table 1. The oldest zole (MTZ) [45-47], CQ was long forgotten for the studies show considerable variation in design, treatment against Giardia infections. reported detail, size, recruitment
Recommended publications
  • Doxycycline and Hydroxychloroquine As Treatment for High-Risk COVID-19 Patients: Experience
    medRxiv preprint doi: https://doi.org/10.1101/2020.05.18.20066902; this version posted May 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Doxycycline and Hydroxychloroquine as Treatment for High-Risk COVID-19 Patients: Experience from Case Series of 54 Patients in Long-Term Care Facilities Imtiaz Ahmad, MD, MPH, FCCP1 Mohammud Alam, MD2 Ryan Saadi, MD, MPH3,6 Saborny Mahmud4 Emily Saadi, BS5 1Allergy, Sleep & Lung Care, 21st Century Oncology, Fort Myers, FL 2Infectious Disease Specialist, Cordial Medical PC, Farmingdale, NY 3Center for Market Access and Medical Innovation, Warren, NJ 4 Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 5 Yale University, School of Public Health, New Haven, CT 6Quantaira Health, New York, NY Corresponding author : Imtiaz Ahmad, MD, Allergy, Sleep & Lung Care, 21st Century Oncology, Fort Myers, FL. email : [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.05.18.20066902; this version posted May 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Abstract: Importance: Patients in long-term care facilities (LTCF) are at a high-risk of contracting COVID-19 due to advanced age and multiple comorbidities.
    [Show full text]
  • Skin Probiotics ACCELERATING INNOVATION
    ACCELERATING INNOVATION James Madison University technologies are available for licensing through its nonprofit affiliate, James Madison Innovations, Inc. Skin Probiotics Inventors: Reid Harris and Kevin Minbiole Department: Biology and Chemistry Overview Research Funding and Source: National Science Foundation James Madison University inventors have filed a patent Years of Development: 4 years application on a helpful bacterium that could potentially be Technology Readiness: Research Development used as a therapy for human skin fungus such as athlete’s foot. Patent Status: U.S. patent pending 20110002891 The JMU inventors have developed a potential process to Contact: Mary Lou Bourne, Director of Technology Transfer deliver a helpful microbe, Janthinobacterium Lividum to the James Madison University skin using a pharmaceutically acceptable carrier. The microbe Phone: (540)568-2865 E-mail: [email protected] has been shown to suppress bacterial and fungal growth on animals and in lab demonstrations. Tech Transfer and Business Model Infections can be a problem for a wide array of hosts. For JMI is interested in identifying an existing company or example, there are a variety of infections, such as bacterial, entrepreneur interested in commercializing the technology viral and/or fungal infections, that affect a large percentage of either under an exclusive or a non-exclusive license. A the human population. Tricophyton rubrum, the fungus that small company or entrepreneur could further develop the causes athlete’s foot, is responsible for approximately 46% to technology, possibly using SBIR or STTR funding. 72% of cutaneous and nail mycoses worldwide. Onychomycosis, a common and persistent fungal infection, is Market and Competition In 2008, the U.S.
    [Show full text]
  • Natural Products As Potential Antiparasitic Drugs
    Natural Products as potential antiparasitic drugs OLIVER KAYSER1, ALBRECHT F. KIDERLEN2, SIMON L. CROFT3 1Freie Universität Berlin Institut für Pharmazie, Pharmazeutische Biotechnologie Kelchstraße 31, 12169 Berlin, Germany 2Robert Koch-Institut Nordufer 20 13353 Berlin, Germany 3London School of Hygiene and Tropical Medicine Department of Infectious and Tropical Diseases Keppel Street London, WC1E 7HT, United Kingdom ABSTRACT: Pharmaceutical research in natural products represents a major strategy for discovering and developing new drugs. The use of medicinal plants for the treatment of parasitic diseases is well known and documented since ancient times e.g. by the use of Cinchona succiruba (Rubiaceae) as an antimalarial. This chapter provides a comprehensive review of the latest results in the field of antiparasitic drug development from biologic sources (plants, bacteria, fungi and marine organisms) focussing on the treatment of protozoal infections (Plasmodium, Leishmania, Trypanosoma spp.). The status of validated in vitro and in vivo assays is reviewed, discussing their different features, problems and limitations. Because of the high number of natural products tested against the aforesaid protozoa in the last years, we limit the discussion to lignans, phenolics, terpenoids, and alkaloids as defined natural product classes. The review also covers essential research topics of recent publications on specific natural products (e.g. licochalcone A, benzyl- and naphthylisoquinoline alkaloids, and artemisinin) and gives an outlook to semi- synthetic approaches of drugs already introduced in clinics or in clinical trial studies. 1. INTRODUCTION The fascination of natural products, mostly as used as a preparation from a plant with known medicinal properties, goes back to ancient times. The discovery of pure compounds as active principles in plants was first described at the beginning of the 19th century, and the art of exploiting natural products has become part of the molecular sciences.
    [Show full text]
  • Antiparasitic Properties of Cardiovascular Agents Against Human Intravascular Parasite Schistosoma Mansoni
    pharmaceuticals Article Antiparasitic Properties of Cardiovascular Agents against Human Intravascular Parasite Schistosoma mansoni Raquel Porto 1, Ana C. Mengarda 1, Rayssa A. Cajas 1, Maria C. Salvadori 2 , Fernanda S. Teixeira 2 , Daniel D. R. Arcanjo 3 , Abolghasem Siyadatpanah 4, Maria de Lourdes Pereira 5 , Polrat Wilairatana 6,* and Josué de Moraes 1,* 1 Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; [email protected] (R.P.); [email protected] (A.C.M.); [email protected] (R.A.C.) 2 Institute of Physics, University of São Paulo, São Paulo 05508-060, SP, Brazil; [email protected] (M.C.S.); [email protected] (F.S.T.) 3 Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, PI, Brazil; [email protected] 4 Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran; [email protected] 5 CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] 6 Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand * Correspondence: [email protected] (P.W.); [email protected] (J.d.M.) Citation: Porto, R.; Mengarda, A.C.; Abstract: The intravascular parasitic worm Schistosoma mansoni is a causative agent of schistosomiasis, Cajas, R.A.; Salvadori, M.C.; Teixeira, a disease of great global public health significance. Praziquantel is the only drug available to F.S.; Arcanjo, D.D.R.; Siyadatpanah, treat schistosomiasis and there is an urgent demand for new anthelmintic agents.
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity
    molecules Review Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity Valery M. Dembitsky 1,2,*, Ekaterina Ermolenko 2, Nick Savidov 1, Tatyana A. Gloriozova 3 and Vladimir V. Poroikov 3 1 Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada; [email protected] 2 A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; [email protected] 3 Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; [email protected] (T.A.G.); [email protected] (V.V.P.) * Correspondence: [email protected]; Tel.: +1-403-320-3202 (ext. 5463); Fax: +1-888-858-8517 Abstract: Polycyclic endoperoxides are rare natural metabolites found and isolated in plants, fungi, and marine invertebrates. The purpose of this review is a comparative analysis of the pharmacological potential of these natural products. According to PASS (Prediction of Activity Spectra for Substances) estimates, they are more likely to exhibit antiprotozoal and antitumor properties. Some of them are now widely used in clinical medicine. All polycyclic endoperoxides presented in this article demonstrate antiprotozoal activity and can be divided into three groups. The third group includes endoperoxides, which show weak antiprotozoal activity with a reliability of up to 70%, and this group includes only 1.1% of metabolites. The second group includes the largest number of endoperoxides, Citation: Dembitsky, V.M.; which are 65% and show average antiprotozoal activity with a confidence level of 70 to 90%. Lastly, Ermolenko, E.; Savidov, N.; the third group includes endoperoxides, which are 33.9% and show strong antiprotozoal activity with Gloriozova, T.A.; Poroikov, V.V.
    [Show full text]
  • A Comparative Study on Ivermectin-Doxycycline and Hydroxychloroquine-Azithromycin Therapy on COVID-19 Patients
    DOI: 10.14744/ejmo.2021.16263 EJMO 2021;5(1):63–70 Research Article A Comparative Study on Ivermectin-Doxycycline and Hydroxychloroquine-Azithromycin Therapy on COVID-19 Patients Abu Taiub Mohammed Mohiuddin Chowdhury,1 Mohammad Shahbaz,2 Md Rezaul Karim,3 Jahirul Islam, Guo Dan,1 Shuixiang He1 1Department of Gastroenterology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China 2Chakoria Upazilla Health Complex, Cox’s Bazar, Bangladesh 3Biomedical Research Institute of Hubei University of Medicine, Shiyan, China 4Department of Epidemiology and Health Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China Abstract Objectives: We investigated the outcomes of Ivermectin-Doxycycline vs. Hydroxychloroquine-Azithromycin combina- tion therapy in mild to moderate COVID19 patients. Methods: Patients were divided randomly into two groups: Ivermectin 200µgm/kg single dose + Doxycycline 100mg BID for ten days in group A, and Hydroxychloroquine 400mg for the first day, then 200mg BID for nine days + Azithro- mycin 500mg daily for five days in group B (Control group). RT-PCR for SARS-CoV-2 infection was repeated in all symp- tomatic patients on the second day onward without symptoms. Repeat PCR was done every two days onward if the result found positive. Time to the negative PCR and symptomatic recovery was measured for each group. Results: All subjects in Group A reached a negative PCR, at a mean of 8.93 days, and reached symptomatic recovery, at a mean of 5.93 days, with 55.10% symptom-free by the fifth day. In group B, 96.36% reached a negative PCR at a mean of 9.33 days and were symptoms-free at 6.99 days.
    [Show full text]
  • Clindamycin Plus Quinine for Treating Uncomplicated Falciparum Malaria: a Systematic Review and Meta-Analysis Charles O Obonyo1* and Elizabeth a Juma1,2
    Obonyo and Juma Malaria Journal 2012, 11:2 http://www.malariajournal.com/content/11/1/2 RESEARCH Open Access Clindamycin plus quinine for treating uncomplicated falciparum malaria: a systematic review and meta-analysis Charles O Obonyo1* and Elizabeth A Juma1,2 Abstract Background: Artemisinin-based combinations are recommended for treatment of uncomplicated falciparum malaria, but are costly and in limited supply. Clindamycin plus quinine is an alternative non-artemisinin-based combination recommended by World Health Organization. The efficacy and safety of clindamycin plus quinine is not known. This systematic review aims to assess the efficacy of clindamycin plus quinine versus other anti-malarial drugs in the treatment of uncomplicated falciparum malaria. Methods: All randomized controlled trials comparing clindamycin plus quinine with other anti-malarial drugs in treating uncomplicated malaria were included in this systematic review. Databases searched included: Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE and LILACS. Two authors independently assessed study eligibility, extracted data and assessed methodological quality. The primary outcome measure was treatment failure by day 28. Dichotomous data was compared using risk ratio (RR), in a fixed effects model. Results: Seven trials with 929 participants were included. Clindamycin plus quinine significantly reduced the risk of day 28 treatment failure compared with quinine (RR 0.14 [95% CI 0.07 to 0.29]), quinine plus sulphadoxine- pyrimethamine (RR 0.17 [95% CI 0.06 to 0.44]), amodiaquine (RR 0.11 [95% CI 0.04 to 0.27]), or chloroquine (RR 0.11 [95% CI 0.04 to 0.29]), but had similar efficacy compared with quinine plus tetracycline (RR 0.33 [95% CI 0.01 to 8.04]), quinine plus doxycycline (RR 1.00 [95% CI 0.21 to 4.66]), artesunate plus clindamycin (RR 0.57 [95% CI 0.26 to 1.24]), or chloroquine plus clindamycin (RR 0.38 [95% CI 0.13 to 1.10]).
    [Show full text]
  • The Role of Antiparasitc Drugs and Steroids in Covid-19 Treatment
    Research, Society and Development, v. 10, n. 8, e39510817300, 2021 (CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i8.17300 The role of antiparasitc drugs and steroids in Covid-19 treatment O papel das drogas antiparasitárias e corticóides no tratamento da Covid-19 El papel de los antiparasitos y los esteroides en el tratamiento del Covid-19 Received: 06/17/2021 | Reviewed: 06/25/2021 | Accept: 07/03/2021 | Published: 07/14/2021 Luciano Barreto Filho ORCID: https://orcid.org/0000-0002-1508-4812 Faculdade de Odontologida do Recife, Brazil E-mail: [email protected] Paulo Reis Melo Júnior ORCID: https://orcid.org/0000-0001-9926-5348 Faculdade de Odontologia do Recife, Brazil E-mail: [email protected] Guilherme Marinho Sampaio ORCID: https://orcid.org/0000-0003-4441-7601 Faculdade de Odontologia do Recife, Brazil E-mail: [email protected] Gabriel Henrique Queiroz Oliveira ORCID:https://orcid.org/0000-0002-7795-3964 Faculdade de Odontologia do Recife, Brazil E-mail: [email protected] Hadassa Fonsêca Da Silva ORCID: https://orcid.org/0000-0002-9432-9522 Faculdade de Odontologia do Recife, Brazil E-mail: [email protected] Sandra Sayão Maia ORCID: https://orcid.org/0000-0001-6808-9775 Faculdade de Odontologia do Recife, Brazil E-mail: [email protected] Abstract Background: COVID-19 has emerged as a pandemic that spread throughout the world in less than 6 months, leaving hundred thousand deaths behind. Surprisingly, old drug arsenal has now been applied as an option of treatment. Objective: The aim of this article was to accomplish a literature review concerning the antiparasitic chloroquine, ivermectin, nitazoxanide; as well as glucocorticoids as possible therapeutic agents to be applied in patients with COVID-19 in Brazilian hospitals.
    [Show full text]
  • Essential Oils and Bioactive Components Against Arthritis: a Novel Perspective on Their Therapeutic Potential
    plants Review Essential Oils and Bioactive Components against Arthritis: A Novel Perspective on Their Therapeutic Potential Mariangela Marrelli * , Valentina Amodeo, Maria Rosaria Perri, Filomena Conforti y and Giancarlo Statti y Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; [email protected] (V.A.); [email protected] (M.R.P.); fi[email protected] (F.C.); [email protected] (G.S.) * Correspondence: [email protected]; Tel.: +39-0984-493168; Fax: +39-0984-493107 These authors jointly supervised and contributed equally to this work. y Received: 18 August 2020; Accepted: 21 September 2020; Published: 23 September 2020 Abstract: Essential oils (EOs) are known to possess a number of beneficial properties. Their antimicrobial, anti-inflammatory, antioxidant, antidiabetic, and cancer-preventing activities have been extensively reported. Due to their wide use as food preservers and additives, as well as their use in agriculture, perfumes, and make-up products, these complex mixtures of volatile compounds have gained importance from a commercial point of view, not only in the pharmaceutical industry, but also in agronomic, food, cosmetic, and perfume industries. An analysis of the recent scientific literature allowed us to highlight the presence of an increasing number of studies on the potential antiarthritic properties of EOs and their main constituents, which seems to suggest a new interesting potential therapeutic application. The aim of this review is to examine the current knowledge on the beneficial effects of essential oils in the treatment of arthritic diseases, providing an overview of the reports on the in vivo and in vitro effects of EOs.
    [Show full text]
  • Review Rheumatological Patients Undergoing Immunosuppressive
    Review Rheumatological patients undergoing immunosuppressive treatments and parasitic diseases: a review of the literature of clinical cases and perspectives to screen and follow-up active and latent chronic infections S. Fabiani and F. Bruschi Department of Translational Research ABSTRACT Conclusions. Considering parasitic in- and New Technologies in Medicine and Objective. Nowadays, several po- fections as emerging and potentially se- Surgery, School of Infectious Diseases, tent immunosuppressive drugs are rious in their evolution, additional strat- Università di Pisa, Pisa, Italy available for patients with rheumato- egies for the prevention, careful screen- Silvia Fabiani, MD logic disorders. In general, these treat- ing and follow-up, with a high level of Fabrizio Bruschi, MD ments are acceptably well tolerated. suspicion, identification, and pre-emp- Please address correspondence to: Nevertheless, in patients with rheu- tive therapy are necessary in candidate Fabrizio Bruschi, matic diseases, who are taking immu- patients for biological agents. Scuola Medica, Via Roma 55, nosuppressive drugs, an increased risk 56126 Pisa, Italy. of bacterial, viral and fungal, as well Introduction E-mail: [email protected] as parasitic infections, exists. Rationale Received on October 14, 2013; accepted Methods. We have reviewed literature, Immunosuppressive drugs, other than in revised form on February 18, 2014. on PubMed library, on the topic “par- corticosteroids (CS), are used in the Clin Exp Rheumatol 2014; 32: 587-596. asitic infections in rheumatic disease treatment of various rheumatologic con- © Copyright CLINICAL AND patients treated with immunosuppres- ditions to induce or maintain a remis- EXPERIMENTAL RHEUMATOLOGY 2014. sive drugs, including biological thera- sion, to reduce the frequency of flare pies”.
    [Show full text]
  • POS0555 the NATURAL COURSE of RHEUMATOID ARTHRITIS- Medications for RA Or for Comorbidities Including Adverse Events (Aes)
    Ann Rheum Dis: first published as 10.1136/annrheumdis-2021-eular.2810 on 19 May 2021. Downloaded from 512 Scientific Abstracts Methods: We used a large Japanese administrative claims database con- Co., Ltd., Eisai Co., Ltd., Eli Lilly Japan K.K., Pfizer Japan Inc., and Takeda structed by the Japan Medical Data Center (JMDC)2. Patients with the Inter- Pharmaceutical Co., Ltd., Consultant of: AbbVie GK, Bristol-Myers Squibb K.K., national Classification of Diseases 10th revision (ICD-10) codes for RA were Chugai Pharmaceutical Co., Ltd., Eli Lilly Japan K.K., and Gilead Sciences enrolled at the first DMARDs prescription after no DMARDs prescription period Inc., Grant/research support from: AbbVie GK, and Asahi Kasei Corp., Astellas for 6-months (index date) in the period from 1/1/2012 to 12/31/2017. Patients who Pharma Inc., Ayumi Pharmaceutical Corporation, Bristol-Myers Squibb K.K., were observable for 12 months after the index date as a follow-up period were Chugai Pharmaceutical Co., Ltd. Daiichi-Sankyo, Inc., Eisai Co., Ltd., Mitsubishi included. Patients treated with CSs within the follow-up period were compared Tanabe Pharma Corporation., Nippon Kayaku Co., Ltd., Taisho Pharmaceutical with those without them (CS and non-CS group). The primary endpoint was Co., Ltd., and Takeda Pharmaceutical Co., Ltd. mean medical cost per patient in the 12-month follow-up period. The secondary DOI: 10.1136/annrheumdis-2021-eular.2805 endpoints were costs for drugs, treatments, and materials and the proportions of patients using the subcategories of each resource. Drugs were divided into POS0555 THE NATURAL COURSE OF RHEUMATOID ARTHRITIS- medications for RA or for comorbidities including adverse events (AEs).
    [Show full text]