The Gamma Function (Factorial Function)

Total Page:16

File Type:pdf, Size:1020Kb

The Gamma Function (Factorial Function) CHAPTER 8 THE GAMMA FUNCTION (FACTORIAL FUNCTION) The gamma function appears occasionally in physical problems such as the normalization of Coulomb wave functions and the computation of probabilities in statistical mechanics. In general, however, it has less direct physical application and interpretation than, say, the Legendre and Bessel functions of Chapters 11 and 12. Rather, its importance stems from its usefulness in developing other functions that have direct physical application. The gamma function, therefore, is included here. 8.1 DEFINITIONS,SIMPLE PROPERTIES At least three different, convenient definitions of the gamma function are in common use. Our first task is to state these definitions, to develop some simple, direct consequences, and to show the equivalence of the three forms. Infinite Limit (Euler) The first definition, named after Euler, is 1 2 3 n Ŵ(z) lim · · ··· nz,z0, 1, 2, 3,.... (8.1) ≡ n z(z 1)(z 2) (z n) = − − − →∞ + + ··· + This definition of Ŵ(z) is useful in developing the Weierstrass infinite-product form of Ŵ(z), Eq. (8.16), and in obtaining the derivative of ln Ŵ(z) (Section 8.2). Here and else- 499 500 Chapter 8 Gamma–Factorial Function where in this chapter z may be either real or complex. Replacing z with z 1, we have + 1 2 3 n z 1 Ŵ(z 1) lim · · ··· n + + = n (z 1)(z 2)(z 3) (z n 1) →∞ + + + ··· + + nz 1 2 3 n lim · · ··· nz = n z n 1 · z(z 1)(z 2) (z n) →∞ + + + + ··· + zŴ(z). (8.2) = This is the basic functional relation for the gamma function. It should be noted that it is a difference equation. It has been shown that the gamma function is one of a general class of functions that do not satisfy any differential equation with rational coefficients. Specifically, the gamma function is one of the very few functions of mathematical physics that does not satisfy either the hypergeometric differential equation (Section 13.4) or the confluent hypergeometric equation (Section 13.5). Also, from the definition, 1 2 3 n Ŵ(1) lim · · ··· n 1. (8.3) = n 1 2 3 n(n 1) = →∞ · · ··· + Now, application of Eq. (8.2) gives Ŵ(2) 1, = Ŵ(3) 2Ŵ(2) 2,... (8.4) = = Ŵ(n) 1 2 3 (n 1) (n 1) . = · · ··· − = − ! Definite Integral (Euler) A second definition, also frequently called the Euler integral, is ∞ t z 1 Ŵ(z) e− t − dt, (z) > 0. (8.5) ≡ ℜ 0 The restriction on z is necessary to avoid divergence of the integral. When the gamma function does appear in physical problems, it is often in this form or some variation, such as ∞ t2 2z 1 Ŵ(z) 2 e− t − dt, (z) > 0. (8.6) = ℜ 0 1 z 1 1 − Ŵ(z) ln dt, (z) > 0. (8.7) = t ℜ 0 When z 1 , Eq. (8.6) is just the Gauss error integral, and we have the interesting result = 2 Ŵ 1 √π. (8.8) 2 = Generalizations of Eq. (8.6), the Gaussian integrals, are considered in Exercise 8.1.11. This definite integral form of Ŵ(z), Eq. (8.5), leads to the beta function, Section 8.4. 8.1 Definitions, Simple Properties 501 To show the equivalence of these two definitions, Eqs. (8.1) and (8.5), consider the function of two variables n n t z 1 F(z,n) 1 t − dt, (z) > 0, (8.9) = − n ℜ 0 with n a positive integer.1 Since n t t lim 1 e− , (8.10) n − n ≡ →∞ from the definition of the exponential ∞ t z 1 lim F(z,n) F(z, ) e− t − dt Ŵ(z) (8.11) n = ∞ = ≡ →∞ 0 by Eq. (8.5). Returning to F(z,n), we evaluate it in successive integrations by parts. For convenience let u t/n. Then = 1 z n z 1 F(z,n) n (1 u) u − du. (8.12) = − 0 Integrating by parts, we obtain z 1 1 F(z,n) n u n n 1 z (1 u) (1 u) − u du. (8.13) nz = − z + z − 0 0 Repeating this with the integrated part vanishing at both endpoints each time, we finally get 1 z n(n 1) 1 z n 1 F(z,n) n − ··· u + − du = z(z 1) (z n 1) + ··· + − 0 1 2 3 n · · ··· nz. (8.14) = z(z 1)(z 2) (z n) + + ··· + This is identical with the expression on the right side of Eq. (8.1). Hence lim F(z,n) F(z, ) Ŵ(z), (8.15) n →∞ = ∞ ≡ by Eq. (8.1), completing the proof. Infinite Product (Weierstrass) The third definition (Weierstrass’ form) is 1 γz ∞ z z/n ze 1 e− , (8.16) Ŵ(z) ≡ + n n 1 #= 1The form of F(z,n)is suggested by the beta function (compare Eq. (8.60)). 502 Chapter 8 Gamma–Factorial Function where γ is the Euler–Mascheroni constant, γ 0.5772156619 .... (8.17) = This infinite-product form may be used to develop the reflection identity, Eq. (8.23), and applied in the exercises, such as Exercise 8.1.17. This form can be derived from the original definition (Eq. (8.1)) by rewriting it as n 1 1 2 3 n 1 z − Ŵ(z) lim · · ··· nz lim 1 nz. (8.18) = n z(z 1) (z n) = n z + m →∞ →∞ m 1 + ··· + #= Inverting Eq. (8.18) and using z ( ln n)z n− e − , (8.19) = we obtain n 1 ( ln n)z z z lim e − 1 . (8.20) Ŵ(z) = n + m →∞ m 1 #= Multiplying and dividing by 1 1 1 n exp 1 z ez/m, (8.21) + 2 + 3 +···+ n = m 1 #= we get 1 1 1 1 z lim exp 1 ln n z Ŵ(z) = n + 2 + 3 +···+ n − →∞ n z z/m lim 1 e− . (8.22) × n + m →∞ m 1 #= As shown in Section 5.2, the parenthesis in the exponent approaches a limit, namely γ ,the Euler–Mascheroni constant. Hence Eq. (8.16) follows. It was shown in Section 5.11 that the Weierstrass infinite-product definition of Ŵ(z) led directly to an important identity, π Ŵ(z)Ŵ(1 z) . (8.23) − = sin zπ Alternatively, we can start from the product of Euler integrals, ∞ z s ∞ z t Ŵ(z 1)Ŵ(1 z) s e− ds t− e− dt + − = 0 0 ∞ z dv ∞ u πz v e− udu , = (v 1)2 = sin πz 0 + 0 transforming from the variables s,t to u s t,v s/t, as suggested by combining the exponentials and the powers in the integrands.= + The Jacobian= is 11 s t (v 1)2 J , 1 s +2 + =− 2 = t = u t − t 8.1 Definitions, Simple Properties 503 u where (v 1)t u. The integral 0∞ e− udu 1, while that over v may be derived by + = πz = contour integration, giving sin πz. This identity may also be derived by contour integration (Example 7.1.6 and Exer- 1 cises 7.1.18 and 7.1.19) and the beta function, Section 8.4. Setting z 2 in Eq. (8.23), we obtain = Ŵ 1 √π (8.24a) 2 = (taking the positive square root), in agreement with Eq. (8.8). Similarly one can establish Legendre’s duplication formula, 1 2z Ŵ(1 z)Ŵ z 2− √πŴ(2z 1). (8.24b) + + 2 = + The Weierstrass definition shows immediately that Ŵ(z) has simple poles at z 1 = 0, 1, 2, 3,...and that Ŵ(z) − has no poles in the finite complex plane, which means that−Ŵ(z)− has− no zeros. This[ behavior] may also be seen in Eq. (8.23), in which we note that π/(sin πz) is never equal to zero. Actually the infinite-product definition of Ŵ(z) may be derived from the Weierstrass 1 factorization theorem with the specification that Ŵ(z) − have simple zeros at z 0, 1, 2, 3,.... The Euler–Mascheroni constant[ is fixed] by requiring Ŵ(1) 1. See= also− the− products− expansions of entire functions in Section 7.1. = In probability theory the gamma distribution (probability density) is given by 1 α 1 x/β x − e− ,x>0 f(x) βαŴ(α) (8.24c) = 0,x0. ≤ α 1 The constant β Ŵ(α) − is chosen so that the total (integrated) probability will be unity. [ ] 3 For x E, kinetic energy, α 2 , and β kT , Eq. (8.24c) yields the classical Maxwell– Boltzmann→ statistics. → → Factorial Notation So far this discussion has been presented in terms of the classical notation. As pointed out by Jeffreys and others, the 1ofthez 1 exponent in our second definition (Eq. (8.5)) is a continual nuisance. Accordingly,− Eq.− (8.5) is sometimes rewritten as ∞ t z e− t dt z , (z) > 1, (8.25) ≡ ! ℜ − 0 to define a factorial function z . Occasionally we may still encounter Gauss’ notation, (z), for the factorial function: ! & (z) z Ŵ(z 1). (8.26) = != + The Ŵ notation is due to Legendre.# The factorial function of Eq. (8.25) is related to the gamma function by Ŵ(z) (z 1) or Ŵ(z 1) z . (8.27) = − ! + = ! 504 Chapter 8 Gamma–Factorial Function FIGURE 8.1 The factorial function — extension to negative arguments. If z n, a positive integer (Eq. (8.4)) shows that = z n 1 2 3 n, (8.28) != != · · ··· the familiar factorial. However, it should be noted that since z is now defined by Eq. (8.25) (or equivalently by Eq. (8.27)) the factorial function is no longer! limited to positive integral values of the argument (Fig.
Recommended publications
  • Introduction to Analytic Number Theory the Riemann Zeta Function and Its Functional Equation (And a Review of the Gamma Function and Poisson Summation)
    Math 229: Introduction to Analytic Number Theory The Riemann zeta function and its functional equation (and a review of the Gamma function and Poisson summation) Recall Euler’s identity: ∞ ∞ X Y X Y 1 [ζ(s) :=] n−s = p−cps = . (1) 1 − p−s n=1 p prime cp=0 p prime We showed that this holds as an identity between absolutely convergent sums and products for real s > 1. Riemann’s insight was to consider (1) as an identity between functions of a complex variable s. We follow the curious but nearly universal convention of writing the real and imaginary parts of s as σ and t, so s = σ + it. We already observed that for all real n > 0 we have |n−s| = n−σ, because n−s = exp(−s log n) = n−σe−it log n and e−it log n has absolute value 1; and that both sides of (1) converge absolutely in the half-plane σ > 1, and are equal there either by analytic continuation from the real ray t = 0 or by the same proof we used for the real case. Riemann showed that the function ζ(s) extends from that half-plane to a meromorphic function on all of C (the “Riemann zeta function”), analytic except for a simple pole at s = 1. The continuation to σ > 0 is readily obtained from our formula ∞ ∞ 1 X Z n+1 X Z n+1 ζ(s) − = n−s − x−s dx = (n−s − x−s) dx, s − 1 n=1 n n=1 n since for x ∈ [n, n + 1] (n ≥ 1) and σ > 0 we have Z x −s −s −1−s −1−σ |n − x | = s y dy ≤ |s|n n so the formula for ζ(s) − (1/(s − 1)) is a sum of analytic functions converging absolutely in compact subsets of {σ + it : σ > 0} and thus gives an analytic function there.
    [Show full text]
  • The Digamma Function and Explicit Permutations of the Alternating Harmonic Series
    The digamma function and explicit permutations of the alternating harmonic series. Maxim Gilula February 20, 2015 Abstract The main goal is to present a countable family of permutations of the natural numbers that provide explicit rearrangements of the alternating harmonic series and that we can easily define by some closed expression. The digamma function presents its ubiquity in mathematics once more by being the key tool in computing explicitly the simple rearrangements presented in this paper. The permutations are simple in the sense that composing one with itself will give the identity. We show that the count- able set of rearrangements presented are dense in the reals. Then, slight generalizations are presented. Finally, we reprove a result given originally by J.H. Smith in 1975 that for any conditionally convergent real series guarantees permutations of infinite cycle type give all rearrangements of the series [4]. This result provides a refinement of the well known theorem by Riemann (see e.g. Rudin [3] Theorem 3.54). 1 Introduction A permutation of order n of a conditionally convergent series is a bijection φ of the positive integers N with the property that φn = φ ◦ · · · ◦ φ is the identity on N and n is the least such. Given a conditionally convergent series, a nat- ural question to ask is whether for any real number L there is a permutation of order 2 (or n > 1) such that the rearrangement induced by the permutation equals L. This turns out to be an easy corollary of [4], and is reproved below with elementary methods. Other \simple"rearrangements have been considered elsewhere, such as in Stout [5] and the comprehensive references therein.
    [Show full text]
  • The Riemann and Hurwitz Zeta Functions, Apery's Constant and New
    The Riemann and Hurwitz zeta functions, Apery’s constant and new rational series representations involving ζ(2k) Cezar Lupu1 1Department of Mathematics University of Pittsburgh Pittsburgh, PA, USA Algebra, Combinatorics and Geometry Graduate Student Research Seminar, February 2, 2017, Pittsburgh, PA A quick overview of the Riemann zeta function. The Riemann zeta function is defined by 1 X 1 ζ(s) = ; Re s > 1: ns n=1 Originally, Riemann zeta function was defined for real arguments. Also, Euler found another formula which relates the Riemann zeta function with prime numbrs, namely Y 1 ζ(s) = ; 1 p 1 − ps where p runs through all primes p = 2; 3; 5;:::. A quick overview of the Riemann zeta function. Moreover, Riemann proved that the following ζ(s) satisfies the following integral representation formula: 1 Z 1 us−1 ζ(s) = u du; Re s > 1; Γ(s) 0 e − 1 Z 1 where Γ(s) = ts−1e−t dt, Re s > 0 is the Euler gamma 0 function. Also, another important fact is that one can extend ζ(s) from Re s > 1 to Re s > 0. By an easy computation one has 1 X 1 (1 − 21−s )ζ(s) = (−1)n−1 ; ns n=1 and therefore we have A quick overview of the Riemann function. 1 1 X 1 ζ(s) = (−1)n−1 ; Re s > 0; s 6= 1: 1 − 21−s ns n=1 It is well-known that ζ is analytic and it has an analytic continuation at s = 1. At s = 1 it has a simple pole with residue 1.
    [Show full text]
  • Square Series Generating Function Transformations 127
    Journal of Inequalities and Special Functions ISSN: 2217-4303, URL: www.ilirias.com/jiasf Volume 8 Issue 2(2017), Pages 125-156. SQUARE SERIES GENERATING FUNCTION TRANSFORMATIONS MAXIE D. SCHMIDT Abstract. We construct new integral representations for transformations of the ordinary generating function for a sequence, hfni, into the form of a gen- erating function that enumerates the corresponding \square series" generating n2 function for the sequence, hq fni, at an initially fixed non-zero q 2 C. The new results proved in the article are given by integral{based transformations of ordinary generating function series expanded in terms of the Stirling num- bers of the second kind. We then employ known integral representations for the gamma and double factorial functions in the construction of these square series transformation integrals. The results proved in the article lead to new applications and integral representations for special function series, sequence generating functions, and other related applications. A summary Mathemat- ica notebook providing derivations of key results and applications to specific series is provided online as a supplemental reference to readers. 1. Notation and conventions Most of the notational conventions within the article are consistent with those employed in the references [11, 15]. Additional notation for special parameterized classes of the square series expansions studied in the article is defined in Table 1 on page 129. We utilize this notation for these generalized classes of square series functions throughout the article. The following list provides a description of the other primary notations and related conventions employed throughout the article specific to the handling of sequences and the coefficients of formal power series: I Sequences and Generating Functions: The notation hfni ≡ ff0; f1; f2;:::g is used to specify an infinite sequence over the natural numbers, n 2 N, where we define N = f0; 1; 2;:::g and Z+ = f1; 2; 3;:::g.
    [Show full text]
  • INTEGRALS of POWERS of LOGGAMMA 1. Introduction The
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 139, Number 2, February 2011, Pages 535–545 S 0002-9939(2010)10589-0 Article electronically published on August 18, 2010 INTEGRALS OF POWERS OF LOGGAMMA TEWODROS AMDEBERHAN, MARK W. COFFEY, OLIVIER ESPINOSA, CHRISTOPH KOUTSCHAN, DANTE V. MANNA, AND VICTOR H. MOLL (Communicated by Ken Ono) Abstract. Properties of the integral of powers of log Γ(x) from 0 to 1 are con- sidered. Analytic evaluations for the first two powers are presented. Empirical evidence for the cubic case is discussed. 1. Introduction The evaluation of definite integrals is a subject full of interconnections of many parts of mathematics. Since the beginning of Integral Calculus, scientists have developed a large variety of techniques to produce magnificent formulae. A partic- ularly beautiful formula due to J. L. Raabe [12] is 1 Γ(x + t) (1.1) log √ dx = t log t − t, for t ≥ 0, 0 2π which includes the special case 1 √ (1.2) L1 := log Γ(x) dx =log 2π. 0 Here Γ(x)isthegamma function defined by the integral representation ∞ (1.3) Γ(x)= ux−1e−udu, 0 for Re x>0. Raabe’s formula can be obtained from the Hurwitz zeta function ∞ 1 (1.4) ζ(s, q)= (n + q)s n=0 via the integral formula 1 t1−s (1.5) ζ(s, q + t) dq = − 0 s 1 coupled with Lerch’s formula ∂ Γ(q) (1.6) ζ(s, q) =log √ . ∂s s=0 2π An interesting extension of these formulas to the p-adic gamma function has recently appeared in [3].
    [Show full text]
  • Convolution on the N-Sphere with Application to PDF Modeling Ivan Dokmanic´, Student Member, IEEE, and Davor Petrinovic´, Member, IEEE
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010 1157 Convolution on the n-Sphere With Application to PDF Modeling Ivan Dokmanic´, Student Member, IEEE, and Davor Petrinovic´, Member, IEEE Abstract—In this paper, we derive an explicit form of the convo- emphasis on wavelet transform in [8]–[12]. Computation of the lution theorem for functions on an -sphere. Our motivation comes Fourier transform and convolution on groups is studied within from the design of a probability density estimator for -dimen- the theory of noncommutative harmonic analysis. Examples sional random vectors. We propose a probability density function (pdf) estimation method that uses the derived convolution result of applications of noncommutative harmonic analysis in engi- on . Random samples are mapped onto the -sphere and esti- neering are analysis of the motion of a rigid body, workspace mation is performed in the new domain by convolving the samples generation in robotics, template matching in image processing, with the smoothing kernel density. The convolution is carried out tomography, etc. A comprehensive list with accompanying in the spectral domain. Samples are mapped between the -sphere theory and explanations is given in [13]. and the -dimensional Euclidean space by the generalized stereo- graphic projection. We apply the proposed model to several syn- Statistics of random vectors whose realizations are observed thetic and real-world data sets and discuss the results. along manifolds embedded in Euclidean spaces are commonly termed directional statistics. An excellent review may be found Index Terms—Convolution, density estimation, hypersphere, hy- perspherical harmonics, -sphere, rotations, spherical harmonics. in [14]. It is of interest to develop tools for the directional sta- tistics in analogy with the ordinary Euclidean.
    [Show full text]
  • 3 Elementary Functions
    3 Elementary Functions We already know a great deal about polynomials and rational functions: these are analytic on their entire domains. We have thought a little about the square-root function and seen some difficulties. The remaining elementary functions are the exponential, logarithmic and trigonometric functions. 3.1 The Exponential and Logarithmic Functions (§30–32, 34) We have already defined the exponential function exp : C ! C : z 7! ez using Euler’s formula ez := ex cos y + iex sin y (∗) and seen that its real and imaginary parts satisfy the Cauchy–Riemann equations on C, whence exp C d z = z is entire (analytic on ). Indeed recall that dz e e . We have also seen several of the basic properties of the exponential function, we state these and several others for reference. Lemma 3.1. Throughout let z, w 2 C. 1. ez 6= 0. ez 2. ez+w = ezew and ez−w = ew 3. For all n 2 Z, (ez)n = enz. 4. ez is periodic with period 2pi. Indeed more is true: ez = ew () z − w = 2pin for some n 2 Z Proof. Part 1 follows trivially from (∗). To prove 2, recall the multiple-angle formulae for cosine and sine. Part 3 requires an induction using part 2 with z = w. Part 4 is more interesting: certainly ew+2pin = ew by the periodicity of sine and cosine. Now suppose ez = ew where z = x + iy and w = u + iv. Then, by considering the modulus and argument, ( ex = eu exeiy = eueiv =) y = v + 2pin for some n 2 Z We conclude that x = u and so z − w = i(y − v) = 2pin.
    [Show full text]
  • COMPLETE MONOTONICITY for a NEW RATIO of FINITE MANY GAMMA FUNCTIONS Feng Qi
    COMPLETE MONOTONICITY FOR A NEW RATIO OF FINITE MANY GAMMA FUNCTIONS Feng Qi To cite this version: Feng Qi. COMPLETE MONOTONICITY FOR A NEW RATIO OF FINITE MANY GAMMA FUNCTIONS. 2020. hal-02511909 HAL Id: hal-02511909 https://hal.archives-ouvertes.fr/hal-02511909 Preprint submitted on 19 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. COMPLETE MONOTONICITY FOR A NEW RATIO OF FINITE MANY GAMMA FUNCTIONS FENG QI Dedicated to people facing and fighting COVID-19 Abstract. In the paper, by deriving an inequality involving the generating function of the Bernoulli numbers, the author introduces a new ratio of finite many gamma functions, finds complete monotonicity of the second logarithmic derivative of the ratio, and simply reviews complete monotonicity of several linear combinations of finite many digamma or trigamma functions. Contents 1. Preliminaries and motivations 1 2. A lemma 3 3. Complete monotonicity 4 4. A simple review 5 References 7 1. Preliminaries and motivations Let f(x) be an infinite differentiable function on (0; 1). If (−1)kf (k)(x) ≥ 0 for all k ≥ 0 and x 2 (0; 1), then we call f(x) a completely monotonic function on (0; 1).
    [Show full text]
  • Two Series Expansions for the Logarithm of the Gamma Function Involving Stirling Numbers and Containing Only Rational −1 Coefficients for Certain Arguments Related to Π
    J. Math. Anal. Appl. 442 (2016) 404–434 Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications www.elsevier.com/locate/jmaa Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational −1 coefficients for certain arguments related to π Iaroslav V. Blagouchine ∗ University of Toulon, France a r t i c l e i n f o a b s t r a c t Article history: In this paper, two new series for the logarithm of the Γ-function are presented and Received 10 September 2015 studied. Their polygamma analogs are also obtained and discussed. These series Available online 21 April 2016 involve the Stirling numbers of the first kind and have the property to contain only Submitted by S. Tikhonov − rational coefficients for certain arguments related to π 1. In particular, for any value of the form ln Γ( 1 n ± απ−1)andΨ ( 1 n ± απ−1), where Ψ stands for the Keywords: 2 k 2 k 1 Gamma function kth polygamma function, α is positive rational greater than 6 π, n is integer and k Polygamma functions is non-negative integer, these series have rational terms only. In the specified zones m −2 Stirling numbers of convergence, derived series converge uniformly at the same rate as (n ln n) , Factorial coefficients where m =1, 2, 3, ..., depending on the order of the polygamma function. Explicit Gregory’s coefficients expansions into the series with rational coefficients are given for the most attracting Cauchy numbers −1 −1 1 −1 −1 1 −1 values, such as ln Γ(π ), ln Γ(2π ), ln Γ( 2 + π ), Ψ(π ), Ψ( 2 + π )and −1 Ψk(π ).
    [Show full text]
  • Inverse Trigonometric Functions
    Chapter 2 INVERSE TRIGONOMETRIC FUNCTIONS vMathematics, in general, is fundamentally the science of self-evident things. — FELIX KLEIN v 2.1 Introduction In Chapter 1, we have studied that the inverse of a function f, denoted by f–1, exists if f is one-one and onto. There are many functions which are not one-one, onto or both and hence we can not talk of their inverses. In Class XI, we studied that trigonometric functions are not one-one and onto over their natural domains and ranges and hence their inverses do not exist. In this chapter, we shall study about the restrictions on domains and ranges of trigonometric functions which ensure the existence of their inverses and observe their behaviour through graphical representations. Besides, some elementary properties will also be discussed. The inverse trigonometric functions play an important Aryabhata role in calculus for they serve to define many integrals. (476-550 A. D.) The concepts of inverse trigonometric functions is also used in science and engineering. 2.2 Basic Concepts In Class XI, we have studied trigonometric functions, which are defined as follows: sine function, i.e., sine : R → [– 1, 1] cosine function, i.e., cos : R → [– 1, 1] π tangent function, i.e., tan : R – { x : x = (2n + 1) , n ∈ Z} → R 2 cotangent function, i.e., cot : R – { x : x = nπ, n ∈ Z} → R π secant function, i.e., sec : R – { x : x = (2n + 1) , n ∈ Z} → R – (– 1, 1) 2 cosecant function, i.e., cosec : R – { x : x = nπ, n ∈ Z} → R – (– 1, 1) 2021-22 34 MATHEMATICS We have also learnt in Chapter 1 that if f : X→Y such that f(x) = y is one-one and onto, then we can define a unique function g : Y→X such that g(y) = x, where x ∈ X and y = f(x), y ∈ Y.
    [Show full text]
  • Sums of Powers and the Bernoulli Numbers Laura Elizabeth S
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1996 Sums of Powers and the Bernoulli Numbers Laura Elizabeth S. Coen Eastern Illinois University This research is a product of the graduate program in Mathematics and Computer Science at Eastern Illinois University. Find out more about the program. Recommended Citation Coen, Laura Elizabeth S., "Sums of Powers and the Bernoulli Numbers" (1996). Masters Theses. 1896. https://thekeep.eiu.edu/theses/1896 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidates (who have written formal theses) SUBJECT: Permission to Reproduce Theses The University Library is rece1v1ng a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. u Author uate I respectfully request Booth Library of Eastern Illinois University not allow my thesis
    [Show full text]
  • Notes on Riemann's Zeta Function
    NOTES ON RIEMANN’S ZETA FUNCTION DRAGAN MILICIˇ C´ 1. Gamma function 1.1. Definition of the Gamma function. The integral ∞ Γ(z)= tz−1e−tdt Z0 is well-defined and defines a holomorphic function in the right half-plane {z ∈ C | Re z > 0}. This function is Euler’s Gamma function. First, by integration by parts ∞ ∞ ∞ Γ(z +1)= tze−tdt = −tze−t + z tz−1e−t dt = zΓ(z) Z0 0 Z0 for any z in the right half-plane. In particular, for any positive integer n, we have Γ(n) = (n − 1)Γ(n − 1)=(n − 1)!Γ(1). On the other hand, ∞ ∞ Γ(1) = e−tdt = −e−t = 1; Z0 0 and we have the following result. 1.1.1. Lemma. Γ(n) = (n − 1)! for any n ∈ Z. Therefore, we can view the Gamma function as a extension of the factorial. 1.2. Meromorphic continuation. Now we want to show that Γ extends to a meromorphic function in C. We start with a technical lemma. Z ∞ 1.2.1. Lemma. Let cn, n ∈ +, be complex numbers such such that n=0 |cn| converges. Let P S = {−n | n ∈ Z+ and cn 6=0}. Then ∞ c f(z)= n z + n n=0 X converges absolutely for z ∈ C − S and uniformly on bounded subsets of C − S. The function f is a meromorphic function on C with simple poles at the points in S and Res(f, −n)= cn for any −n ∈ S. 1 2 D. MILICIˇ C´ Proof. Clearly, if |z| < R, we have |z + n| ≥ |n − R| for all n ≥ R.
    [Show full text]