Microwave Induced Remote Hydrogen Plasma (Mirhp) Passivation of Multicrystalline Silicon Solar Cells

Total Page:16

File Type:pdf, Size:1020Kb

Microwave Induced Remote Hydrogen Plasma (Mirhp) Passivation of Multicrystalline Silicon Solar Cells MICROWAVE INDUCED REMOTE HYDROGEN PLASMA (MIRHP) PASSIVATION OF MULTICRYSTALLINE SILICON SOLAR CELLS Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Fakultät für Physik vorgelegt von Markus Spiegel Konstanz, Oktober 1998 Contents 1 Introduction 1 1.1 The energy problem - need for photovoltaics 1 1.2 The importance of multicrystalline silicon for the PV industry 1 1.3 Organization of this work 3 2 Multicrystalline silicon materials and laboratory cell processing 5 2.1 Introduction 5 2.2 Production of multicrystalline silicon 5 2.2.1 Block cast mc-Si 5 2.2.2 Ribbon cast mc-Si 6 2.3 Structural and electrical properties 6 2.4 Processing of laboratory solar cells 7 2.4.1 Cells with homogeneous emitter 7 2.4.2 Cells with selective emitter 8 2.4.3 Cell processing using RGS and EFG base material 8 3 Characterization of silicon wafers and cells 10 3.1 Introduction 10 3.2 Contactless measurement methods 10 3.2.1 Surface photovoltage method 10 3.2.2 Microwave-detected photoconductance decay technique (MW-PCD) 12 3.3 Measurements on solar cells 13 3.3.1 Dark I-V characteristics - the two-diode model 13 3.3.2 Illuminated I-V characteristics 13 3.3.3 LBIC 14 3.3.4 Spectral response 15 3.3.4.1 Measurement and determination of the internal quantum efficiency (IQE) 15 3.3.4.2 Influence of the bias light on the IQE 16 3.3.4.3 Influence of a high temperature step on the IQE of EFG solar cells 17 3.4 Theory on the internal quantum efficiency (IQE) 17 3.4.1 Introduction 17 3.4.2 Literature work 18 3.4.2.1 Contributions of emitter, space charge region and base to the IQE 18 3.4.2.2 Additional approximations for the base IQE 20 3.4.2.2.1 wb >> Lb 20 3.4.2.2.2 wb << Lb 20 3.4.3 The general problem with the approximated base IQEs 21 3.4.4 Own work 22 3.4.4.1 Approximations on the emitter and space charge region 22 II Contents 3.4.4.2 Direct way of deducing approximated IQEe+scr 23 3.4.4.3 Proof for 1/IQEtotal 1+1/(Lbα) ´near´ the space charge region 24 3.4.4.4 Comparison of the different approximated total IQEs 25 3.4.4.5 Validity region of eq. (3.23) 25 3.4.4.6 Theoretical and experimental accuracy 27 3.4.4.7 Consequences of eq. (3.23) 29 3.4.4.8 Influence of a weak surface texturization 30 4 Microwave induced remote hydrogen plasma (MIRHP) passivation 33 4.1 Introduction 33 4.2 The MIRHP device 34 4.3 Optimization of the MIRHP process 35 4.3.1 Procedure of the optimization 35 4.3.2 Optimization of the microwave power, gas flow and gas pressure 35 4.3.2.1 EMC base material 36 4.3.2.2 SOLAREX base material 37 4.3.3 Optimization of the diffusion temperature and process time 38 4.3.3.1 Cast silicon 38 4.3.3.2 Ribbon silicon 40 4.3.4 LBIC measurements 41 4.3.5 Summary of the optimal process parameters for the investigated materials 42 4.4 MIRHP of RGS solar cells 44 4.4.1 Introduction 44 4.4.2 Flat cells 44 4.4.2.1 Cell processing 44 4.4.2.2 IQE before H-passivation 45 4.4.2.3 Improvement of RGS cell performance due to MIRHP 46 4.4.3 V-grooved cells 47 4.4.3.1 Cell processing 47 4.4.3.2 Homogeneity of the RGS material, benefit from forming gas annealing 47 4.4.3.3 Benefit from the MIRHP applied before the DARC 49 4.4.3.3.1 I-V characteristics 49 4.4.3.3.2 IQE-measurements 50 4.4.3.4 The MIRHP applied after the DARC 51 4.4.4 Results on RGS cells 52 4.5 Results on multicrystalline PERL-cells 52 4.5.1 Introduction 52 4.5.2 Combining the MIRHP passivation with the PERL cell process 53 4.5.3 Influence of MIRHP and thermal annealing on PERL cells 53 4.5.4 Improvement of the IQE by the MIRHP 54 4.5.5 Illuminated I-V results 55 4.5.6 Conclusions 56 4.6 MIRHP of cells with homogeneous emitter 56 4.7 Summary of results 58 5 Diffusion and effusion of hydrogen in silicon 60 5.1 Introduction 60 5.2 Theoretical work on hydrogen diffusion 60 5.2.1 Free diffusion of hydrogen 60 5.2.2 Multiple trapping of hydrogen 61 Contents III 5.2.3 Methods for extracting diffusion parameters from H-depth data 62 5.2.3.1 The topt-method 63 5.2.3.2 The tconst-method 64 5.2.3.3 The Tconst-method 64 5.3 Experimental determination of hydrogen/deuterium in silicon 65 5.3.1 Introduction 65 5.3.2 Thermal effusion (TE) 65 5.3.3 Secondary ion mass spectroscopy (SIMS) 66 5.3.4 Discussion 67 5.4 A new approach to determine the passivation depth of hydrogen in solar cells 67 5.4.1 Introduction 67 5.4.2 Two-layer model of the IQE 68 5.4.2.1 Exact calculation of the base IQE 68 5.4.2.2 Approximations of the base region 71 5.4.2.2.1 Thick second base region 71 5.4.2.2.2 High back side recombination velocity 72 5.4.2.3 The total IQE 73 5.4.2.4 Comparison of the approximated total IQEs 74 5.4.2.5 Theoretical and experimental accuracy 75 5.4.2.6 Summary of this section 76 5.4.3 Experiment 78 5.4.3.1 Fit of the two-layer model to experiment 78 5.4.3.2 Comparison of the two-layer model with PC-1D 79 5.4.3.3 Extraction of diffusion parameters for SOLAREX base material 80 5.4.3.4 Comparison of the diffusion constants of different mc-Si materials 81 5.5 Effusion experiments on solar cells 81 5.5.1 Introduction 81 5.5.2 Influence of H-effusion on the IQE 82 5.5.3 Influence of H-effusion on the illuminated and dark I-V parameters 83 5.6 Conclusions 85 6 The MIRHP process within an industrial cell production line 87 6.1 Introduction 87 6.2 Industrial solar cell production at Eurosolare and Solarex 87 6.3 MIRHP of screen-printed cells. 89 6.3.1 MIRHP after cell processing 89 6.3.2 MIRHP in industrial cell processes 90 6.3.2.1 MIRHP within the production line at Eurosolare 91 6.3.2.2 MIRHP within the production line at Solarex 92 6.3.3 Industrial importance of the MIRHP processes 93 6.4 PECVD SiN 94 6.5 Combination of PECVD SiN and MIRHP 95 6.6 Conclusions 96 7 Summary 97 8 References 99 9 Appendixes 105 9.1 Single-layer IQE 105 9.2 Single-layer IQE at α = 1/Lb 106 IV Contents 9.3 Single-layer IQE and weak surface texturization 107 9.4 Double-layer IQE 110 9.5 Double-layer IQE at α = 1/L1 and α = 1/L2 111 9.6 From the double-layer IQE back to the single-layer IQE 114 9.7 Double-layer IQE and weak surface texturization 115 10 List of abbreviations, symbols, figures and tables 117 10.1 List of abbreviations 117 10.2 List of symbols 118 10.3 List of figures 120 10.4 List of tables 121 11 List of Publications 123 12 Zusammenfassung 126 13 Danksagung 128 1 Introduction 1.1 The energy problem - need for photovoltaics Today, the main contribution to the world-wide used energy comes from fossil and nuclear resources. Because of the limitations of the oil, gas, coal and uranium resources and environmental problems such as the green house effect, acid rain and nuclear by-products most energy scenario studies predict a fundamental change in the world energy supply during the coming century [1, 2]. In these studies it is supposed that renewable energy systems, such as wind energy, photovoltaics, solar heating and biomass will become more important. These energy systems do not depend on resources, which are limited to our earth, but on the constant radiation - at least for the human horizon - of the sun. Among these renewable energies, the photovoltaic conversion of light energy into electricity is very promising. Photovoltaic (PV) systems are reliable, almost maintenance-free and do not cause polluting by-products. Additionally, photovoltaics is modular in the range from milliwatt to megawatt. Because of these advantages photovoltaics is one of the fastest growing markets during the last years as can be seen in the world photovoltaic cell and module shipments from 1980 to 1997 shown in Fig. 1.1. Despite these advantages, the installed world total PV power is still below the power output of one single nuclear power station. The relatively high costs of PV modules in the range of $3.5-4.5/Wp [3] are the reason for the small contribution of PV energy compared to the total electric energy consumption. Fig. 1.1: Total world photovoltaic cell and 120 world photovoltaic cell 120 module shipment. The contribution of thin and module shipments film cells and modules is also shown for 100 100 comparison [4].
Recommended publications
  • Klinkenberg Effect on Predicting and Measuring Helium Permeability in Gas Shales
    International Journal of Coal Geology 123 (2014) 62–68 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Klinkenberg effect on predicting and measuring helium permeability in gas shales Mahnaz Firouzi, Khalid Alnoaimi, Anthony Kovscek, Jennifer Wilcox ⁎ Department of Energy Resources Engineering, Stanford University, Stanford, CA 94305-2220, USA article info abstract Article history: To predict accurately gas-transport in shale systems, it is important to study the transport phenomena of a non- Received 21 June 2013 adsorptive gas such as helium to investigate gas “slippage”. Non-equilibrium molecular dynamics (NEMD) sim- Received in revised form 24 September 2013 ulations have been carried out with an external driving force imposed on the 3-D carbon pore network generated Accepted 24 September 2013 atomistically using the Voronoi tessellation method, representative of the carbon-based kerogen porous struc- Available online 1 October 2013 ture of shale, to investigate helium transport and predict Klinkenberg parameters. Simulations are conducted to determine the effect of pressure on gas permeability in the pore network structure. In addition, pressure Keywords: Klinkenberg pulse decay experiments have been conducted to measure the helium permeability and Klinkenberg parameters Molecular modeling of a shale core plug to establish a comparison between permeability measurements in the laboratory and the per- Measurement meability predictions using NEMD simulations. The results indicate that the gas permeability, obtained from Helium pulse-decay experiments, is approximately two orders of magnitude greater than that calculated by the MD sim- Permeability ulation. The experimental permeability, however, is extracted from early-time pressure profiles that correspond Shale to convective flow in shale macropores (N50 nm).
    [Show full text]
  • Carrier Dynamics in Single Luminescent Silicon Quantum Dots
    Carrier Dynamics in Single Luminescent Silicon Quantum dots Fatemeh Sangghaleh PhD Thesis Information and Communication Technology KTH Royal Institute of Technology Stockholm, Sweden 2015 TRITA-ICT 2015:09 KTH School of Information and Communication Technology SE-164 40, ISBN 978-91-7595-665-7 Kista, SWEDEN A dissertation submitted to KTH Royal Institute of Technology, Stockholm, Sweden, in partial fulfillment of requirements for the degree of Teknologie Doktor (Doctor of Philosophy). The defense will take place on October 23 2015 at 10.00 a. m. at Sal C, KTH- Electrum, Kistagången 16, Kista. © Fatemeh Sangghaleh, October 2015. Printed by: Universitetsservice US-AB Abstract Bulk silicon as an indirect bandgap semiconductor is a poor light emitter. In contrast, silicon nanocrystals (Si NCs) exhibit strong emission even at room temperature, discovered initially at 1990 for porous silicon by Leigh Canham. This can be explained by the indirect to quasi-direct bandgap modification of nano-sized silicon according to the already well-established model of quantum confinement. In the absence of deep understanding of numerous fundamental optical properties of Si NCs, it is essential to study their photoluminescence (PL) characteristics at the single-dot level. This thesis presents new experimental results on various photoluminescence mechanisms in single silicon quantum dots (Si QDs). The visible and near infrared emission of Si NCs are believed to originate from the band-to-band recombination of quantum confined excitons. However, the mechanism of such process is not well understood yet. Through time-resolved PL decay spectroscopy of well-separated single Si QDs, we first quantitatively established that the PL decay character varies from dot-to-dot and the individual lifetime dispersion results in the stretched exponential decays of ensembles.
    [Show full text]
  • Evolution of Helium with Temperature in Neutron-Irradiated 10 B-Doped
    Hindawi Publishing Corporation Advances in Condensed Matter Physics Volume 2014, Article ID 506936, 6 pages http://dx.doi.org/10.1155/2014/506936 Research Article Evolution of Helium with Temperature in Neutron-Irradiated 10B-Doped Aluminum by Small-Angle X-Ray Scattering Chaoqiang Huang,1,2,3 Guanyun Yan,2,3 Qiang Tian,2,3 Guangai Sun,2,3 Bo Chen,2,3 Liusi Sheng,1 Yaoguang Liu,2,3 Xinggui Long,2,3 Xiao Liu,2,3 Luhui Han,4 and Zhonghua Wu5 1 College of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China 2 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China 3 Key Laboratory of Neutron Physics, China Academy of Engineering Physics, Mianyang 621900, China 4 China Academy of Engineering Physics, Mianyang 621900, China 5 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China Correspondence should be addressed to Chaoqiang Huang; [email protected] Received 28 February 2014; Revised 20 May 2014; Accepted 5 June 2014; Published 22 June 2014 AcademicEditor:Xiao-TaoZu Copyright © 2014 Chaoqiang Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 10 Helium status is the primary effect of material properties under radiation. B-doped aluminum samples were prepared via arc melting technique and rapidly cooled with liquid nitrogen to increase the boron concentration during the formation of compounds. 25 −3 10 An accumulated helium concentration of ∼6.2 × 10 m was obtained via reactor neutron irradiation with the reaction of B(n, 7 ) Li.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title RADIOISOTOPE DATING WITH ACCELERATORS Permalink https://escholarship.org/uc/item/0kh119x5 Author Muller, R.A. Publication Date 1979-02-01 eScholarship.org Powered by the California Digital Library University of California Published in Physics Today LBL-8331(I, . ~ Preprint RADIOISOTOPE DATING WITH ACCELERATORS ECEIVED Richard A. Muller ."' lAWRENCE t!1:~K61:t'l I.ABORATORY MAY 30 \919 February 1979 LIBRARY AND OGC:UME.NTS SE.CTION Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48 TWO-WEEK LOAN COpy This is a Library Circulating Copy which may be borrowed for two weeks. (l For a personal retention copy, call Tech. Info. Dioision, Ext. 6782 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
    [Show full text]
  • The Radiochemistry of Radium Commllleeon NUCLEAR SCIENCE
    National .—. Academy d Sciences NationalI Research Council m NUCLEAR SCIENCE SERIES The Radiochemistry of Radium COMMlllEEON NUCLEAR SCIENCE B.K- Aufmn,Chdmlm R. D. Evans, Wce Chairman UnlverOity of Chfcwo ~. In.Wttute of Technology Lewis slack,Secretary NstidFtem-cllmllntil E. c.Andmrmn HertwrtC?dd&tm i.mAlumnw. laboratory Calmibla Unlvertity C.J. BmkcwM J. J. Nlckmn M Ridge MU. Iabmntm-y NEmOrial Eo9pltd (New York) RobertG.cm- IL L. Phtzma!l A& MColbWaf TcmO A~ N81icad la.tamtory ugoFam D. M Vm P+ter NaUOadwruofsmldmda Eartol RO~ Fwdmon Oeorgew.Wetbefill Urdvarslty of CUlfonda (Ian Angeles) LIAISONMRMBERS padC. Aaberwld JeromeRegean AtOmlcEwrgy-mmfmtm UfIce ofNaml Reach Ja6ePh E. Duval J. &wwd McMlflen Afr Farce OfUce of SctenUflc ~h NuUc4ml Sdence FwndaUm SIJ9COMMlllEEON RADI-RMISTRY N. E. -, Chd- J. D. Kn@t u.& NavalFwlblO@dDOfenlm ICaAlamwSelmtlfic I.atmratmy Lab0rnk3m J. M. Nielmn G. R CbqPln 06netal Electric Company (IuChiand) FlOrMn State Uutvertiw G. D. O’ftdley E. M Clark W NMge National Laboratory Rmaselaer POlytadmlc fmtitute RP. tldmman R. M“ Dimnold AtOmlc mml’w rnvistml Lawrence Radiaklm Iabm-story Pfltlllpa Petroleum COi+my (LillM FalM) A.W.Fdrf@l K P. ~rg Unlversfty of Washl@m Argmne NatfOllaf mbodmy Jerome Ndls P. c.Wevanean Brcakkav671 Natfanal fdwratory Lawrence lwnatlan LabOrafov D. N. bhiernmn Mttelb Mernorhf fmlltute coNsLaTANl J. W. Ulncbetier “~wata hlefmuti of 1%~ ,. The Radiochemistry of Radium By H. W. Kirby Mound Laboratory Monsanto Research Corporation Miamisburg, Ohio and Murrell L. Salutsky W. R. Grace & Co. Research Division Washington Research Center Clarksville, Md. kued,December19&4 Subcommitteeon Radiochemistry NationalAcademy of Sciences—NaUonal Research Council Prin&dinUSA.Price$2.25Av-dhblefromtieClear4@cmseforFederal Sciendficu@ TechnknlInfonnatlon,Nation8.1BureauofStaxhr&,U.S.De- parbnentofComme-,SPri@ield,Vir@ia.
    [Show full text]
  • Observation and Investigation of the New Proton-Unbound Nuclei 30Ar and 29Cl with In-Flight Decay Spectroscopy
    Observation and Investigation of the New Proton-Unbound Nuclei 30Ar and 29Cl with In-Flight Decay Spectroscopy Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaftlichen and dem Fachbereich 07 Mathematik und Informatik, Physik, Geographie an der Justus-Liebig-Universitat¨ Gießen vorgelegt von Xiaodong Xu geboren in Shaanxi (China) Gießen 2016 Selbststandigkeitserkl¨ arung¨ Ich erklare:¨ Ich habe die vorgelegte Dissertation selbstandig¨ und ohne unerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe. Alle Textstellen, die wortlich¨ oder sinngemaߨ aus veroffentlichten¨ Schriften entnom- men sind, und alle Angaben, die auf mundlichen¨ Auskunften¨ beruhen, sind als solche kenntlich gemacht. Bei den von mir durchgefuhrten¨ und in der Dissertation erwahnten¨ Untersuchungen habe ich die Grundsatze¨ guter wissenschaftlicher Praxis, wie sie in der Satzung der Justus-Liebig-Universitat¨ Gießen zur Sicherung guter wissenschaftlicher ” Praxis“ niedergelegt sind, eingehalten. Datum Xiaodong Xu Erstgutachter: Prof. Dr. Christoph Scheidenberger Zweitgutachter: Prof. Dr. Dr. h.c. Hans Geissel Tag der mundlichen¨ Prufung:¨ 30.06.2016 Abstract Two-proton (2p) radioactivity is an exotic nuclear decay mode resulting in the simul- taneous emission of two protons: The ground-state 2p radioactivity was discovered in the decay of 45Fe in 2002: Later, this novel decay mode was also found in the decays of 48Ni, 54Zn, and 19Mg. In order to study a promising 2p radioactivity candidate 30Ar, an experiment was per- formed at the Fragment Separator of GSI in Darmstadt (Germany): The in-flight decay technique, which is based on the tracking of the in-flight decay products by using the sil- icon strip detectors, was employed: Several calibration and alignment procedures were performed to achieve the best-possible accuracy of position and angle measurements.
    [Show full text]
  • Combined Study of Reactor and Terrestrial Antineutrinos with Kamland
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2006 Combined Study of Reactor and Terrestrial Antineutrinos with KamLAND Mikhail Batygov University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Physics Commons Recommended Citation Batygov, Mikhail, "Combined Study of Reactor and Terrestrial Antineutrinos with KamLAND. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1918 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Mikhail Batygov entitled "Combined Study of Reactor and Terrestrial Antineutrinos with KamLAND." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Physics. Yuri Kamyshkov, Major Professor We have read this dissertation and recommend its acceptance: William Bugg, Robert Compton, George Siopsis Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Mikhail Batygov entitled “Com- bined Study of Reactor and Terrestrial Antineutrinos with KamLAND”. I have exam- ined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Physics.
    [Show full text]
  • Next Generation Double-Beta Decay Experiments: Metrics for Their Evaluation
    Next generation double-beta decay experiments: metrics for their evaluation F T Avignone III1, G S King III1 and Yu G Zdesenko2,3 1 Department of Physics and Astronomy, University of South Carolina Columbia, SC 29208, USA 2 Institute for Nuclear Research, Kiev, Ukraine E-mail: [email protected] New Journal of Physics 7 (2005) 6 Received 03 September 2004 Published 12 January 2005 Online at http://www.njp.org/ doi:10.1088/1367-2630/7/1/006 Abstract. We discuss the six most important parameters that should be used in the computation of figures of merit of various proposed searches for neutrinoless double-beta decay (0νββ-decay). We begin by discussing the connection of this decay mode to the effective Majorana mass of the electron neutrino and the expected experimental sensitivities of favoured techniques. We then discuss the proposed next generation 0νββ-decay experimental techniques in the context of an expression for the experimental figure-of-merit. Finally, we discuss the various proposed experiments in the context of their figure-of-merit parameters. We conclude that the important parameters are the nuclear structure (theoretical rate of decay), isotopic abundance of the parent nuclide and detection efficiency for 0νββ-decay. These enter the equation linearly. Also important are: the mass of the source, and the background rate, although these enter to the one-half power. Energy resolution, while also entering the figure-of-merit to the one half power, is crucial for the discovery potential. 3 Deceased. New Journal of Physics 7 (2005) 6 PII: S1367-2630(05)85887-2 1367-2630/05/010006+46$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft 2 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT Contents 1.
    [Show full text]
  • "Tihany" Symposium on Radiation Chemistry
    8th "Tihany" Symposium on Radiation Chemistry Balatonszéplak, Hungary September 3-8,1994 VOL 2/HO 1 Organized by the Hungarian Chemical Society, and Institute of Isotopes of the Hungarian Academy of Sciences, in co-operation with the International Atomic Energy Agency, PHARE ACCORD, Hungarian Academy of Sciences, and Hungarian National Committee for Technological Development Lectori splittern! The first international conference on radiation chemistry in Hungary was organized in 1962 in Tihany, on the northern shore of the Lake Balaton. The 86 participants came from 9 countries and from the International Atomic Energy Agency. The topics weie research and development in radiation chemistry and technology, without any further limitations. We believed and believe since that a meeting where basic problems of radiation research can be discussed along with applications, even with industrial questions and, in spite of all this, attendance is limited and ample time is given to informal exchange of views, may be regarded as an asset even if the calendar of radiation chemistry meetings is heavily packed. The success of the Symposium can be attributed not only or no* mainly to the papers given but rather to the possibilities for the above mentioned informal discussions of scientists arriving from both western and eastern countries, utilizing the geographical and partly political situation of Hungary. Falling the demand the second "Tihany" Symposium was organized in 1966 followed by the further ones in every 4-6 years. Due to the increasing number of the participants from 1971 the symposia were not organized in Tihany any more but in ail cases at the shore of the Lake Balaton (1971: Balatonfüred, 1976: Keszthely, 1982: Siófok) In 1986 and 1990 our Symposium were located at Balatonszéplak, i.
    [Show full text]
  • Proton Emission in Radioactive Decay Experimental Studies
    Proton emission in radioactive decay experimental studies J. Giovinazzo CENBG Foreword Radioactivity an old science (120 years…) initially related to chemistry, then to physics (nuclear & particle) first experimental probe to study atomic nucleus still a way to address many questions of the sub-atomic world Objectives of the lecture focus on decay modes involving one or several protons emission give a flavor of the physics topics that can be addressed with these processes questions considered from the experimental side Summary ● General considerations about radioactivity present the context of the decay modes involving proton emission basic and qualitative aspects ● Production of radioactive ions present the main techniques used to produce the nuclei of interest and study their radioactive decay ● Beta-delayed proton(s) emission illustrate with selected subjects the additional (sometimes unique) information that beta-delayed proton emission brings for our understanding of the atomic nucleus ● Proton(s) radioactivity experimental studies of these very exotic decay modes ● … if there’s a bit of time left… Proton emission in radioactive decay experimental studies first session General consideration about radioactivity ○ Introduction Brief overview of radioactive decay modes Instability of atomic nucleus ○ Decay of proton-rich nuclei Beta plus and the isospin formalism Towards the proton drip-line General consideration about radioactivity ○ Introduction Brief overview of radioactive decay modes Instability of atomic nucleus ○ Decay of
    [Show full text]
  • Mass Measurements of Neutron-Rich Isotopes Near $N=20$ by In-Trap
    PHYSICAL REVIEW C 100, 014304 (2019) Mass measurements of neutron-rich isotopes near N = 20 by in-trap decay with the ISOLTRAP spectrometer P. Ascher,1,* N. Althubiti,2,3 D. Atanasov,4,† K. Blaum,4 R. B. Cakirli,5 S. Grévy,1 F. Herfurth,6 S. Kreim,4 D. Lunney,7 V. Manea,8,† D. Neidherr,6 M. Rosenbusch,9 L. Schweikhard,10 A. Welker,11 F. Wienholtz,10 R. N. Wolf,4,‡ and K. Zuber11 1Centre d’Études Nucléaires de Bordeaux-Gradignan, Gradignan, France 2School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom 3Physics Department, Faculty of Science, Jouf University, Aljouf, Saudi Arabia 4Max-Planck-Institut für Kernphysik, Heidelberg, Germany 5University of Istanbul, Department of Physics 34134, Istanbul, Turkey 6GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany 7CSNSM-IN2P3-CNRS, Université de Paris Sud, Orsay, France 8Experimental Physics Department, CERN, Geneva, Switzerland 9RIKEN Nishina Center, Wako, Saitama 351-0198, Japan 10Institut für Physik, Universität Greifswald, 17487 Greifswald, Germany 11Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Germany (Received 28 February 2019; revised manuscript received 21 May 2019; published 8 July 2019) The masses of 34Si, 33,34Mg, and 34Al have been measured with the ISOLTRAP Penning-trap spectrometer at ISOLDE/CERN. The results are in agreement with previous mass measurements and uncertainties have been decreased. The mass of 34Al was determined in two configurations, one following direct production by the ISOLDE facility, favoring the 4− state, expected to be the ground state, second by in-trap decay of 34Mg, followed by recoil-ion trapping, favoring the production of the isomeric 1+ state.
    [Show full text]
  • Israel Atomic Energy Commission FOREWORD
    IA-1486 Israel Atomic Energy Commission FOREWORD I am pleased to introduce the 1993 Annual Report of the Israel Atomic Energy Commission. Like its predecessors in the long, uninterrupted series of reports begun in 1960, the report presents, in a brief and concise form, recent results and achievements of the well established program of basic and applied research carried out by the scientists and engineers of the IAEC often in collaboration with colleagues at other institutions in Israel and abroad. In terms of contents, the report presents the usual combination of topical basic and applied research. Like in previous years, much of the work has been published or submitted for publication in international scientific or technical literature. I would like to use this opportunity to congratulate the staff of the IAEC Research Laboratories on their efforts and wish them another fruitful and productive year. August 1994. Gideon Frank (f.F*^*-£-— Director General Israel AEC CONTENTS I THEORETICAL PHYSICS AND THEORETICAL CHEMISTRY 1 II OPTICS AND LASERS 15 III SOLID STATE AND NUCLEAR PHYSICS 45 IV MATERIALS SCIENCES 65 V CHEMISTRY 91 VI ENVIRONMENTAL STUDIES AND RADIOPHARMACEUTICALS 107 VII RADIATION EFFECTS, DOSIMETRY AND PROTECTION 121 VIII INSTRUMENTATION AND TECHNIQUES 143 IX DOCUMENTATION 163 X AUTHOR INDEX 201 an THEORETICAL PHYSICS AND THEORETICAL CHEMISTRY Computation of Droplets Distribution in Nozzle and Plume Flows[1] L. Genkin, M. Baer and J. Falcovitz* A simple entertainment model is usL'd to estimate droplet streamlines, velocity and mass flux in rocket exhaust plumes. Since droplets mass flux constitutes only about 1% of the exhaust mass flux, the effect of droplets entrainment on the gas flow is neglected.
    [Show full text]